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Abstract

The work presented in this article studies how the context information can be used in the automatic sound event
detection process, and how the detection system can benefit from such information. Humans are using context
information to make more accurate predictions about the sound events and ruling out unlikely events given the
context. We propose a similar utilization of context information in the automatic sound event detection process. The
proposed approach is composed of two stages: automatic context recognition stage and sound event detection
stage. Contexts are modeled using Gaussian mixture models and sound events are modeled using three-state
left-to-right hidden Markov models. In the first stage, audio context of the tested signal is recognized. Based on the
recognized context, a context-specific set of sound event classes is selected for the sound event detection stage. The
event detection stage also uses context-dependent acoustic models and count-based event priors. Two alternative
event detection approaches are studied. In the first one, a monophonic event sequence is outputted by detecting the
most prominent sound event at each time instance using Viterbi decoding. The second approach introduces a new
method for producing polyphonic event sequence by detecting multiple overlapping sound events using multiple
restricted Viterbi passes. A new metric is introduced to evaluate the sound event detection performance with various
level of polyphony. This combines the detection accuracy and coarse time-resolution error into one metric, making
the comparison of the performance of detection algorithms simpler. The two-step approach was found to improve
the results substantially compared to the context-independent baseline system. In the block-level, the detection
accuracy can be almost doubled by using the proposed context-dependent event detection.

1 Introduction
Sound events are good descriptors for an auditory scene,
as they help describing and understanding the human and
social activities. A sound event is a label that people would
use to describe a recognizable event in a region of the
sound. Such a label usually allows people to understand
the concept behind it and associate this event with other
known events. Sound events can be used to represent a
scene in a symbolic way, e.g., an auditory scene on a busy
street contains events of passing cars, car horns, and foot-
steps of people rushing. Auditory scenes can be described
with different level descriptors to represent the general
context (street) and the characteristic sound events (car,
car horn, and footsteps). As a general definition, a context
is information that characterizes the situation of a person,
place, or object [1]. In this study, the definition of context
is narrowed to the location of auditory scene.
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Automatic sound event detection aims at processing the
continuous acoustic signal and converting it into such
symbolic descriptions of the corresponding sound events
present at the auditory scene. The research field studying
this process is called computational auditory scene analy-
sis [2]. Automatic sound event detection can be utilized in
a variety of applications, including context-based indexing
and retrieval in multimedia databases [3,4], unobtrusive
monitoring in health care [5], surveillance [6], and mili-
tary applications [7]. The symbolic information about the
sound events can be used in other research areas, e.g.,
audio context recognition [8,9], automatic tagging [10],
and audio segmentation [11].
Our everyday auditory scenes are usually complex

in sound events, having a high degree of overlapping
between the sound events. Humans can easily process this
into distinct and interpreted sound events, and follow a
specific sound source while ignoring or simply acknowl-
edging the others. This process is called auditory scene
analysis [12]. For example, one can follow a conversa-
tion in a busy background consisting of other people
talking. Human sound perception is also robust to many
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environmental conditions influencing the audio signal.
Humans can recognize the sound of footsteps, regardless
of whether they hear footsteps on a pavement or on gravel,
in the rain or in a hallway. In case of an unknown sound
event, humans are able to hypothesize as to the source
of the event. Humans use their knowledge of the context
to predict which sound events they are likely to hear, and
to discard interpretations that are unlikely given the con-
text [13]. In real-world environments, sound events are
related to other events inside a particular environment,
providing a rich collection of contextual associations [14].
In the listening experiments, this facilitatory effect of the
context to the human sound identification process has
been found to partly influence the perception of the sound
[15].
Automatic sound event detection systems are usu-

ally designed for specific tasks or specific environments.
There are a number of challenges in extending the detec-
tion system to handle multiple environments and a large
set of events. Event categories and variance within each
category make the automatic sound event recognition
problem difficult even with well-represented categories
when having clean and undistorted signals. The overlap-
ping sound events that constitute a natural auditory scene
create an acoustic mixture signal that is more difficult
to handle. Another challenge is the presence of certain
sound events in multiple contexts (e.g., footsteps present
in contexts like street, hallway, beach) calling for rules in
modeling of the contexts. Some events are context specific
(e.g., keyboard sounds present in the office context) and
their variability is lower, as they always appear in similar
conditions.
A possible solution to these challenges is to use the

knowledge about the context in the sound event detec-
tion in the same manner as humans do [15], by reducing
the search space for the sound event based on the con-
text. We achieve this by implementing a first stage for
audio context recognition and event set selection. The
context information will provide rules for selecting a cer-
tain set of events. For example, it will determine excluding
the footsteps class when the tested recording is from
inside a car. A smaller set of event models will reduce
the complexity of the event detection stage and will also
limit the possible confusions and misclassifications. Fur-
ther, context-dependent prior probabilities for events can
be used to predict most likely events for the given con-
text. The context information offers also possibilities for
improving the acoustic sound event models used in the
detection system. A context-dependent training and test-
ing has the benefit of better fitting acoustic models for the
sound event classes, by using only examples from a given
context. For example, footsteps are acoustically different
on a corridor (hallway context) than on the sand (beach
context), and using specific models should be beneficial.

