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Summary
Background Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants 
that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants 
would predict COPD and associated phenotypes.

Methods We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and 
FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine 
cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 
<80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking 
pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area 
under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that 
reflect parenchymal and airway pathology, and patterns of reduced lung growth.

Findings The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 
[95% CI 1·74–1·88] and non-European (1·42 [1·34–1·51]) populations. Compared with the first decile, the tenth decile 
of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56–9·72) in European ancestry and 
4·83 (3·45–6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described 
genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed 
improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79–0·81] 
vs 0·76 [0·75–0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area 
percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive 
emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern.

Interpretation A risk score comprised of genetic variants can identify a small subset of individuals at markedly 
increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of 
reduced lung growth.
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Introduction
Chronic obstructive pulmonary disease (COPD) is 
characterised by irreversible airflow limitation. The Global 
Initiative for Chronic Obstructive Lung Disease (GOLD) 
defines COPD by the presence of persistent respiratory 
symptoms with airflow obstruction based on a low FEV1/
forced vital capacity (FVC) ratio, and grades spirometric 
severity on the basis of decrements in post-bronchodilator 
percentage of predicted FEV1 (% predicted).1 COPD 
primarily develops in the context of toxic environmental 
exposures, including cigarette smoking and biofuel 
combustion. However, not all exposed individuals develop 
airflow obstruction,2,3 which suggests that some individuals 
could have a genetic susceptibility to the disease.

Heritability estimates for COPD typically range 
between 37% and 50%.4–6 Genome-wide association 
studies (GWASs) of COPD and lung function have 
identified numerous genetic variants associated with 
COPD risk.7–13 The effect size of each of these GWAS 
variants is generally small. However, although each 
individual variant only explains a small proportion of 
COPD risk, the combination of many genetic variants 
into a single genetic risk score explains a greater 
proportion of the risk.7,11,14,15 Genetic risk scores have been 
developed for lung function, with predictive power for 
COPD.7,13,14 Genetic risk scores based on larger GWASs, 
and including more variants, tend to exhibit higher 
predictive performance.7

http://crossmark.crossref.org/dialog/?doi=10.1016/S2213-2600(20)30101-6&domain=pdf
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Although genetic risk scores for lung function can 
predict COPD,7,11 the degree to which genetic risk scores 
can capture COPD heterogeneity is not clear. Individuals 
with COPD can have widely varying airway and lung 
parenchymal involvement, and individual COPD GWAS 
variants are associated with quantitative imaging features, 
such as airway wall thickness and emphysema.8–10 Oelsner 
and colleagues16 derived a 79-variant genetic risk score 
from a previous GWAS for lung function11 and identified 
an association with quantitative imaging features on chest 
CT. However, whether a genetic risk score comprised of a 
larger number of lung function variants would result in 
stronger associations with a wider range of quantitative 
and qualitative CT imaging features is not known.

Genetic risk scores represent a carefully selected set of 
variants that are either unweighted, or weighted in the 
context of other variants in the regression model. We use 
the term polygenic risk score to refer to risk scores that 
include variants across the genome, with weights derived 
from GWASs. In cardiovascular diseases, polygenic risk 
scores including variants that did not reach genome-wide 
significance have improved power and identified a large 
proportion of the population with markedly increased 
disease risk.17 Therefore, it is possible that polygenic risk 
scores for lung function that include variants not 
reaching genome-wide significance will be more accurate 
than genetic risk scores for predicting complex traits 
such as COPD. In addition, some individuals with 
reduced lung growth early in life are at risk of developing 
COPD.2,18,19 COPD and lung function GWAS variants are 
associated with anthropometric features (eg, height) and 
are enriched in lung development pathways.7,10 It is 
unknown whether risk scores of lung function genetic 
variants are associated with patterns of lung growth.

We hypothesised that polygenic risk scores developed 
using the full results of the largest available genome-
wide genetic studies of lung function would improve the 
prediction of COPD and identify individuals at markedly 
increased risk of disease. Because decreased lung 

function can occur as a continuum before individuals 
meet the GOLD spirometry criteria for COPD,1 we 
developed a polygenic risk score based on lung function 
(ie, FEV1 and FEV1/FVC ratio) and then tested the 
predictive power of the polygenic risk score for COPD. 
We also sought to determine whether the score was 
related to specific quantitative and qualitative CT imaging 
phenotypes and patterns of lung growth. To test this 
hypothesis, we developed individual polygenic risk scores 
based on FEV1 and FEV1/FVC ratio, and joined these 
scores into a combined polygenic risk score. We tested 
the effect of this combined risk score in nine additional 
independent cohorts, including both population-based 
and case-control designs, multiple racial and ethnic 
groups, and children with asthma.

Methods
Study populations
GWASs for FEV1 and FEV1/FVC were done for participants 
in the UK Biobank and SpiroMeta.7 We used the GenKOLS 
case-control study from Bergen, Norway20–22 to tune 
hyperparameters. We calculated polygenic risk scores in 
both case-control and population-based studies across a 
range of ethnicities. Case-control studies included 
COPDGene (non-Hispanic white and African American 
participants),23 ECLIPSE,24 NETT25 and Normative Aging 
Study (NAS),26 SPIROMICS,27,28 and the Lung Health 
Study (LHS).29,30 Population-based studies included MESA 
(African American, non-Hispanic white, Hispanic, and 
Chinese participants),31,32 Cardiovascular Health Study 
(CHS; African American and European ancestry partici
pants),33 the Rotterdam Study (all three cohorts),34 and a 
study by Kangwon University.35 For lung-function growth 
patterns, we did an analysis using individuals in the 
Childhood Asthma Management Program (CAMP).18 
CAMP was a randomised placebo-controlled trial of anti-
inflammatory treatments in 1041 children with mild-to-
moderate asthma (aged 5–12 years at enrolment), with 
13 years of follow-up and low attrition (≤20%).36,37 All 
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Research in context

Evidence before this study
We searched PubMed for studies published up to Sept 28, 2019, 
using the terms “COPD”, “genetic*”, “risk score”, “COPD”, and 
“gwa study”, with no language restrictions. Previous research has 
shown that COPD is influenced by genetic factors, but variants 
identified by genome-wide association studies (GWASs) are of 
individually small effect, and account for a modest fraction of 
genetic risk. Studies combining these variants showed improved 
risk prediction, but no studies have attempted to include full 
genome-wide results.

Added value of this study
We developed a polygenic risk score using a large GWAS of lung 
function. This risk score predicted COPD in multiple cohorts, 

and is associated with a wide range of CT imaging phenotypes 
and lung growth patterns that are thought to be linked to the 
development of COPD.

