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ABSTRACT

Tero Vierimaa: An Automatic Calibration System Software For a Medical Laser Device
Master of Science Thesis
Tampere University
Embedded Systems
February 2022

Integrating semiconductor lasers in a variety of different applications such as consumer
electronics, manufacturing processes, aviation and even in medical applications makes them
very ubiquitous in today’s society. Further progress in the development of semiconductors and its
advanced applications have generated new emerging markets. For instance, complex laser
systems for the treatment of tumors and infections are recognized as a new market.

This thesis introduces an advanced automatic calibration software system to be integrated
in the production process of a medical laser device. The medical device includes two lasers: a
treatment beam and an aiming beam, adding to the calibration software’s complexity. Additionally,
the laser system consists of two subsystems: a laser device and an optical beam shaper unit.
Once constructed, the calibration system would enable the medical device to be characterized
and calibrated fully to ensure that it operates under its specification.

The aim of this project was to provide the company with a working solution for the production
environment that passes all regulatory and internal requirements. The development process
began with defining a list of specifications for the calibration system and its software, which was
followed by gradually integrating the software with the rest of the calibration system. The
inclusion of the theoretical background presented in this thesis is necessary to understand the
challenges and corresponding technical decisions that were being made during the course of
this project.

The backbone of the software architecture and its core mechanisms are illustrated as an
overview of the automatic calibration system. In addition, the implemented components and
algorithms, including the necessary performance optimizations for selected subsystems, are
described. Some additional constraints, that needed to be taken into consideration during the
development of the calibration software, included software licensing and the system’s safety.

After the implementation the calibration system was validated and verified to ensure that it
meets its specifications and performance requirements. To improve the calibration system a few
ideas are presented, such as optimizing the beam profiling procedure. Ultimately, the calibration
system as well as its software were concluded to be suitable and capable of being utilized in the
production process of the medical laser device.

Keywords: characterization, calibration, machine vision, laser, software
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TIIVISTELMÄ

Tero Vierimaa: An Automatic Calibration System Software For a Medical Laser Device
Master of Science Thesis
Tampereen yliopisto
Sulautetut järjestelmät
Helmikuu 2022

Puolijohdelasereiden integrointi lukuisiin sovelluksiin, kuten kuluttajaeletrokniikkaan,
valmistusprosesseihin, ilmailuun ja jopa lääkinnällisiin sovelluksiin tekee niistä hyvin käytettyjä
nyky-yhteiskunnassa. Viimeisin edistys puolijohteiden kehityksessä ja niiden haastavissa
sovelluksissa on lisäksi luonut näille uusia markkinoita. Esimerkikkinä tällaisesta ovat
monimutkaiset laserjärjestelmät lääkinnälliseen käyttöön, kuten kasvainten ja infektioiden
hoitoon.

Tässä työssä esitellään automaattinen ohjelmisto osana kalibrointijärjestelmää, joka tullaan
integroimaan osaksi lääkkinnällisen laserlaitteen valmistusprosessia. Ohjelmistoa
monimutkaistaa lääkinnällisen laitteen kaksi laseria: hoitosäde sekä tähtäyssäde, jotka vaativat
erilliset kalibroinnit. Lisäksi laite sisältää kaksi alijärjestelmää: laserlaitteen sekä optisen
säteenmuokkainyksikön. Valmistuttuaan kalibrointijärjestelmä mahdollistaisi lääkinnällisen
laitteen kattavan kalibroinnin ja karatkerisoinnin, mikä takaisi laitteen toiminnan spesifikaationsa
mukaisesti.

Tämän projektin tavoitteena oli tuottaa yritykselle toimiva ratkaisu tuotantoympäristöön, joka
läpäisee kaikki viranomais- sekä sisäiset vaatimukset. Kehitysprosessi alkoi määrittelemällä
vaatimukset kalibrointijärjestelmälle ja sen ohjelmistolle, mitä seurasi koko järjestelmän
asteittainen integrointi. Teoreettisen osuuden sisällyttäminen tähän työhön on välttämätöntä
teknisten haasteiden ja ratkaisuden ymärtämiseksi ja perustelemiseksi.