This article studies how to use context information in
the sound event detection process, and how this addi-
tional information improves the detection accuracy. The
proposed sound event detection system is composed of
two stages: a context recognition stage and a sound
event detection stage. Based on the recognized con-
text, a context-specific set of sound events is selected
for the sound event detection stage. In the detection
stage, context-dependent acoustic models and count-
based event priors are used. Two alternative event detec-
tion approaches are studied. In the first one, monophonic
event sequence is outputted by detecting most promi-
nent sound event at each time instance. In the second
approach, a polyphonic event sequence is produced by
detecting multiple overlapping sound events.
The rest of this article is organized as follows. Section 2

discusses related previous work, and Section 3 explains
basic concepts of sound event detection. Section 4
presents a detailed description of the proposed context-
dependent sound event detection system. Section 5
presents the audio database and metrics used in the eval-
uations. Section 6 contains detailed results of the evalua-
tions and the discussions of the results. Finally, conclud-
ing remarks and future research directions are given in
Section 7.

2 Previous work
Early research related to the classification of sounds for
everyday life has been concentrating on problems with
specific sounds. Examples include gunshots [16], vehicles
[17], machines [18], and birds [19]. In addition to this,
usually a low number of sound categories are involved in
the studies, specifically chosen to minimize overlapping
between different categories, and evaluations are carried
out with one or very small set of audio contexts (kitchen
[20], bathroom [21], meeting room [22], office and can-
teen [23]). Many of these previously presented methods
are not applicable as such for the automatic sound event
detection for continuous audio in real-world situations.
The problem of sound event detection in real envi-

ronments having a large set of overlapping events was
addressed in the acoustic event detection task (AED)
of the Classification of Events, Activities and Relation-
ship (CLEAR) evaluation campaign [24]. The goal of the
AED task was to detect non-speech events in the meet-
ing room environment. The metric used in the evalu-
ation was designed for the detection system outputting
a monophonic sequence of sound events. The best per-
forming system submitted to the evaluation achieved a
30% detection accuracy by using AdaBoost-based feature
selection and a Hidden Markov Model (HMM) classifier
[25]. Later this study was extended into a two-stage system
having a tandem connectionionist-HMM-based classifi-
cation stage and a re-scoring stage [26]. The authors
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achieved a 45% detection accuracy on the CLEAR evalu-
ation database. Sound event detection for a wider set of
real-world audio contexts was studied in [27]. A system
based onMel-frequency cepstral coefficients (MFCC) fea-
tures and an HMM classifier achieved on average a 30%
detection accuracy over ten real-world audio contexts.
In addition to the acoustic features and classification

schemes, different methods have been studied to include
prior knowledge of the events to the detection process.
Acoustically homogeneous segments for the environment
classification can be defined using frame level n-grams,
where n-grams are used to model the prior probabilities of
frames based on previously observed ones [28]. In a com-
plex acoustic environment with many overlapping events,
the number of possible combinations is too high to be
able to define such acoustically homogeneous segments
and for modeling transitions between them. In [3], a hier-
archical probabilistic model was proposed for detecting
key sound effects and audio scene categories. The sound
effects were modeled with HMMs, and a higher-level
model was used to connect individual sound effect models
through a grammar network similar to language models
in speech recognition. A method of modeling overlapping
event priors has been addressed in [29], by using prob-
abilistic latent semantic analysis to calculate priors and
learn associations between sound events. The context-
recognition stage proposed in this article will solve the
associations of the sound events by splitting the event set
into subsets according to the context. Furthermore, the
count-based priors estimated from training material can
be used to provide probability distributions for the sound
events inside each context.
In order to be able to do context-dependent sound event