Implications of all the available evidence
A polygenic risk score can quantify an individual’s risk for COPD 
independently from, and earlier than, clinical risk factors of age 
and cigarette smoking. Future research is needed to determine 
whether these scores can identify individuals most likely to 
benefit from preventive therapy or targeted trials.
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participants gave informed consent and study protocols 
were approved by local Research Ethics Committees and 
Institutional Review Boards. Additional details of the 
study populations are available in the appendix (pp 2–5).

Outcomes
The primary outcome measure was moderate-to-severe 
COPD (FEV1/FVC <0·7 and FEV1 <80% of predicted). As 
secondary outcome measures, we assessed the association 
of the combined polygenic risk score with smoking, occur
rence of exacerbations, GOLD spirometry grades, clinical 
COPD phenotypes, imaging phenotypes, and lung growth 
patterns. We also assessed the performance of the 
polygenic risk scores (alone and in combination with 
clinical COPD risk factors) in predicting COPD, and 
compared this with the performance of a clinical risk 
score.

Derivation of polygenic risk scores
To develop individual polygenic risk scores for FEV1 and 
FEV1/FVC, we generated weights based on effect sizes 
from GWASs of FEV1 and FEV1/FVC in the UK Biobank 
and SpiroMeta.7 To reduce the chance of genetic variant 
drop-out between studies, we included variants that 
were either genotyped or well imputed (R²>0·5) in 
four cohorts: COPDGene, GenKOLS, ECLIPSE, and 
NETT/NAS. We then applied a penalised regression 
framework, accounting for linkage disequilibrium 
(lassosum v0.4.4),38 in which linkage disequilibrium was 
calculated using European ancestry individuals in the UK 
Biobank.39 To determine hyperparameters (λ and 
shrinkage) for lassosum, we used the GenKOLS case-
control study. We chose GenKOLS to avoid training any 
model parameters on the COPDGene study to preserve 
COPDGene for testing, and because GenKOLS was a 
well powered and balanced case-control study.

The primary outcome measure, moderate-to-severe 
COPD, requires both reduced FEV1 and reduced 
FEV1/FVC for diagnosis according to GOLD criteria. 
Therefore, we created a single combined polygenic risk 
score using a weighted sum of the two individual 
polygenic risk scores for FEV1 and FEV1/FVC. To 
achieve this, we built a logistic regression model for 
COPD that included the individual polygenic risk 
scores for FEV1 and FEV1/FVC in GenKOLS, and used 
their regression coefficients as weights to calculate the 
combined score.

To test the sensitivity of the scores to the cohort used 
for parameter tuning, we tuned the polygenic risk scores 
using one of the four cohorts (COPDGene non-Hispanic 
white individuals, ECLIPSE, NETT/NAS, or GenKOLS), 
then tested predictive power in the three other cohorts.

Statistical analysis
We used the resulting regression model to calculate 
polygenic risk scores in participants from nine studies 
(COPDGene, CHS, ECLIPSE, Kangwon University, LHS, 

MESA, NETT/NAS, Rotterdam Study, and SPIROMICS). 
For each cohort, FEV1 and FEV1/FVC polygenic risk scores 
were centred and scaled by their means and standard 
deviations.

We checked for correlation of the combined polygenic 
risk score with smoking pack-years using Pearson 
correlation coefficients. To estimate the effect of smoking, 
we calculated the proportion of population-attributable risk 
(PAR%) and attributable risk in the exposed (AR%) for 
smoking exposure (dichotomised at 20 pack-years 
(>20 pack-years vs ≤20 pack-years) using COPDGene non-
Hispanic white participants.

To assess the primary outcome measure, we tested for 
association between the polygenic risk score and COPD 
(moderate-to-severe, unless otherwise stated) using 
logistic regression models, adjusting for age, sex, height, 
smoking pack-years, and principal components of 
genetic ancestry, as well as study clinic in CHS. We 
tested the polygenic risk score for association with 
frequent exacerbations (>1 exacerbation in 12 months; 
exacerbations were defined as self-reported worsening in 
respiratory health requiring therapy with corticosteroids, 
antibiotics, or both) and severe exacerbations (exacer
bation requiring emergency room visit or hospital 
admission) in the COPDGene and ECLIPSE cohorts, 
adjusting for age, sex, and pack-years; these models were 
then tested again adjusting for baseline FEV1 and 
FEV1/FVC. To assess the predictive performance of 
polygenic risk scores for COPD, we estimated the area 
under the curve (AUC) using pROC in R version 3.5.1. 
We evaluated the following models: 1) polygenic risk 
score alone; 2) traditional COPD clinical risk factors 
(age, sex, and cigarette smoking pack-years) alone; and 
3) COPD clinical risk factors and polygenic risk score. 
We compared these models in ten subpopulations, 
resulting in a Bonferroni-corrected p-value of 0.005. We 
also derived a clinical risk score from UK Biobank 
participants with 10 or more pack-years of smoking, and 
estimated AUC in the COPDGene and ECLIPSE studies. 
Cutoffs for clinical risk score and polygenic risk score 
were chosen based on the Youden index,40 and 
performance characteristics were calculated. All meta-
analyses were performed with the meta package in R 
(v4.9-7).41 Because the polygenic risk scores were 
developed in European ancestry cohorts, we separately 
examined European and non-European ancestry cohorts. 
We performed meta-analyses of AUC by both inverse 
variance weighting and effective sample size weighting;42 
these meta-analyses used a fixed-effects approach for 
Europeans, but we performed a random effects analysis 
for non-Europeans to account for the diversity of racial 
ancestry. We grouped participants in each study by 
combined polygenic risk score deciles and tertiles, and 
compared highest and lowest deciles to each other and 
to the middle tertile. 