Ohjelmiston arkkitehtuurin perusidea sekä sen keskeiset mekanismit ovat esitettynä osana
työtä. Lisäksi osa toteutetuista komponenteista sekä algoritmeista on kuvattuna, mukaanlukien
välttämämttömät suorituskykyoptimoinnit, joita projektin aikana tehtiin. Muutamat lisärajoitteet,
jotka piti huomioida kalibrointiohjelmistoa tehtäessä, sisälsivät esimerkiksi ohjelmistolisenssit
sekä järjestelmän turvallisuuden.

Kun kalibrointijärjestelmä oli toteutettu, varmistettiin spesifikaation ja suorituskykyvaatimusten
täyttyminen validoimalla ja verifioimalla järjestelmä. Järjestelmän lisäkehittämiseksi on esitelty
muutamia jatkoideoita, kuten esimerkiksi säteenprofilointiproseduurin suorituskykyoptimointi.
Lopulta kalibrointijärjestelmä ja sen ohjelmisto todettiin soveltuvaksi ja kykeneväksi käytettäväksi
lääkinnällisen laserjärjestelmän tuotantoympäristössä.

Avainsanat: karakterisointi, kalibrointi, konenäkö, laser, ohjelmisto

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

For the past few decades the rapid emergence of new applications for lasers has been
significant. Unlike the initially large and expensives ones, a modern day semiconductor
laser is small and has high efficiency. Throughout the past decades the industry and
market has been steadily growing [1]. In USA alone the laser market’s size increased
250% between years 2009 and 2017 [2]. One of the submarket for laser systems is the
use of lasers in medical applications. In addition to treating cancer and tumors with
photodynamic therapy, potential use cases include treating psoriasis, acne and
ultraviolet-damaged skin [3], [4]. In many of the medical applications, the aim is to
deliver a highly selective drug to the correct location in the patient’s body, and release or
activate the drug with the assistance of laser light. This makes targeted, precise
treatment for various diseases possible. Photocynamic therapy (PDT) can be used, but
is not limited, for treating infections and various cancers and tumors, such as a breast
cancer [5], [6], [7].

Traditional industrial laser applications include, for instance, barcode scanners, laser
cutting, telecommunications and digital storage systems. New applications include
LIDARs (Light imaging, detection and ranging) and various manufacturing processes. In
modern applications various technologies are converged, ranging from machine learning
and biomedical engineering to optical systems. For instance, with LIDARs, the
development of computing power and new signal processing techniques has allowed
more sophisticated methods for processing sensor data [8].

In this thesis, a software for a medical laser device’s automated calibration is designed
and implemented. The aim is to have a system that can be used in a production
environment for calibration a medical laser device. Buildling such system and using it for
production imposes regulatory challenges, since the laser system is used for a medical
application. Additionally, there are various internal and external interests directed
towards the calibration system. An overall architecture and selected technical decisions
and implementations are described.

Although the thesis focuses solely on the software implementation, it incorporates
multiple physical devices and communication with them. Technologies involved include
electronics, optics, signal processing, machine vision and databases. For calibrating the
medical system, a multitude of various characterizations is required. Finally, a
verification and validation protocol against the requirements and specifications are
concluded. A key output for the project work is for it to pass the verification and
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validation protocol. Only after a successful validation may it be used for a production of
the medical laser device.

The first chapter focuses on background factors needed for understanding the technical
challenges and decisions being made during the project work. The second chapter lays
out a simplified specification for the laser device and the calibration system used for
calibrating the medical laser device. Chapter three focuses on the implemetation of the
calibration software. Since the implemented software is of a fairly large magnitude, only
a subset of the implemented funtionalities are presented in this thesis. These selected
implemenation details are presented in chapter five. In chapter four a complete validation
for the software is presented. The purpose of the validation process is to make sure that
the software is indeed suitable for the use that it has been specified for. Finally, chapter
five introduces a few possibilities for improving the implemented software.
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2 BACKGROUND

In this chapter, the background for the development task process is described. First a
short summary of a laser’s key characteristics are presented. Then a technical
background for the selected technologies are covered. The background focuses more
on the relevant theory needed for constructing the software for the calibration system
than electrical or optical characteristics. Although the programming language, any
framework or library that has been used in this project is not a focus of this thesis, they
are central for understanding the technical decisions that have been made during the
project.