detection, we introduce a context recognition step. In
recent years, there has been some research on model-
ing what is called context awareness in sound recognition.
One group of studies focuses on estimating the context of
an audio segment with varying classification techniques
[8,30,31]. In these studies the context is represented by a
class of sounds that can be heard in some type of envi-
ronment, such as cars at a street, or people talking in a
restaurant. Depending on the number of context classes
that are learned, the recognition rates of these methods
vary between 58 (24 classes, [30]) and 84% (14 classes, [8]).
Although these results are promising, the methods that
are used have some attributes that make them less suit-
able for automatic sound event detection. Features that are
used to classify an audio interval are assumed to represent
information that is specific for a class, and therefore, the
context class to which an audio interval belongs gives pri-
marily information about its acoustic properties. Tasks in
multimedia applications (or a comparable setup in envi-
ronmental sound classification, as in [8]) generally entail
that a small audio interval, typically not longer than a few

seconds, is classified as a sample of one context out of a
dataset with a limited set of distinct contexts, which are
stored as a collection of audio files. A second group of
studies on context awareness addresses some of the above
issues by retrieving semantic relatedness of sound inter-
vals rather than the similarity of their acoustic properties
[32,33]. For example, in [32] the intervals are clustered
based on the similarity. Our approach for event detection
will include a step of context recognition by classifying
short intervals, before the main step of event detection.

3 Event detection
This section explains the sound event detection approach
used in the proposed method, which recognizes and tem-
porally locates sound events in recordings. In Section 4,
this approach is extended to use context-dependent infor-
mation.

3.1 Event models
The coarse shape of the power spectrum of the recording
from the auditory scene is represented withMFCCs. They
provide a good discriminative performance with reason-
able noise robustness. In addition to the static coefficients,
their first and second time derivatives are used to describe
the dynamic properties of the cepstrum.
Sound-event-conditional feature distributions are

modeled using continuous-density HMMs. Left-to-right
model topology having three states was chosen to repre-
sent sound events having a beginning, a sustained part,
and an end part. A mixture of multivariate Gaussian
density functions is used in modeling the probability den-
sity functions of observations in each state. The acoustic
models are trained using audio signals where the start and
end times of events as well as their classes have manually
been annotated. The traditional approach would be to use
non-overlapping sound events to train the acoustic event
models. However, realistic auditory scenes are usually
too complex to provide enough such material for reliable
training. Thus, each event instance annotated represents
one training sample for the model of the event class
regardless whether there were overlapping events present
or not. The regions of the sound that contain overlapping
events are used as training instances of both event classes
when training the models. The assumption behind this
procedure is that in themodel training stage the variability
caused by overlapping sound events classes will average
out and the models will learn a reliable representation
of the target sound events. The procedure of assigning
training material to the event classes is illustrated in
Figure 1. The models for sound events are trained with
these samples using the Baum–Welch algorithm [34].
In the testing stage, the sound event models are con-

nected into a network with transitions from eachmodel to
any other. A model network is shown in Figure 2.
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Figure 1 Training material containing overlapping sound events is used to train both sound event models.

Since it is possible that a test recording will contain
some sound events which were not present in the train-
ing set, the system has to be able deal with such situations.
A universal background model (UBM) is often used in
speaker recognition to capture general properties of the
signal [35]. We are using a UBM to capture events which
are unknown to the system. A one-state HMM is trained
with all available recordings for this purpose.

3.2 Count-based priors
Equally probable events can be represented by a net-
work with equal inter-model transition probabilities. In
this case, the output will be an unrestricted sequence of
relevant labels, in which any event can follow any other.
In reality, the sound events are not uniformly dis-

tributed. Some events are more likely than others, e.g.,
speech is more common than a car alarm sound. If we
regard each event as a separate entity and model the
event counts, the histogram of the event counts inside
certain context will provide us event priors. The event
priors can be used to control event transitions inside the
sound event model network shown in Figure 2. The count-
based event priors are estimated from the annotated
training material.

Figure 2 Fully connected sound event model network.

3.3 Detection
We will present two alternative approaches for the sound
event detection: in the first one, we find the most promi-
nent event at each time instance, and in the second one
we find a predefined number of overlapping events. The
detection of the most prominent event will produce a
monophonic event sequence as an output. This approach
is later referred as monophonic detection. The detection
of overlapping events will produce a polyphonic event
sequence as an output. This approach is later referred as
polyphonic detection. Examples of the outputs of these
two approaches are shown in Figure 3.

3.3.1 Monophonic detection
Segmentation of a recording into regions containing the
most prominent event at a time will be obtained by
doing Viterbi decoding [36] inside the network of sound
event models. Transitions between models in this net-
work are controlled by event prior probabilities. The bal-
ance between the event priors and the acoustic model is
adjusted using a weight in combining the two likelihoods
when calculating the path cost through the model net-
work. A second parameter, insertion penalty, controls the
number of events in the event sequence by controlling
the cost of inter-event transition. These parameters are
experimentally chosen using a development set.