We tested for association between polygenic risk scores 
and COPD-related phenotypes that were available in 

Bergen, Norway 
(Prof P Bakke MD); Division of 

Respiratory Medicine, Queen’s 
Medical Centre, Nottingham, 

UK (Prof A Gulsvik MD); 
National Institute for Health 

Research Leicester Respiratory 
Biomedical Research Centre, 
Glenfield Hospital, Leicester, 

UK (Prof I P Hall FMedSci, 
Prof L Wain, Prof M D Tobin); 

Harvard Medical School, 
Boston, MA, USA 

(Prof E K Silverman)

Correspondence to: 
Prof Martin D Tobin, Genetic 

Epidemiology Group, 
Department of Health Sciences, 
University of Leicester, Leicester 

LE1 7RH, UK 
martin.tobin@leicester.ac.uk

or

Dr M H Cho, Channing Division 
of Network Medicine, Brigham 

and Women’s Hospital, Boston, 
MA 02115, USA 

remhc@channing.harvard.edu

See Online for appendix



Articles

www.thelancet.com/respiratory   Vol 8   July 2020	 699

some cohorts. We tested for association between 
polygenic risk scores for FEV1 and GOLD spirometry 
grades in the COPDGene study, which includes well 
characterised categories of heavy smokers who are at risk 
for COPD but do not meet spirometric criteria for the 
disease, including participants with normal spirometry 
and preserved ratio with impaired spirometry (PRISm). 
We also tested the association of polygenic risk scores 
with quantitative imaging phenotypes: quantitative 
emphysema on inspiratory CT scans (% low attenuation 
area [LAA] of less than –950 Hounsfield units [HU]),43 
mean wall area percent (WAP),43 15th percentile of the 
lung density histogram on inspiratory CT scans (Perc15),44 
square root of wall area of a hypothetical airway with an 
internal perimeter of 10 mm (Pi10),45 and gas trapping on 
expiratory CT (less than –856 HU).46 When testing for 
association with imaging phenotypes, we fitted linear 
regression models adjusted for age, sex, smoking pack-
years, CT scanner type, height (for Pi10 and WAP), study 
centre (gas trapping only) and principal components of 
genetic ancestry. % LAA less than –950 HU and gas 
trapping were log-transformed before analyses. We also 
tested the association of polygenic risk scores with 
qualitative imaging phenotypes: qualitative emphysema,47 
local histogram patterns of emphysema48, ten CT subtypes 
that were defined in COPDGene,49 and visual emphysema 
severity on the basis of Fleischner guidelines.50 Local 
histogram patterns of emphysema were log-transformed 
before analyses. Associations of polygenic risk scores 
with local histogram patterns of emphysema were tested 
with Tobit regression using the VGAM R package.51 We 
tested for association with visual emphysema severity 
with ordinal logistic regression using the MASS 
R package.52 For imaging phenotypes, we considered a 
total of 20 phenotypes (Pi10, WAP, Perc15, %LAA less 
than –950 HU, gas trapping, qualitative emphysema, five 
local histogram phenotypes, and nine subtypes), resulting 
in a Bonferroni-corrected p value of 0·0025.

For the lung-function growth pattern analysis, we 
applied logistic regression to compare reduced lung 
growth patterns to normal growth patterns, and we 
performed pairwise comparisons combining patterns of 
normal lung growth (normal growth with normal 
decline, and normal growth with early decline) and 
reduced lung growth (reduced growth with normal 
decline, and reduced growth with early decline). We 
adjusted for age, sex, height, baseline FEV1, percentage 
bronchodilator response (change from baseline FEV1), 
and airway hyper-responsiveness to methacholine 
(defined as a 20% reduction in FEV1 with methacholine 
concentration ≤12·5 mg/mL). All regressions used 
quantitative variables as linear predictors, and analyses 
were performed using R 3.5.1.

Role of the funding source
GlaxoSmithKline was involved in the design and collection 
of the original genotype and phenotype data for the 

ECLIPSE and GenKOLS studies. No other funder had any 
role in study design, data collection, data analysis, data 
interpretation, or writing of the report. The corresponding 
author had full access to all data in the study and had final 
responsibility to submit for publication.

Results
A schematic of the study design is shown in figure 1. 
We used GWAS summary statistics of approximately 
7·4 million single nucleotide polymorphisms (SNPs) 
from the UK Biobank (n=321 047) and SpiroMeta 
(n=79 055) as weights for the development of polygenic 
risk scores (appendix pp 20–21).7 After filtering on 
variants present in test cohorts and applying a penalised 
regression framework, our final individual polygenic 
risk score for FEV1 contained 1·7 million SNPs and the 
individual polygenic risk score for FEV1/FVC contained 
1·2 million SNPs with non-zero effect sizes; 455 432 
SNPs were present in both scores (appendix pp 19–20). 
The selected shrinkage was 0·9, with a selected λ of 
0·0013 for the FEV1 polygenic risk score and 0·0016 
for the FEV1/FVC polygenic risk score. Using log
istic regression, we generated a combined model: 
PRSCombined=0·43847 × PRSFEV1 + 0·58833 × PRSFEV1/FVC, in 
which PRS is polygenic risk score. In GenKOLS, 
individual polygenic risk scores for FEV1 and FEV1/FVC 
explained 32% and 31% of their corresponding 
phenotypic variance, respectively. Individual and com
bined polygenic risk scores trained in COPDGene non-
Hispanic white participants and tested in GenKOLS 
performed similarly (appendix p 22). The combined 
FEV1 and FEV1/FVC polygenic risk score included 
approximately 2·5 million SNPs and was not correlated 
to smoking pack-years (appendix p 23). Characteristics 
of additional studies, which include COPD case-control 
studies, population cohorts, and multiple ethnic 
groups, are shown in table 1.

The results for the primary outcome measure for 
individual cohorts are shown in figure 2. The combined 

Figure 1: Study design
AUC=area under the curve. COPD=chronic obstructive pulmonary disease. 
FVC=forced vital capacity. GWAS=genome-wide association study. 
PRS=polygenic risk score.

Meta-analysis of GWAS summary statistics for FEV1 
and FEV1/FVC (UK Biobank and SpiroMeta studies)

Train model (lassosum; tune hyperparameters with 
GenKOLS data); create combined PRS

Calculate PRSs in nine testing cohorts

Test PRS associations with COPD (and AUC 
analyses), CT imaging features, and lung growth or
decline patterns

Derivation of PRSs

Calculation of PRSs
in testing cohorts

Testing associations
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polygenic risk score was associated with COPD in 
Europeans (odds ratio [OR] per SD of the score 1·81 
[95% CI 1·74–1·88], p=1·8 × 10–¹⁸⁷). In non-Europeans, 
effects were generally weaker, although still significant for 
the majority of studies (1·42 [1·34–1·51], p=2·3 × 10–²⁹). 
We found evidence of study heterogeneity (Europeans 
I²=0·91, non-Europeans I²=0·53); however, random-
effects and fixed-effects models generally yielded similar 
results (figure 2). A funnel plot to assess for systematic 
bias demonstrated symmetrically distributed effects 
across studies (appendix p 24). To examine the effect of 
weights, we evaluated the performance of a combined 
polygenic risk score using a simple sum (unweighted), 
which performed similarly to the weighted model (data 
not shown).