2.1 Laser diode characteristics

A semiconductor laser is a device that is widely used in many fields, such as
telecommunications, manufacturing, chemistry and medical systems. To briefly explain,
a laser semiconductor operates in a mode known as stimulated emission. In such a
mode, laser is emitting light in an extremely narrow bandwidth in a coherent fashion.
Laser emission is not completely monochromatic, but the central wavelength of ±1nm
contains roughly 99% of the optical power. If not properly lasing, the laser diode
operates as a normal light emitting diode, emitting a wider bandwidth. A laser’s
wavelength can vary anywhere from infrared to ultraviolet. Between these modes, in the
lasing thershold area, the emission is something in between. [9]

A key figure for electrically controlling laser diodes is Light Current Voltage (LIV) curve
[10]. An example of such a curve is shown in Figure 2.1. The exact curve is always
unique to each module, while its overall limits are determined by the structure of the laser
chip. It is easy to identify important parameters in reference to electrical and thermal
control from an LIV curve. The LIV curve describes the relation between the current, the
voltage and the output energy or power from the laser diode.

When examining Figure 2.1, three distinct operating areas can be identified: the non
lasing-area in the lowest current under 550 mA, a threshold area around 550-600 mA and
finally, the linear area in currents over 600 mA. Between these three areas, the non-lasing
area is the least noteworthy, since the laser is effectively operating as a light emitting
diode (LED) and a stimulated emission does not occur. In the threshold area the laser
slowly begins lasing and current-to-output-power ratio is nonlinear. After the threshold
area, the power is linear relative to the current passing through the laser module. For
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Figure 2.1. Laser module LIV characteristics.

successfully driving a laser module with an accurate output power, each of the three
areas need to be handled separately in the laser’s control logic.

In addition to the LIV, the effect of the temperature in respect to the output power is shown
in Figure 2.1. The temperature does not change the overall characteristic of the LIV,
meaning that each of the three areas are still present and in the same order. Instead, the
laser chip’s temperature shifts both the threshold area and the linear area to the lower or
higher current. In other words, the laser chip’s output power depends on both the current
and the module’s temperature. Hence, the temperature must be monitored and actively
controlled to stabilize the output wavelength.



5

Figure 2.2. Laser module LIV temperature effect

Figure 2.3. Sample laser spectral characteristics

When properly lasing, a laser has an extremely narrow spectral width, which is a key
characteristic for a laser. The laser’s exact central wavelength varies between different
modules. An example of a laser’s spectral characteristics is shown in Figure 2.3.
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Depending on application the exact wavelength and power may be critical. In such
applications it is necessary to monitor the laser diode’s temperature to mitigate such
faulty states. As seen in Figure 2.2 the module’s temperature affects the output power.
Usually a laser chip requires active cooling and possibly heating to stabilize high power
operation. If the temperature drifts too far from specified, the laser system is disabled
altogether to protect the system and the application.

By default, laser diodes are built as single chips. Depending on the application and
required output power, a single laser module is constructed by combining multiple laser
chips into one enclosure. A single module, approximately 1-5 cm in size, can contain a
dozen of laser chips. An optical output is combined and directed to one or more fibers
and usually the diodes are electrically connected in series. Additionally a module may
contain a thermal sensor and a photodiode for monitoring the output power.

2.2 Medical device regulation

According to the US Food and Drug Administration (FDA), a medical device is defined
as any device that is designed to be used for diagnostics, or altering the anatomy of
the human body, excluding purely chemical mechanisms [11]. Further classification is
applied in order to mitigate risks for patients and other parties.