3.3.2 Polyphonic detection
As discussed in Section 2, the previous studies related to
sound event detection consider audio scenes with overlap-
ping events that are explicitly annotated, but the detection
results are presented as a sequence that is assumed to
contain only the most prominent event at each time. In
this respect, the systems output only one event at each
time, and the evaluation considers the output correct if the
detected event is one of the annotated ones. The perfor-
mance of such systems is very limited in the case of rich
multisource environments.
In order to detect overlapping events, we propose to

use consecutive passes of the Viterbi algorithm as pro-
posed in [37] for the detection of overlapping musical
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Figure 3 Example of sound event detection output for two approaches: monophonic system output and polyphonic system output.

notes. After one iteration, the decoded path through the
model network is marked and the next iteration is pro-
hibited from entering any states belonging to the sound
event decoded at that frame in the previous iteration. The
UBM is allowed in each iteration. This method will pro-
vide iterative decoding of the next-best path containing
events that are at each time different than in the previously
decoded one. This is difficult to achieve with conventional
N-best decoding, which provides too many paths that
have only minor state changes between them. These state
changes do not produce the desired outcome. The pro-
posed approach is illustrated in Figure 4. The number of
iterations is chosen depending on the expected polyphony
of the acoustic material.

4 Context-dependent event detection
Many sound events are acoustically dissimilar across con-
texts, and in these cases usage of context-specific acoustic
models should provide better modelling accuracy. Sound
events also have context-dependent prior probabilities,
and using more accurate prior probabilities should also
increase detection accuracy. Thus, we propose a sound

event detection system utilizing the context information.
The proposed system has two stages. In the first stage,
the recording is tested for audio context classification.
The second stage is the event detection. Based on the
recognized context label, a specific set of sound event
models is selected and acoustics models trained with the
context-dependent material are selected to be used in the
detection stage. In addition to this, context-dependent
event priors are applied in the event detection. The sys-
tem overview is presented in Figure 5. The details of each
stage will be presented in the following sections.

4.1 Context recognition
As discussed in Section 2, an audio context can be recog-
nized robustly among a small and restricted set of context
classes. For our system, we chose a simple state-of-the-art
context recognition approach [30] based on MFCCs and
Gaussian mixture models (GMMs).
In the recognition stage, the audio is segmented into 4-

second segments which are classified individually using
the context models. Log-likelihoods are accumulated over
all the segments and the model with the highest total

Figure 4 Concept of multiple path decoding using three consecutive passes of Viterbi algorithm.



Heittola et al. EURASIP Journal on Audio, Speech, andMusic Processing 2013, 2013:1 Page 6 of 13
http://asmp.eurasipjournals.com/content/2013/1/1

Figure 5 System overview.

likelihood is given as the label for the recording. The
performance of context recognition will influence the per-
formance of the sound event detection, as incorrectly
recognized context will lead to choosing a wrong set
of events for the event detection stage. Results for the
context recognition are presented in Section 6.1.
The context models used in the context recognition

stage are essentially identical to the context-dependent
UBMs later used in the event detection stage. This simpli-
fies the training process of the whole system and speeds
up the event detection process allowing the calculated
observation probabilities to be shared between stages.

4.2 Context-dependent modeling
In order to have more accurate modeling, the acoustic
models for sound events are trained within each avail-
able context. Context-dependent count-based priors for
the sound events are collected from the annotations of
training material.
In the testing stage, the set of possible sound events

is determined by the context label provided by the con-
text recognition stage. The sound event models belonging
to the recognized context will be selected and connected
into a network with transitions from each model to any
other (see Figure 2). The transitions between events are
controlled with count-based event priors estimated for the
recognized context.

5 Evaluation setup
The sound event detection system was trained and tested
using an audio database collected from various contexts.
The system was evaluated using an established evalua-
tion metric [38] and a new metric introduced for a better
understanding of the overlapping event detection results.

5.1 Database description
A comprehensive audio database is essential for training
context and sound event models and for estimating count-
based event priors. To the best of the authors’ knowledge,
there are only two publicly available audio databases for
sound event detection from auditory scene. The database
used in CLEAR 2007 evaluation [38] contains only mate-
rial from meeting rooms. The DARES-G1 database [39]
published in 2009 offers a more diverse set of audio
recordings from many audio contexts. Event annotations
for this database have been implemented using free-from
event labels. The annotations would require label group-
ing in order to make the database usable for the event
detection. At the time of this study, there was not any
multi-context database publicly available that could be
used for the evaluation without additional processing, and
we recorded and annotated our own audio database. Our
aim was to record material from common everyday con-
texts and to have as representative collection of audio
scenes as possible.
The recordings for the database were collected from ten