The separate FEV1 and FEV1/FVC polygenic risk scores 
were both associated with GOLD spirometry grade in the 
COPDGene study (appendix pp 25–26). In this study, 
participants with PRISm had a higher average FEV1 
polygenic risk score than participants with GOLD 0 or 
1 grades (non-Hispanic white participants, PRISm vs 
GOLD 0 p=4·1 × 10–¹², PRISm vs GOLD 1 p=8·7 × 10–⁵; 
African American participants, PRISm vs GOLD 0 
p=2·8 × 10–⁵, PRISm vs GOLD 1 p=0·01).

To further illustrate COPD risk for individuals with 
different polygenic risk score values, we grouped 
participants in each study by combined polygenic risk 
score deciles.17 Comparing European-ancestry individuals 
with the highest scores (tenth decile) to those with the 
lowest scores (first decile), the OR for COPD was 7·99 

n Age, years Pack-years of 
smoking

FEV1 % predicted FEV1/FVC ratio Female Ever smokers

Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases

COPDGene 
AA 
participants

1556 910 52·84 
(6·01)

58·60 
(8·15)

36·11 
(19·10)

42·69 
(23·48)

98·85 
(12·54)

55·50 
(19·34)

0·80 
(0·06)

0·55 
(0·14)

637 
(40·9%)

408 
(44·8%)

1556 
(100·0%)

910 
(100·0%)

COPDGene 
NHW 
participants

2110 3065 59·18 
(8·64)

64·38 
(8·28)

37·34 
(20·14)

54·88 
(27·13)

98·09 
(10·98)

52·62 
(19·61)

0·78 
(0·05)

0·51 
(0·14)

1086 
(51·5%)

1384 
(45·2%)

2110 
(100·0%)

3065 
(100·0%)

CHS AA 
participants

258 116 72·68 
(5·13)

72·12 
(4·85)

10·42 
(17·99)

24·32 
(29·26)

106·13 
(16·61)

61·50 
(14·55)

0·77 
(0·05)

0·58 
(0·10)

194 
(75·2%)

51 
(44·0%)

130 
(50·4%)

95 
(81·9%)

CHS EA 
participants

1480 609 71·78 
(5·10)

72·31 
(5·22)

10·20 
(18·97)

32·48 
(30·81)

101·42 
(13·04)

60·55 
(15·89)

0·76 
(0·044)

0·57 
(0·11)

1002 
(67·7%)

331 
(54·4%)

627 
(42·4%)

458 
(75·2%)

ECLIPSE 147 1713 57·32 
(9·55)

63·64 
(7·10)

31·01 
(25·94)

50·50 
(27·47)

106·49 
(20·86)

47·34 
(15·75)

0·78 
(0·15)

0·44 
(0·12)

63 
(42·9%)

563 
(32·9%)

147 
(100·0%)

1713 
(100·0%)

GenKOLS 692 836 55·43 
(9·74)

65·44 
(10·10)

19·40 
(13·61)

31·88 
(18·62)

95·99 
(9·11)

50·71 
(17·59)

0·80 
(0·04)

0·51 
(0·13)

338 
(48·8%)

328 
(39·2%)

692 
(100·0%)

836 
(100·0%)

Kangwon 
University

1600 794 47·11 
(10·47)

67·69 
(9·24)

7·77 
(12·03)

36·93 
(25·18)

101·20 
(11·42)

54·94 
(16·02)

0·82 
(0·058)

0·50 
(0·12)

546 
(34·1%)

63  
(7·9%)

769 
(48·1%)

736 
(92·7%)

Lung Health 
Study

946 1809 47·62 
(6·82)

48·99 
(6·62)

38·09 
(18·05)

42·05 
(18·35)

84·74 
(2·84)

70·59 
(6·58)

0·66 
(0·04)

0·62 
(0·06)

332 
(35·1%)

667 
(36·9%)

946 
(100·0%)

1809 
(100·0%)

MESA AA 
participants

645 115 64·75 
(9·16)

68·42 
(9·05)

8·38 
(14·96)

20·62 
(21·11)

102·07 
(14·29)

63·62 
(13·05)

0·79 
(0·05)

0·58 
(0·10)

370 
(57·4%)

36 
(31·3%)

356 
(55·2%)

89 
(77·4%)

MESA Chinese 
participants

422 31 64·28 
(9·41)

69·03 
(9·01)

3·73 
(10·58)

8·02 
(15·70)

104·55 
(13·87)

65·14 
(13·59)

0·78 
(0·05)

0·60 
(0·09)

213 
(50·5%)

14 
(45·2%)

115  
(27·3%)

10 
(32·3%)

MESA 
Hispanic 
participants

613 62 63·65 
(9·69)

68·63 
(9·36)

5·27 
(12·36)

16·62 
(25·24)

100·54 
(12·86)

63·01 
(15·16)

0·79 
(0·04)

0·59 
(0·11)

335 
(54·6%)

21 
(33·9%)

293 
(47·8%)

47 
(75·8%)

MESA NHW 
participants

948 208 65·26 
(9·63)

69·27 
(8·95)

10·32 
(19·93)

30·53 
(36·32)

99·22 
(11·99)

65·28 
(12·70)

0·77 
(0·05)

0·60 
(0·09)

508 
(53·6%)

97 
(46·6%)

522 
(55·1%)

168 
(80·8%)

NETT/NAS 429 371 69·86 
(7·50)

67·45 
(5·77)

40·69 
(27·79)

66·25 
(30·66)

100·02 
(13·26)

28·13 
(7·40)

0·79 
(0·05)

0·32 
(0·06)

0 135 
(36·4%)

429 
(100·0%)

371 
(100·0%)

RS cohort 1 911 127 79·05 
(4·54)

80·34 
(4·99)

13·22 
(18·81)

26·90 
(24·05)

102·77 
(17·37)

63·44 
(11·36)

0·78 
(0·05)

0·61 
(0·07)

538 
(59·1%)

55 
(43·3%)

582 
(63·9%)

104 
(81·9%)

RS cohort 2 867 96 72·10 
(4·88)

73·73 
(5·55)

12·93 
(19·57)

34·11 
(25·91)

101·72 
(15·37)

62·27 
(12·25)

0·79 
(0·05)

0·6 
(0·08)

472 
(54·4%)

41 
(42·7%)

545 
(62·9%)

88 
(91·7%)

RS cohort 3 1737 131 62·03 
(5·38)

63·43 
(6·14)

11·56 
(17·09)

35·31 
(27·14)

101·70 
(14·73)

64·55 
(12·74)

0·79 
(0·05)

0·6 
(0·08)

997 
(57·4%)

61 
(46·6%)

1107 
(63·7%)

116 
(88·5%)

SPIROMICS 
NHW

537 988 62·95 
(9·00)

65·74 
(7·62)

44·76 
(26·36)

56·11 
(28·78)

90·90 
(13·45)

45·90 
(16·74)

0·75 
(0·05)

0·49 
(0·13)

287 
(53·4%)

432 
(43·7%)

537 
(100·0%)

988 
(100·0%)

Data are n, mean (SD), or n (%). In total, polygenic risk scores were tested in 27 879 participants (15 898 controls and 11 981 cases). AA=African American. NHW=non-Hispanic white. EA=European ancestry. 
CHS=Cardiovascular Health Study. NAS=Normative Aging Study. RS=Rotterdam Study.