The FDA categorizes medical devices into three main categories by the risks they pose
and their assured effectiveness [12]. These classes are: I for lowest risk, II for moderate
risk and III for high health risk [11]. Laser devices generally go directly to class III, since
their risks are categorized as severe. In addition, most new devices which do not have any
applicable predicate products must automatically pass the Pre Market Notification (PMA)
process [13]. In order to pass class III regulations, the device must pass the PMA. This
requires a significant amount of resources and time from any company. For classes I and
II, the medical device can be granted approval, when it is compatible with another device
that already has an approval, it is sometimes sufficient to prove its similarity to this existing
device [14]. This so called Premarket Notification or a 501k is a much lighter alternative
to PMA. PMA stresses the demonstration that the new device is in fact equivalent to the
existing approved device both in terms of safety, their operation and effectiveness. For
instance, a PMA requires a clinical study in addition to fulfilling the class I and class II
clinical evidence [13]. 501k, on the other hand, aims to indisputably prove that the new
device is, in fact, comparable to the original device.

The regulatory documentation, which aims to demonstrate the safety and validity of a
medical device, is important for any company seeking to bring their product to the
market. Furthermore, the exact requirements vary between countries, increasing the
amount of work by multitude. To overcome this workload, an international system for
mutual acceptance has been established by International Electrotechnical Comission
(IEC). The system, known as IEC System for Conformity (IECEE) recognizes 3rd party
actors known as Certification Bodies (CB) CBs are then delegated to do the concrete
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verification and testing for products. After a successful test report and certification from
a CB, a manufacturer can apply for approval of the device in the particular country or
area.

2.3 Linux operating system

Linux, a free and open-source operating system is licensed with GNU General Public
License (GPL). Being open-source makes it possible for anyone to modify and develop
the operating system to better suit their needs without a fear of vendor lock-in.

This has lead to a large community of developers, which has enabled a healthy
ecosystem around the operating system. Today, Linux is found in virtually any area:
mobile phones, medical devices, industrial systems and network routers. The reason for
this widespread adoption is, simply put, because Linux provides excellent functionality
and flexibility for various environments and devices, and extending it is made easy.

Although Linux is designed, as per Unix philosophy, as a general purpose operating
system ranging from desktops to servers, it is possible to configure the kernel to
optimize specifically for embedded systems. It is straightforward to compile a kernel that
consists of only the neccessary drivers and features, resulting in the kernel being fairly
small in binary size and using few resources. Opting to use Linux in an embedded
system does increase complexity as opposed to using a plain microcontroller. However,
this increased complexity must be justified to use an operating system, such as Linux.
Some reasons for choosing Linux are its solid network stack, robust file system, various
I/O interfaces parallel processes and threads.

Although understanding of operating system internals is not required, it is helpful to
understand the functions and internals of operating systems. Further understanding is a
requirement in order to develop device drivers. In Linux, there is a two-level separation
of priviledges: kernel space (or kernel mode) and user space. Kernel code and all kernel
drivers are executed in kernel space, where they have unrestricted access to all physical
devices. For security reasons all normal software, that is, actual processes being
executed by a user, are run in user space. User space is an isolated and safe
environment for executing user applications, where an application can utilize the higher
level services provided by the kernel. These services are for example editing files and
connecting to a remote resource over Transmission Control Protocol/Internet Protocol
(TCP/IP). The communication between user space and kernelspace is done with
so-called system calls, or syscalls. System calls, in Linux, are executed inside
interruptions, meaning when user application wishes to call kernel service, it raises a
hardware interruption and execution is handed over to kernel interrupt handler. The
concrete interrupt calling is usually abstracted away from a user application through
standard libraries, for example with LibC.

Once Serial Peripheral Bus (SPI) bus is enabled in kernel configuration and boot time
parameter, they become available to user space through an SpiDev driver. By default,
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the SPI devices are communicated with a character device interface. The character
device interface abstracts the I/O communication to simple file operations using syscalls
open(), read(), write() and close(). A Character device abstracted SPI devices are
located in /dev/spiX.Y, where X is the SPI bus number and Y the device number.
Further configuration for an SPI bus is possible using io_ctl() syscall. [15]

This is a straightforward and easy way to transfer bytes to SPI devices. Chip select
is handled by kernel driver and is chip select pin normally dependendent on Central
Processing Unit (CPU) model. Using character device interface, however, requires an
additional syscall to be made in order to communicate with the device. This causes an
additional context switch making subsequent SPI transfer delays undeterministic. Hence,
for high-speed or periodic SPI transfers it is best to create a kernel driver, which can
communicate with the device asynchronically from user application.