audio contexts: basketball game, beach, inside a bus, inside
a car, hallways, inside an office facility, restaurant, gro-
cery shop, street, and stadium with track and field events.
Hallways and office facility contexts were selected to rep-
resent typical office work environments. The street, bus,
and car contexts represent typical transportation scenar-
ios. The grocery shop and restaurant contexts represent
typical public space scenarios, whereas the beach, basket-
ball game, and track and fields event contexts represent
examples of leisure time scenarios.
The database consists of 103 recordings, each of which

is 10–30-min long. The total duration of recordings is
1133min. Each context is represented by 8 to 14 record-
ings. The material for the database was gathered using a
binaural audio recording setup, where a person is wear-
ing the microphones in his/her ears during the recording.
The recording equipment consists of a Soundman OKM
II Klassik/Studio A3 electret microphone and a Roland
Edirol R-09 digital recorder. Recordings were done using
44.1 kHz sampling rate and 24-bit resolution. In this study,
we are using monophonic versions of the recordings, i.e.,
two channels are averaged to one channel.
The recordings are manually annotated indicating the

start and end times of all clearly audible sound events
in the auditory scene. Annotations were done by the
same person responsible of the recordings; this ensured
as detailed as possible annotations since the annotator
had prior knowledge of the auditory scene. In order to
help the annotation of complex contexts, like street, also
a low-quality video was captured during the recording
of audio to help the annotator recall the auditory scene
while doing annotation. The annotator had the freedom to
choose descriptor labels for the sound events. The event
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labels used in the annotations were manually grouped into
61 distinct event classes. Grouping was done by combin-
ing labels describing essentially the same sound event,
e.g., “cheer” and “cheering”, or labels describing acous-
tically very similar event, e.g., a “barcode reader beep”
and a “card reader beep”. Event classes were formed from
events appearing at least ten times within the database.
More rare events were included in a single class labeled as
“unknown”.
Figure 6 illustrates the event classes and their frequen-

cies of occurrence for different contexts in the database.
Each context contains 9 to 16 event classes and many
event classes appear in multiple contexts (e.g., speech).
There are also event classes which are highly context spe-
cific (e.g., dishes, or referee whistle). As expected in a
natural auditory scenes, the event classes are not well bal-
anced. It can been seen that some events are context spe-
cific (e.g., pressure release noise in the bus context), while
others are very common across different contexts (e.g.,
speech). The number of events annotated per context is
presented in Table 1.

5.2 Performance evaluation
In order to provide comparable metrics to the previous
studies [25-27], in the performance evaluations we are
using twometrics also used in the CLEAR 2007 evaluation
[38]. The CLEAR evaluation defines the calculation of the
precision and recall for the event detection, and the bal-
anced F-score is calculated based on these. This accuracy
metric is later denoted by ACC. The CLEAR evaluation

also defines a temporal resolution error to represent the
erroneously attributed time. This metric is later denoted
by ER. Exact definition of these metrics can be found in
the evaluation guidelines [38].
For evaluating a system output with overlapping events,

the recall calculated in this way is limited by the num-
ber of events the system can output, compared to the
number of events that are annotated. As a consequence,
even if the output contains only correct events, the accu-
racy for the event detection is limited by the used metric.
The temporal resolution error represents all the erro-
neously attributed time, including events wrongly recog-
nized and events missed altogether by the lack of sufficient
polyphony in the detection. The two metrics are therefore
complementary, and tied to the polyphony of the anno-
tation. This complicates the optimization of the event
detection system into finding a good balance between the
two.
In order to tackle this problem and to have a single

understandable metric for sound event detection, we pro-
pose a block-wise detection accuracy metric. The metric
combines the correctness of the event detection with a
coarse temporal resolution determined by the length of
the block used in the evaluation.
The proposed block-wise metric will evaluate how

well the events detected in non-overlapping time blocks
coincide with the annotations. The detected events are
regarded only at the block level. In the evaluations, we
are using two block lengths: 1 (later denoted by A1)
and 30 s (later denoted by A30). This metric is designed
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Figure 6 Percentage of sound event classes annotated per audio context in the database.
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Table 1 Number of events annotated per context and total
length of recordings (in minutes)