Table 1: Characteristics of testing cohorts
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(95% CI 6·56–9·72; figure 3A). Comparing non-
European-ancestry individuals with the highest scores 
(tenth decile) to those with the lowest scores (first decile), 
the OR for COPD was 4·83 (3·45–6·77). Comparing 
participants in the tenth decile of risk to the middle tertile 
of risk in the COPDGene, ECLIPSE, and NETT/NAS 
studies, the OR across these three cohorts was 2·99 
(2·49–3·60; figure 3B). If we had theoretically screened 
individuals in the tenth decile of the polygenic risk score, 
18% of individuals with COPD from the CHS European 
ancestry general population and 14% from the COPDGene 
non-Hispanic white cohorts would have been detected.

For COPDGene non-Hispanic white participants, we 
found an AR% of 54% and a PAR% of 57%. We estimated 
that targeting smoking cessation efforts (assuming 
complete efficacy) at the 14% of individuals with COPD 
in the top risk score decile would result in an overall 
reduction in COPD incidence of 7%. By contrast, 
targeting the same number of individuals in the lowest 
decile, among whom the prevalence of COPD is lower, 
would result in an overall reduction of COPD of 3%. For 
African American participants, the corresponding PAR% 
was 22%, and the reduction in total COPD cases for the 
highest and lowest deciles was 3% and 1%, respectively. 
A plot of the distribution of polygenic risk and pack-years 

of smoking for COPD cases and controls among 
COPDGene non-Hispanic white participants is provided 
in the appendix (p 27).

The combined polygenic risk score was positively 
associated with both severe and frequent exacerbations23,24 
after adjusting for age, sex, and pack-years. However, this 
association did not persist after adjusting for FEV1 and 
FEV1/FVC (appendix p 12). R code and model weights are 
available online.

We assessed performance of the combined polygenic 
risk score to predict COPD, and found an AUC of 0·67 
(95% CI 0·66–0·68). The predictive ability of a model 
including the polygenic risk score alone was lower than 
that of a model including clinical COPD risk factors (age, 
sex, and smoking pack-years) alone; however, a model 
incorporating both the polygenic risk score and COPD 
risk factors performed better than a model containing 
clinical risk factors alone (AUC 0·80 [0·79–0·81] for 
polygenic risk score plus clinical factors vs 0·76 
[0·75–0·76] for clinical factors alone; p=1·3 × 10–⁴²; 
figure 4, appendix pp 14–15). Similar results were 
obtained whether we meta-analysed AUCs using inverse 
variance weighting or effective sample size weighting 

Figure 2: Association of combined PRS with chronic obstructive pulmonary 
disease
AA=African American participants. CHS=Cardiovascular Health Study. 
EA=European ancestry. NAS=Normative Aging Study. NHW=non-Hispanic white 
participants. OR=odds ratio. PRS=polygenic risk score. RS=Rotterdam Study.
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Figure 3: Analysis of OR for COPD by PRS decile
(A) ORs for COPD for those in each decile of the PRS in comparison with the first 
decile in European cohorts and non-European cohorts. Data are shown as ORs 
with 95% CIs. (B) A secondary meta-analysis comparing COPD risk for 
participants in the tenth decile with those in the middle tertile of the combined 
PRS. COPD=chronic obstructive pulmonary disease. AA=African American. 
NAS=Normative Aging Study. NHW=non-Hispanic white participants. OR=odds 
ratio. PRS=polygenic risk score.
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(appendix p 13). The predictive performance of each 
polygenic risk score, including the separate FEV1 and 
FEV1/FVC polygenic risk scores, in all testing cohorts is 
shown in the appendix (p 28).

Because the polygenic score was externally derived 
(from the UK Biobank and SpiroMeta) and not derived 
from the test cohorts, we sought to determine the 
performance of an externally derived clinical score in the 
COPDGene and ECLIPSE cohorts. We observed that the 
externally derived clinical risk score performed worse 
than the polygenic risk score, and that combining both 
scores resulted in a superior performance to either score 
alone (appendix p 29). Performance measures (positive 
predictive value, negative predictive value, sensitivity, 
and specificity) of the clinical risk score and polygenic 
risk score are shown in the appendix (p 16). Sensitivities 
were similar for the clinical risk score (0·85) and 
polygenic risk score (0·82), whereas the specificity was 
higher for the polygenic risk score (0·40) than the clinical 
risk score (0·21). The sensitivity of both the CRS and 
PRS together was 0·82, but the specificity was 0·61.

We tested for association between the polygenic risk 
score and CT imaging phenotypes, including quantitative 
emphysema (%LAA less than –950 HU, Perc15), airway 
phenotypes (Pi10 and WAP), gas trapping, qualitative 
emphysema, and local histogram patterns. We found 
significant associations between the polygenic risk score 
and %LAA less than –950 HU, Perc15, Pi10, WAP, and 
gas trapping; the association with qualitative emphysema 
did not reach significance after correcting for multiple 
testing (appendix p 24). The association between 
polygenic risk score and %LAA less than –950 HU was 

attenuated after adjusting for FEV1 % predicted, but the 
association between polygenic risk score and greater 
WAP remained significant after this adjustment; the 
clinical significance of these findings is unclear 
(appendix p 14). The polygenic risk score was tested for 
association with local histogram patterns in the 
COPDGene and ECLIPSE studies; meta-analysis of these 
two studies showed that the polygenic risk score was 
positively associated with panlobular and centrilobular 
local histogram patterns of emphysema, and negatively 
associated with a normal local histogram pattern (table 2). 
In COPDGene NHW participants, the polygenic risk 
score was associated with all ten CT subtypes, and for six 
subtypes the association met Bonferroni-corrected level 
of significance (p<0·0025) when compared with normal 
imaging (CT subtype 1; table 3). The combined polygenic 
risk score was also tested for association with visual 
emphysema severity in the COPDGene NHW population, 
and every SD increase in the combined polygenic risk 
score was associated with an OR of 1·20 (95% CI 
1·13–1·27, p=2·7 × 10–¹⁰) of being in a higher visual 
emphysema category (appendix p 18).