In a properly configured Linux kernel, both General Purpose Input Output (GPIO) and
SPI are visible to user space, meaning that an application developer does not need to
write a kernel driver for devices that utilize SPI or GPIO. This is a great benefit, since the
application developer can now rely on the services provided by the kernel, namely
security and isolation. But it has the drawback that in the user space, there are no
deterministic delays and timings between system calls and I/O transfers. Thus, for
accurate timings, either kernel driver, Real-Time kernel, or microcontroller is needed for
e.g. deterministic delays and sampling [16]. This is a clear constraint when it comes to
implementing certain features, such as signal processing and Finite Impulse Response
(FIR) filters that operate on data coming from GPIO or SPI bus.

2.4 Python 3 and Qt Framework

Python is a high-level interpreted programming language that has been initially released
in 1991 and has been in active development ever since its initial release [17]. As of
writing this, the latest stable Python release is version 3.9.5 [18]. Python supports
multiple programming paradigms, ranging from functional to Object-Oriented
Programming (OOP) [19]. The Python’s runtime environment uses garbage collection as
its memory management strategy, meaning that the interpreter runtime is responsible for
reserving and freeing the memory as the program is executed [20]. Depending on the
use, it may be beneficial to let the interpreter do the memory management, trusting that
it does its job better than the developer would be able to. There are certain situations,
however, where the garbage collector can be problematic, or less optimal. An example is
an image data, which is essentially a large block of memory or a buffer. Using pure
python to store raw data would result in losing the benefit of locality, since Python does
not necessarily store data in blocks, but scatters the data accross the available memory.

Python has a great support for calling C-functions directly from Python, and a geat part
of all the libraries available does use C-functions to perform CPU or Memory intensive
operations. In such cases, the Python runtime does not manage the memory regions
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the C library allocates itself, allowing certain optimizations, such as hardcoding buffers to
operate on and pointer arithmetics. Many existing libraries and framework, such as Qt,
Gtk have one or multiple libraries for using them directly from a Python script.

Qt is a Graphical User Interface (GUI) and application framework built with C++ [21]. It
has bindings to many languages, including Python. Qt uses C++ containers and its own
smart pointers for managing memory use, where a parent class always takes
responsibility of all of its child objects [22]. This is in contrast with how Python manages
its memory using the garbage collector. Unreferencing a Qt’s QObject in a Python script
will not free it from memory, but makes it inaccesible from the Python script [23]. This
may easily result in memory leaks when using such an environment, which has two
methods for managing the program’s memory. In such case, careful design and
implementation is in order when sharing data between functions or threads.

Unlike some other, more modern programming languages, Python is not originally
designed for multi-threaded programming. Modern versions support multi-threaded
programming and have basic data synchronization. Python 3 introduced asynchronic
code execution, which essentially contains its own scheduler and runs multiple tasks in a
single Operating System (OS) thread. It is especially well suited for I/O-bound systems,
where significant delays would otherwise starve the execution. [24]

2.5 Image Processing

Signal processing, or more commonly known as Digital Signal Processing (DSP) , is
the operation of modifying and filtering digital signals [25]. Digital signals are always
discrete numeric values, where sampled data then represents the original signal. DSP
is widely used in digital systems since numerical signals are very rarely operable and
require further reduction of noise and other defects.

Image processing is the term used for various techniques for processing digital images.
Like many signals, Electrical signals are often 1-dimensional, where for instance ADC
voltage is measured and sampled over a range of time. Image processing differs from
most other DSP techniques in that an image is always 2-dimensional (grayscale) or 3-
dimensional (color) data. For humans it is very easy to interpret and read a graphical
image, but for a computer to identify abstract shapes such as rectangles or circles, not to
mention human faces, is nothing short of difficult.