Number of events Length

Basketball game 990 80

Beach 738 197

Inside a bus 1729 146

Inside a car 582 111

Office facility 1220 105

Hallway 822 100

Restaurant 780 96

Grocery shop 1797 88

Street 827 102

Track & field stadium 793 108

for applications requiring a fairly coarse time resolution,
placing more importance into finding the correct events
within the block than finding their exact location. Inside
the blocks, we calculate precision and recall. Precision
is defined as the number of correctly detected sound
event classes divided by the total number of event classes
detected within the block. Recall is defined as the number
of correctly detected sound event classes divided by the
number of all annotated event classes within the block.
An event is regarded as correctly detected if it has been
detected somewhere within the block and the same event
label also appears in the annotations within the same
block. The accuracy represented by the F-score is calcu-
lated based on the precision and recall by the formula:

Block accuracy = 2 ∗ Precision ∗ Recall
Precision + Recall

(1)

where

Precision = Number of correct events
Number of detected events

(2)

and

Recall = Number of correctly detected events
Number of all annotated events

. (3)

An illustration of how this metric works can be seen
in Figure 7. In block 1, the annotated events are A, B, C,
and D. The monophonic system output for the block 1
contains events A, C, and E. The events A and C are cor-
rectly detected by the system. For this block, the precision
is 2 out of 3 (2/3) and recall 2 is out of 4 (2/4). The cal-
culated block-wise accuracy for this block is 57.1% and
the average block-wise accuracy for the entire example
is 57.3%. For comparison, the CLEAR metrics are calcu-
lated on the level of entire output. The detection accuracy
(ACC) is 76.2% having a precision 8/12 and recall 8/9.
The time resolution error (ER) is calculated by counting
the units that are wrongly labeled or missed altogether

Figure 7 Block-wise accuracy for sound event detection.

(42) and dividing it with the total number of units (51)
covered by the annotated events. This results in a 82.4%
time resolution error.
For the polyphonic system output, the block-wise accu-

racy for the first block is 57.1% and the average accuracy
for the entire example 58.3%. This is easily compara-
ble with the same metric for the monophonic output.
The CLEAR metric for the detection accuracy (ACC) is
63.2% (precision 6/10 and recall 6/9). The time resolu-
tion error (ER) is 109.8%, having 56 wrongly labeled or
missed time units, compared to 51 in the annotation.
This makes it hard to compare the monophonic and poly-
phonic outputs. In addition to this, an error value over
100% does not have proper interpretation. The proposed
block-wise metric is comparable among monophonic and
polyphonic outputs, with similar accuracy in the two illus-
trated cases. Therefore, the metric is equally valid for a
system outputting only one event at time (monophonic
output) as for a system outputting overlapping events
(polyphonic output).

6 Experimental results
The database was split randomly into five equal-sized file
sets, with one set being used as test data and other four
for training the system. The split was done five times
for a fivefold cross-validation setup. One fold was used
in the development stage for determining parameters in
the decoding. The evaluation results are presented as the
average of the other four folds.
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Table 2 Context recognition results

4 s 20 s 40 s Whole signal

Overall 70.0 80.7 85.0 91.0

Context-wise results

Basketball 91.0 99.0 100.0 100.0

Beach 57.0 69.0 71.0 81.0

Bus 41.0 52.0 58.0 67.0

Car 84.0 93.0 95.0 100.0

Hallway 55.0 60.0 67.0 75.0

Office 85.0 87.0 88.0 88.0

Restaurant 77.0 89.0 95.0 100.0

Shop 72.0 87.0 94.0 100.0

Street 52.0 76.0 83.0 100.0

Track&Field 86.0 96.0 98.0 100.0

Percentage of correctly recognized segments.

Both the context recognition stage and the event detec-
tion stage used MFCC features and shared the same
parameter set. MFCCs were calculated in 20-ms windows
with a 50% overlap from the outputs of a 40-channel filter-
bank which occupied the frequencies from 30Hz to half
the sampling rate. In addition to the 16 static coefficients,
the first and second time derivatives were also used.
In the event detection stage, the parameters control-

ling the balance between the event priors, the acoustic
model, and the sequence length were experimentally cho-
sen using a development set by finding parameter values
which resulted in an output comprising approximately the
same total amount of sound events that was manually
annotated for the recording.

6.1 Context recognition
Context recognition was performed using the method
presented in Section 4.1. The number of Gaussian dis-
tributions in the GMM model was fixed to 32 for each
context class. This amount of Gaussian distributions was

found to give a good compromise between computational
complexity and recognition performance in the prelimi-
nary studies conducted with the development set.
The performance of the context recognition is presented

in Table 2 as a fourfold average performance for the evalu-
ation sets for four different segment lengths: 4 s, 20 s, 40 s,
and the whole signal. Figure 8 shows the context recogni-
tion performance as a function of segment length used in
the recognition. It can be seen that already after 2–3min
the system achieves a good recognition accuracy. A deci-
sion about the context could be taken already after the
first minutes, in order to minimize the complexity of the
context recognition stage and avoid processing the whole
recording. However, we use the decision obtained after
processing the whole signal to maximize the recognition
accuracy. When using the whole length of the record-
ing for the decision, six out of ten contexts have perfect
100% recognition rate, and rest of the contexts have also
reasonable good, around 80% recognition rate.
The performance could positively be affected by the fact

that recordings for the same context were done around
the same geographical location, e.g., along the same street.
Thus, the training and testing sets might contain record-
ings around the same area having quite a similar auditory
scene, leading to over-optimistic performance.