McGeachie and colleagues18 reported four patterns for 
lung function growth and decline in the CAMP study. 
Children with persistent asthma and reduced growth of 
lung function had increased risk for COPD in early 
adulthood, based on GOLD post-bronchodilator spiro
metry criteria. We tested for association between the 
polygenic risk score and patterns of lung function growth 
and decline. After adjusting for age, sex, height, baseline 
FEV1, % bronchodilator response, and airway hyper-
responsiveness, one SD increase in the polygenic risk 

Figure 4: AUC for predicting chronic obstructive pulmonary disease of models including PRS alone, clinical risk factors alone, or both PRS and clinical risk factors
AUCs with 95% CIs are shown. Only European cohorts are included in this figure. Asterisks indicate the models including PRS and clinical risk factors for which the 
AUCs were significantly different from those with clinical risk factors alone (Bonferroni-corrected significance level of 0·005; appendix pp 14–15). Note that an AUC of 
0·5 represents the effect assumed under the null model. AUC=area under the curve. EA=European ancestry. NAS=Normative Aging Study. NHW=non-Hispanic white 
participants. PRS=polygenic risk score.
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score was associated with having a pattern of reduced lung 
growth (OR 1·07 [95% CI 1·02–1·11], p=0·002; appendix 
p 33). The polygenic risk score was also positively 
associated with COPD affection status as defined by 
FEV1/FVC <0·7 at the end of the CAMP study (p=0·0005).

Discussion
In this analysis, we developed a polygenic risk score 
using GWAS summary statistics from more than 
400 000 participants, and used it to predict the diagnosis 
of COPD in nine population-based and case-control 
cohorts. This score used more variants and larger 
sample sizes than previous studies, and was tested in a 
greater number of validation cohorts.7,11,14,16 The score 
was also associated with CT imaging phenotypes and 
patterns of reduced lung growth that could predispose 
individuals to COPD.

The predictive performance of our combined FEV1 and 
FEV1/FVC polygenic risk score for COPD compares 
favourably with previous studies. A GWAS of 
approximately 12 000 individuals was used to develop an 
unweighted 30-variant genetic risk score that had 
moderate (AUC 0·58) predictive power for COPD.14 In a 
GWAS including nearly 49 000 UK Biobank participants, 
a 95-variant risk score had a 3·7-times greater risk of 
COPD when comparing the highest and lowest deciles of 
the risk score.11 In a larger GWAS7 including more than 
400 000 individuals that tested a 279-variant weighted 
genetic risk score of lung function in multiple external 
validation cohorts, the highest decile was associated with 
4·73-times greater odds of COPD compared with the 
lowest decile. These data suggest that a larger GWAS 
with more accurate weights, and including more variants, 
improves the predictive performance of a genetic risk 
score. Consistent with this suggestion, our combined 
polygenic risk score was associated with a 7·99-times 
increase in the odds of COPD when comparing the 
highest and lowest deciles of the risk score in European 
populations. Furthermore, the meta-analysed AUC for 
our polygenic risk score was higher (COPDGene, 
ECLIPSE, NETT/NAS polygenic risk score AUC 0·68 
[95% CI 0·65–0·70]) than the AUC for the 279-variant 
genetic risk score reported by Shrine and colleagues 
(AUC 0·58 [0·56–0·61], p=2·7 × 10–⁴¹).7

This improved performance could reflect several 
factors: the number of variants included (around 
1·2–1·7 million), inclusion of variants not reaching 
genome-wide significance, large GWAS sample size 
(>400 000 individuals), and GWAS-derived variant 
weights. By applying a regularised regression method to 
include variants not reaching genome-wide significance 
and combining two lung function parameters, our study 
used the same GWAS as Shrine and colleagues and 
achieved a substantial improvement in prediction. To our 
knowledge, our study is the first to apply genome-wide 
polygenic scores to respiratory disease. The application of 
this method to other populations remains to be evaluated.

Our polygenic risk score has the potential to identify 
individuals at a markedly increased risk of COPD. In 
Europeans, for every SD increase in the combined FEV1 
and FEV1/FVC polygenic risk score, we observed an OR 
for COPD of 1·81; by comparison, for every 10 pack-years 
of smoking, an OR of between 1·16 and 1·28 has been 
reported.53 On the basis of these previous estimates of the 
effects of smoking on COPD risk, being in the tenth 
decile of polygenic risk is similar to having 84–140 pack-
years of smoking history. Furthermore, the polygenic 
risk score was not correlated with smoking pack-years, 
which suggests that it provides information regarding 
COPD risk that is independent of smoking history. We 
estimated that a reduction in smoking to 20 pack-years or 
less in COPDGene non-Hispanic white participants in 
the highest polygenic risk categories would result in a 7% 
reduction in COPD, versus 3% in the lowest risk category. 
These results are based on observational data, and in 

Description of phenotype COPDGene non-Hispanic white 
participants

n Odds ratio (CI) p value

Subtype 1 Normal imaging 1597 1 (ref) ··

Subtype 2 Paraseptal emphysema 972 1·3 (1·1–1·4) 5·43 × 10–⁶

Subtype 3 Bronchial airway disease 437 1·4 (1·1–1·6) 4·73 × 10–⁷

Subtype 4 Small airway disease 255 1·4 (1·1–1·7) 1·47 × 10–⁵

Subtype 5 Mild centrilobular emphysema 1100 1·2 (1·1–1·4) 1·13 × 10–⁵

Subtype 6 Moderate-to-severe centrilobular emphysema: 
upper lobe dominant

186 1·3 (0·99–1·7) 0·00742

Subtype 7 Moderate-to-severe centrilobular emphysema: 
lower lobe dominant

23 1·8 (0·8–3·7) 0·0322

Subtype 8 Moderate-to-severe centrilobular emphysema: 
diffuse

346 1·5 (1·2–1·9) 2·01 × 10–⁷

Subtype 9 Discordant: visual emphysema without 
quantitative emphysema

311 1·4 (1·1–1·7) 1·02 × 10–⁵

Subtype 10 Discordant: quantitative emphysema without 
visual emphysema

109 1·3 (0·9–1·9) 0·0496

Multiple logistic regressions were performed in which presence of each CT subtype was compared to normal imaging 
(subtype 1) as a reference group. CIs are Bonferroni-corrected.