Using various techniques the original 2d image data must be processed to find abstract
features, such as geometrical shapes. Today, one of the most prominent most challenging
uses for digital image processing is face detection and recognition. Most of the methods
involve the use of machine learning techniques, ranging from simple algorithms such as
Linear-Discriminant-Analysis (LDA) and Gradients to complex and deep neural networks
[26], [27], [28]. Today, for more advanced use cases, such as face recognition, a neural
network based processing might work better and has clear benefits, when enough training
data exists [28].
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Manipulating and processing 2 or 3 dimensional image data in practice requires matrix
operations. The operations themselves are not complex. For instance, blurring an image
with gaussian operation requires a convolution operation using a suitable binary matrix,
or a kernel to operate the image with [29]. Calculating matrix operations is usually a
sequential operation, which means the operation may take a relative long period,
especially when done with slower CPU. This is something that may need to be taken into
an account when developing image processing algorithms, especially if run with low-end
CPUs, or if the program is otherwise unable to execute parallel threads.

For successfully extracting important features, a customized pipeline, or a chain of filters,
must be crafted. Because of the nature of the problem, these pipelines are nearly always
customized and mandatory for getting acceptable results. The processing pipeline takes
an image as its input, which has a fixed size and is either grayscale or color image. The
output can either be another image produced from input, or a feature vector containing
the description of the objects in the input image.
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3 SPECIFICATION

Before the calibration system’s software can be designed and built, the requirements
and specification must be defined. This is to both enable effectively constructing the
software, and to work as an acceptance criteria for the completed software. Writing the
specification is one of the most difficult parts for any project, since the balance between
level of details and general lines greatly affect the outcome and may limit the options for
the implementation. With a good specification, the implemention does not suffer from
unneccesary constraints. In addition, a good and unambiguous specification is easy to
verify.

3.1 Medical system

The medical system’s requirements originate from three parties: regulation as well as
both an external and an internal customer. Regulatory requirements define the overall
framework where the product must operate in. In addition to the regulatory
requirements, an external customer sets additional requirements, such as suitability for
a medical use, as well as a simple interface to operate the device. The internal customer
has requirements for the performance of the calibration software in terms of speed,
quality, repeatability and traceability. Throughout the medical laser system’s product
development phase a so-called stage-gate process was being used [30]. During the
development stages the laser system’s system specification was defined. The laser
system’s specification dictates the requirements for the calibration system as well.

The medical system’s architecture is shown in Figure 3.1. As such, the system consists
of three physical components: a laser device unit, an optical beam shaper unit and an
external user interface. The user interface is not visible in the Figure. The optical beam
shaper unit is connected to the laser device unit with both an optical fiber and electrical
wirings for communicating with the optical beam shaper unit. The fiber is secured to the
optical beam shaper unit and cannot be disconnected without losing calibration accuracy.
Thus the fiber must be considered as part of the calibration data for the optical beam
shaper unit. For operation, the fiber is connected and fastened to the laser device unit.
For interoperability between different and laser drivers, each of these components must
be characterized separately. By carefully selecting the set of calibration parameters, it is
possible to fully describe the function of both the laser device unit and the optical beam
shaper unit in relation to each other.
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Figure 3.1. Medical system architecture

The laser device contains two laser modules, an aiming beam and a treatment beam.
Aiming beam is a low-power laser, whereas the treatment beam is much higher power
laser. Also, the two laser modules produce different wavelengths.

3.2 Requirements for calibration

The automatic calibration system’s requirements originates from all of these upper level
requirements. In order for the medical device to operate as specified, approximately 10
different sweeps and a few per-device constant voltages and resistances need to be
measured. This results in a dozen of two-dimensional tables, which the device needs
during operation. These characterization tables are then stored both locally to the
device’s and externally to the company’s internal storage. Various electrical
characteristics need to be measured from both the laser device and the optical beam
shaper unit. In addition, some characteristics, such as an LIV curve, need to be
measured for both a treatment beam and an aiming beam, taking the optical beam
shaper ’s effect into an account. Since the treatment beam and aiming beam use
different wavelengths, they have different responses in the optical beam shaper unit.