6.2 Monophonic event detection
First we study the accuracy of the proposed system to find
the most prominent event at each time instance. Since the
performance of the context recognition stage affects on
the selected event set for the event detection, the system is
first tested when provided with the ground-truth context
label. This will provide us the maximum attainable per-
formance of the monophonic event detection. Later the
system is evaluated in conjunction with the context recog-
nition stage to provide a realistic performance evaluation.
The system is evaluated using either uniform event priors
or count-based event priors.
The number of Gaussian distributions per state in the

sound event models was fixed to 16 for each event class.
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Figure 8 Context recognition performance as a function of used segment length.
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This was found to give a high enough accuracy in the
preliminary studies using the development set.
All the results are calculated as an average of the four

test sets. The results are evaluated first with the CLEAR
metrics (ACC and ER) in order to provide a way to com-
pare the results to those of previously published systems
[27,29]. In addition to this, block-wise accuracy is pre-
sented for two block lengths: 1 (denoted by A1) and 30 s
(denoted by A30).

6.2.1 Event detection with the ground-truth context
The system is evaluated first using global acoustic models
and then context-dependent acoustic models. At the same
time also count-based event priors are evaluated. Event
detection results using given ground-truth context labels
are presented in Table 3.
The context-dependent acoustic models provide bet-

ter fitting modeling and this is shown by the consistent
increase in the results. Using the count-based event priors
increases the system performance in the event detection
for most of the contexts in both metrics. The overall
accuracy increases from 34.7 to 41.1 while the time reso-
lution error decreases from 86.9 to 83.4. The performance
increase is reflected in the block-wise metric with an
increase from 10.9 to 14.8 in 1-s block accuracy and 27.0
to 31.2 for 30-s block accuracy.

6.2.2 Event detection with recognized context
The true performance of the system is evaluated using
the two steps: context recognition is performed on the
test recording and then a set of event models and event
priors are chosen according to the recognized context.
Event detection results using the proposed two-step sys-
tem are presented in Table 4. For comparison, the results
of a context-independent baseline system [27] is also pre-
sented.
The results of the two-step system are slightly lower

than the ones presented in Table 3 with the ground-truth
context label. This is due to the 9% error in the context
recognition step. A wrongly recognized context will lead
to choosing the wrong model set and event priors. Even
so, the different contexts do contain some common events
and some of those events are correctly detected.

Table 3 Monophonic event detection performance based
on ground-truth context

ACC ER A1 A30

Global acoustic models

Uniform event priors 32.3 85.2 10.0 21.9

Count-based event priors 36.6 84.7 12.0 25.8

Context-dependent acoustic models

Uniform event priors 34.7 86.9 10.9 27.0

Count-based event priors 41.1 83.4 14.8 30.2

Table 4 Monophonic event detection performance
comparison with context-independent baseline system
and context-dependent system using context recognition

ACC ER A1 A30

Context-independent detection

No priors, baseline system 28.3 87.0 8.4 17.8

Context-dependent detection

Uniform event priors 33.8 87.8 10.9 27.0

Count-based event priors 40.1 84.2 14.6 29.8

6.3 Polyphonic event detection
Overlapping events are detected using consecutive passes
of the Viterbi algorithm as explained in Section 3.3.2. The
average polyphony of the recorded material was estimated
based on the annotations, and based on this the number
of Viterbi passes was fixed to four.
The system is evaluated first with the ground-truth con-

text label to get the maximum attainable performance of
the polyphonic event detection. Later the full system hav-
ing the context recognition stage is evaluated in order to
get the realistic performance evaluation. As discussed in
Section 5.2, the CLEAR evaluation metrics are not sen-
sible to be used for polyphonic system output, and only
block-wise accuracies are presented. Results for overlap-
ping event detection with ground-truth context labels and
recognized context labels are presented in Table 5.