Table 3: Association of the combined FEV1 and FEV1/forced vital capacity polygenic risk score with CT 
imaging subtypes in the COPDGene study49

β (CI) R² p value

Normal –0·012 (–0·022 to –0·0042) 0·32 2·0 × 10–¹¹

Panlobular 0·0045 (0·0017 to 0·0084) 0·064 1·1 × 10–¹²

Mild centrilobular 0·0027 (–0·0015 to 0·0074) 0·16 0·0012

Moderate centrilobular 0·0084 (0·002 to 0·016) 0·27 2·0 × 10–¹⁰

Severe centrilobular 0·0029 (–0·00031 to 0·0068) 0·078 4·1 × 10–⁵

n=7600 in all categories. CIs are Bonferroni-corrected. β coefficients are from Tobit regression and indicate the 
quantitative increase in a given CT imaging measure for one SD increase in the polygenic risk score on the latent 
uncensored variable. Participants from COPDGene and ECLIPSE were included, and reported values reflect fixed-effects 
meta-analysis results. The same individuals can have multiple local histogram patterns of emphysema, so the number 
of participants in each category are not mutually exclusive.

Table 2: Association of the combined FEV1 and FEV1/forced vital capacity polygenic risk score with local 
histogram patterns of emphysema
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addition are highly dependent on estimates of population 
attributable risk. Studies in larger, population-based 
cohorts, including those with less cigarette smoke 
exposure, will be needed to confirm these results.

The only routine genetic screening recommended in 
COPD is for α1 antitrypsin deficiency, which is present in 
about 1% of individuals with COPD.54,55 Our score 
identifies 10% of the population at around three-times 
greater odds for COPD compared with the middle tertile 
of the population, and around 15–20% of individuals who 
will develop COPD. Thus, at a young age, we could 
potentially identify individuals at risk for COPD and 
implement strategies to optimise lung health. Although 
the major preventive measure, avoidance of cigarette 
smoking, is recommended for all individuals, a study in 
individuals with α1 antitrypsin deficiency suggests that 
knowledge of genetic susceptibility to COPD can 
motivate smoking cessation attempts.56

In theory, obtaining a polygenic risk score in clinical 
practice involves obtaining a DNA sample and testing a 
set of genome-wide genetic markers, which would only 
need to be done once in a person’s lifetime and at a cost of 
less than US$100. Millions of individuals already possess 
these data through direct-to-consumer testing, and 
genome-wide genotype data might become part of the 
future medical record. We observed that clinical factors 
alone had a higher AUC than the polygenic risk score, 
and that adding clinical factors to the polygenic risk score 
significantly improved the AUC (and vice versa). One 
factor in the superior performance of the clinical factors 
is that, by contrast with the polygenic risk score (which 
was trained on an external dataset), the predictive value of 
the clinical factors was measured from the same cohort, 
potentially overestimating the performance of the clinical 
risk factors. For example, we observed that a clinical risk 
score derived from age, sex, and smoking pack-years in 
the UK Biobank cohort actually performed worse than the 
polygenic risk score in two of our cohorts. In addition, the 
availability of the polygenic risk score throughout the life 
course suggests that polygenic risk score might be more 
helpful earlier in life than a clinical risk score, or in 
scenarios in which up-to-date clinical information is not 
available (eg, smoking history), such as in some 
population studies. Although further studies of specific 
interventions are needed before clinical application, our 
data suggest that the greatest immediate clinical utility of 
the polygenic risk score could be in younger populations 
without substantial smoking history, which could lead to 
implementation of focused prevention strategies. Unlike 
other omics, such as gene expression, proteomics, or 
metabolomics, polygenic risk scores can be measured at 
birth and do not change over an individual’s lifetime. 
Therefore, the polygenic risk score provides an assess
ment of risk before the occurrence of environmental 
exposures. As clinical risk factors change throughout an 
individual’s lifetime (ie, age and smoking history), a 
person’s COPD risk could be updated, and targeted 

intervention strategies could be employed. Further 
investigation into the clinical utility of polygenic risk 
scores is needed.

To our knowledge, this is the first report of a statistically 
significant association between a genetic risk score and 
COPD exacerbations. This association suggests a shared 
mechanism between lung function and COPD exacer
bations, consistent both with published reports that low 
lung function is a risk factor for exacerbations,57,58 and 
with this association no longer being observed after 
adjustment for lung function. The latter observation 
indicates that the polygenic risk score is unlikely to add 
utility to the prediction of exacerbations when baseline 
lung function is already available and incorporated in the 
prediction model.

Our polygenic risk score was associated with several 
CT imaging phenotypes, including greater quantitative 
emphysema (%LAA less than –950 HU and Perc15), 
measures of airway wall thickness (Pi10 and WAP), gas 
trapping, and local histogram patterns of emphysema. 
Although genetic variants have been previously reported 
to associate with many of these CT imaging measures,8,59–61 
previous reported variants had varying effect sizes and 
directions. In 2019, a report of a genetic risk score for 
lung function identified associations with CT 
phenotypes.16 Our polygenic risk score builds on these 
results by using a genome-wide polygenic score and 
testing of additional phenotypes in multiple cohorts. Our 
findings were largely consistent across studies, with the 
exception of NETT/NAS, which had a narrower range of 
phenotypes and did not use a standard CT protocol. 
Compared with previous reports of genetic risk score 
associations with CT phenotypes, our polygenic risk 
score had larger effect sizes; for example, the association 
with WAP was 0·68 (adjusted CI 0·59–0·77) versus 0·22 
(95% CI 0·13–0·32) reported previously.16 The 
associations with WAP and Pi10 are notable because 
previous genetic association studies have not shown 
genome-wide significant association of single variants 
with measures of airway wall thickness.8 The association 
between polygenic risk score and %LAA less than 
–950 HU was attenuated after adjusting for FEV1 % 
predicted, but the association between polygenic risk 
score and WAP remained significant after this 
adjustment; the significance of these findings is unclear, 
and requires additional, systematic investigation across 
multiple cohorts. We found an association between the 
polygenic risk score and a broad range of CT phenotypes, 
suggesting that the combined polygenic risk score could 
capture much of the heterogeneity measured by CT 
imaging. Local histogram emphysema phenotypes are 
associated with poor lung function, dyspnoea, and quality 
of life48; we observed an association of the polygenic risk 
score with panlobular and centrilobular emphysema 
phenotypes. Visual emphysema severity scores based on 
Fleishner guidelines predict mortality in COPD,50 and we 
observed that a higher polygenic risk score was associated 
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with higher levels of visual emphysema. Visual and 
quantitative emphysema have been shown to have both 
overlapping and independent associations with genetic 
variants.62 The association between the polygenic risk 
score and qualitative and quantitative measures of 
emphysema suggests that the polygenic risk score is 
predictive of a wide range of early and late lung structural 
changes. This finding is important because lung 
structural changes detected by CT might precede and be 
discordant with spirometric changes;63 in this context, 
the polygenic risk score could have a role in reducing the 
radiation and economic burden of large-scale CT 
phenotyping for early diagnosis. Thus, the combined 
polygenic risk score might account for the wide range of 
heterogeneity in individuals at risk for or with varying 
phenotypes of COPD.

The polygenic risk score was associated with patterns 
of reduced lung growth in children with asthma, and 
with incident COPD among participants aged 23–30 years 
at the conclusion of 16–18 years of observation. Impaired 
or reduced lung growth during development may 
predispose individuals to COPD. These data are 
consistent with genetic association studies of COPD that 
find associated variants enriched (ie, statistically more 
likely to occur) in regions of the genome that are 
important for gene regulation in the fetal lung.10,11 These 
findings are also consistent with the study by Lange and 
colleagues,64 which found that a substantial proportion of 
individuals with COPD have low lung function in early 
adulthood. When patterns of normal or reduced lung 
growth were used to stratify participants in the CAMP 
study, 18% of individuals with reduced patterns of 
lung growth developed COPD compared with 3% of 
individuals with a normal pattern of lung growth.18 Thus, 
the polygenic risk score is capturing combinations of 
genetic variants responsible for impaired lung growth 
and susceptibility to COPD.

Genetic determinants of COPD susceptibility and 
heterogeneity could be shared or distinct. Our study 
shows evidence of shared susceptibility in lung growth 
and imaging patterns, and potentially in exacerbations; 
major determinants of symptoms, decline, and exacer
bations might be different from determinants of suscept
ibility. Genetic studies of these specific phenotypes, as 
well as elucidation of the specific functional components 
underlying genetic risk, could help address some of these 
questions. Recent work into partitioning of genetic risk 
scores in diabetes65 suggests that future polygenic risk 
scores could be used to identify genetic sources of hetero
geneity.

Our study is based on cross-sectional lung function 
measures in cohorts of different ages and cigarette 
smoking exposure. Estimates of the prevalence and 
absolute risk of COPD will depend on the specific 
characteristics of the cohort. Our study does not address 
the challenging issue of longitudinal measures. For 
example, lung function decline is a heritable trait,66 yet 

no studies have identified and replicated genome-wide 
significant variants associated with lung function decline. 
Furthermore, the greatest decline might be seen in those 
with the highest lung function.67 Individual genetic 
variants associated with cross-sectional lung function 
measures have generally not been predictive of lung 
function decline.68 Our risk score associates with reduced 
lung growth, and also with emphysema patterns 
characteristic of older smoking adults with severe COPD. 
Whether the latter includes structural abnormalities 
present in younger age, or is due to dysregulated 
pathways in adults, is still unclear. It would be interesting 
to observe whether individuals with reduced patterns of 
lung growth have structural abnormalities detectable on 
CT imaging, such as emphysema or thickened airways. 
However, a limitation of the CAMP study is that imaging 
data were not obtained. Longitudinal studies of lung 
function and imaging phenotypes and elucidation of the 
specific functional components underlying genetic risk 
could help to address some of these questions.

We focused on the analytic and clinical validity of the 
polygenic risk score in predicting COPD; evaluation of 
the impact of screening for COPD using such a risk 
score was beyond the scope of this study. Despite the 
magnitude of effect sizes observed in this study, large 
ORs do not always translate into effective screening 
tests.69 The American College of Physicians and US 
Preventive Task Force guidelines recommend against 
screening with spirometry until symptoms develop,70,71 
yet a substantial number of individuals with COPD are 
undiagnosed and under-report symptoms,72,73 and these 
individuals could lose substantial lung function before 
the time of diagnosis.74,75 Therefore, future studies could 
evaluate whether the use of the polygenic risk score could 
help identify patients at greater risk of COPD and reduce 
underdiagnosis. Assessing the potential benefits and 
harms of implementing polygenic risk scores for COPD 
screening is challenging,69,76 and warrants formal 
investigation.

Although we demonstrate some shared genetic archi
tecture between susceptibility, imaging phenotypes, and 
exacerbations, the individual genetic determinants of 
these traits might differ. Genetic studies of these specific 
phenotypes, and elucidation of the specific functional 
components underlying genetic risk, could help address 
some of these questions. One major limitation to the 
clinical application of our polygenic risk score to COPD 
treatment is the lack of effective interventions to preserve 
lung health. Apart from smoking cessation, other 
potential strategies, such as avoidance of air pollution or 
other environmental risk factors, adequate nutrition 
(eg, vitamin D supplementation77), and bronchodilators78 
are not well supported by evidence. However, it is 
possible that polygenic risk scores could be used for trial 
selection to reduce heterogeneity. Furthermore, the role 
of polygenic risk scores for understanding COPD 
pathogenesis is an important area in need of exploration.
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COPD is a worldwide disease, but most individuals 
studied have been of European ancestry. Although the 
highest decile of the combined polygenic risk score was 
associated with a more than four-times higher odds of 
COPD compared with the lowest decile in non-
Europeans, the current study was not designed to address 
the important disparities in the quality and availability of 
genetic data in European compared with non-European 
populations. The development of polygenic risk scores in 
multi-ethnic populations using appropriate methods 
will be crucial for the widespread implementation of 
precision medicine, and to prevent widening of health-
care disparities.79 We noted heterogeneity, which in some 
cases was likely to be due to characteristics of the specific 
cohort. For example, the LHS study enrolled only 
smokers with mild airflow obstruction, leading to the 
lowest lung function in controls and the highest lung 
function in cases of the studied population. Our study 
did not include rare variants or non-additive genetic 
models. Previous studies suggest that α1 antitrypsin 
(SERPINA1) variants44,55 and other rare variants80 might 
be important. Our study also did not explore the role of 
other omics or molecular biomarkers (eg, fibrinogen, 
interleukins). Because these data can vary over time, 
careful study of these factors in longitudinal datasets is 
likely to be needed.

The past decade has seen important progress in 
genomic medicine. Leveraging recent large GWASs, we 
developed a polygenic risk score that has substantial 
predictive power and complements clinical risk factors 
for COPD across nine different cohorts. The polygenic 
risk score is related to a range of imaging phenotypes, 
including emphysema patterns, as well as reduced lung 
growth. These findings could have important implications 
for understanding the mechanisms underlying COPD 
and provide future opportunities for prevention and early 
intervention, as genomics become more widely adopted 
in health care.
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