6.3.1 Event detection with the ground-truth context
The consecutive passes of the Viterbi algorithm increase
the event detection performance especially when mea-
sured on 1-s block-level. On longer 30 s block-level the
performance difference is smaller between monophonic
output and polyphonic output. The monophonic output
can capture small segments of the overlapping events as
they become more prominent than other events within

Table 5 Polyphonic event detection results and
comparison withmonophonic event detection system
performance

Ground-truth context Recognized context

A1 A30 A1 A30

Monophonic system output

Uniform event
priors

10.9 27.0 10.9 27.0

Count-based
event priors

14.8 30.2 14.6 29.8

Polyphonic system output

Uniform event
priors

19.8 28.9 18.9 28.2

Count-based
event priors

20.4 30.0 19.5 29.4
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Figure 9 Context-wise results for context-independent baseline system and proposed context-dependent sound event detection
systems.

the block. This way the monophonic system can detect
many of the overlapping sound events on longer blocks.

6.3.2 Event detection with recognized context
The true performance of the system is evaluated using
the context recognizer to get the context label for the test
recording. The differences in the performance between
the monophonic and polyphonic detection are quite sim-
ilar to the detection where the true context was given. A
slight overall performance decrease is due to the contexts
which are not recognized 100% correctly (see Table 2).

6.4 Discussion
The context-dependent sound event detection substan-
tially improves the performance compared to the context-
independent detection approach. The improvement is
partly due to the context-dependent event selection, and
partly due to more accurate sound event modeling within
the context. The event selection simplifies the detection
task by reducing the number of sound events involved in
the process. A context-dependent acoustic model repre-
sents particular characteristics of the sound event specific
to the context, and provides more accurate results. The
two-step classification scheme allows the proposed sys-
tem to be extended easily with additional contexts later.
The training process has to be applied only for the new
context to get the context model for the context classifi-
cation and to get the sound event models for the event
detection.
Analysis of the individual contexts reveals interest-

ing performance differences between contexts. Selected
context-wise results are presented in Figure 9. Results
are presented for three different system configura-
tions: the context-independent baseline system, context-
dependent monophonic event detection system using
count-based event priors, and context-dependent poly-
phonic event detection system using count-based event
priors. The context-dependent sound event detection
approach increases the accuracy on all the studied

contexts, especially on the rather complex contexts like
street and restaurant. On the other hand, some contexts,
like basketball, beach, and office, do not benefit as much.
The proposed overlapping event detection approach

provides equal or better performance than prominent
event detection approach for most of the contexts. The
multiple Viterbi passes increases the detection accuracy
in the shorter 1-s blocks relatively more than in 30-s
blocks. This property can be exploited when a more
responsive detection is required. An impressive improve-
ment of 23% units is achieved in the 1-s block-wise
accuracy for the street context, which is probably the
noisiest context. On the other hand, the contexts also
having a complex auditory scene, the restaurant, and
the shop have a slight decrease in the accuracy. Vary-
ing complexity per context, i.e., having a different amount
of overlapping events present at different times, may
require also a different amount of Viterbi passes to
overcome this. Examples of the audio recordings used
in the evaluations along with their manual annotations
and automatically detected sound events are available at
arg.cs.tut.fi/demo/CASAbrowser.

7 Conclusion
The benefits of using the context-dependent informa-
tion in the sound event detection were studied in this
article. The proposed approach utilizing the context
information comprised a context recognition stage and
a sound event detection stage using the information of
the recognized context. The evaluation results show that
the knowledge of context can be used to substantially
increase the acoustic event detection accuracy compared
to the context-independent baseline approach. The con-
text information is incorporated in multiple ways into the
system. The detection task is simplified by using context-
dependent event selection and the acoustic models of
the sound events are made more accurate within each
context by using context-dependent acoustic modeling.
The context-dependent event priors are used to model

http://arg.cs.tut.fi/demo/CASAbrowser
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event probabilities within the context. For example, the
detection accuracy in the block-metrics is almost doubled
compared to the baseline system. Furthermore, the pro-
posed approach for detecting overlapping sound events
increases the responsiveness of the sound event detection
by providing better detection accuracy on the shorter 1-s
blocks.
Auditory scenes are naturally complex, having usu-

ally many overlapping sound events active at the same
time. Hence, the detection of overlapping sound events
is an important aspect for more robust and realistic
sound event detection system. Recent developments in
the sound source separation provide interesting possibil-
ities to tackle this problem. In the early studies, sound
source separation has already proven to substantially
increase the accuracy of the event detection [40]. Fur-
ther, the event priors for the overlapping sound events
are difficult to model because of high number of possi-
ble combinations and transitions between them. Latent
semantic analysis has emerged as a interesting solution
to learn associations between overlapping events [29], but
the area requires more studying to apply it efficiently to
the overlapping event detection.
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