The overall system requirements are presented in Table 3.1. To summarize the system
specification, the requirements state that the treatment beam and aiming beam powers,
the spot size and their respective photodiode-readings have to stay within the required
limits throughout the operating range. For implementing the requirements, an automatic
calibration system was developed. This calibration system contains various in-house
built electrical equipment for characterizing the laser device and the optical beam shaper
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separately from each other. In addition, multiple commercial meters and mechanical and
optical components are used. The physical calibration system is outside the scope of this
work, which focuses on the software implementation of the calibration system. During
the lifetime of the medical product, some characteristics might need further tuning and,
thus, a periodic mainentenace is in order. The calibration process is then a part of the
manufacturing process of the medical device. In addition, full calibration is done during a
periodic maintenance.

Table 3.1. Product Requirements

Property Requirement

Treatment beam irradiance Within ±15 % of the target power

Aiming beam irradiance Within ±35 % of specified output power

Spot size readings Both absolute and relative errors below specified limit

Spot standard deviation Below 15%

Spot output sharpness Below 5% of power inside 90-10% transition area

PD power reading Below ±50 % of actual output power

Interoperability laser device and optical beam shaper must be interoperable

3.3 Requirements for calibration system

In addition to the requirements for the medical device and its specification, the calibration
system has some additional requirements, both for ensuring the validity of the calibration
output and for company’s internal purposes. Further requirements for the calibration
software are presented in table 3.2.

Table 3.2. Calibrator system’s requirements

Requirement
1. System can measure laser device internal reference voltages and

pullups

2. System can measure optical beam shaper resistances

3. System can characterize optical beam shaper unit’s losses

4. System can emulate optical beam shaper electrically to laser device

5. System must have persistence for both raw and post-processed data
as well as for device configurations

6. System must be capable for possible future remote operation feature

7. System must be composed of modular and reusable components

8. System must have a graphical user interface

9. System must be safe to use

Each calibration step is specified separately along with any additional requirements,
such as saving the characterization data to the medical device or to external
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persistence. Certain characterizations set additional constraints for the contents of
numerical characterization data, such as columns being monotonic or having upper or
lower column-wise limits.
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4 IMPLEMENTATION

This chapter describes the overall architecture of the system and some details and
components of it. The intent is to implement a system that fulfills the specification
presented in previous chapter. The development process for many calibration processes
required several iterations, due to the fact that the calibration process itself was being
developed at the same time, and from time to time changes were needed to existing
logic. Thus close feedback loop helped to keep the project on track.

4.1 Software architecture

The design of the calibration software started by outlining the software architecture.
Throughout the implementation process the architecture was refined and certain
interfaces between the components were fixed. The overall architecture of the
calibration system software is shown in Figure 4.1. Although the calibrator system is
specific to the medical device it calibrates, many of the components developed can be
used in various similar projects, ranging from device calibrations to product
development. Thus a modular design with clear separation is beneficial.

A central idea was to use state machines for each calibration sequence. As the language
that the software is written with is Python and Qt framework was being used, it made
sense to build the software using OOP -paradigm. By encapsulating all logic in classes,
it is possible to create a modular software, where ideally changing functionality requires
rewriting only that specific component, or inheriting a new subclass for new functionality.
The good thing about OOP is that by definition the logic is built as a tree consisting of
inheriting classes.

In addition to the calibration state machines, a complete calibration software needs many
additional components to work properly. This includes application configuration, a GUI,
pre-compiled driver libraries from from 3rd. parties, and other application bootstrapping
techniques. In this project, the configuration data is stored in an ini-formatted text file.
Using a text file makes parsing the file easy and allows the end-user to easily modify
certain parameters, if needed. Such parameters include not only values for processing
and limits, but also calibration constants and calibration due dates. In addition to easy
editing, a text file is easy to store in a version control system, such as a git repository.
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Figure 4.1. Software architecture

In addition to using OOP, it helped to separate all functions by their level of concern. A
central concept was to use Model-View-Controller -paradigm (MVC) for separating the
logic from user-interaction. Throughout the development process multiple refactorings
were necessary to further abstract the logic. For instance, an abstract calibration
classes were made in an object-oriented manner and most of the drivers share
interfaces and abstractions for using IO-threads for communication. Although the Qt
framework does recommend a variation of MVC, using MVC it is possible. When using
Qt with Python, because of the dynamic typing Python uses, using Qt objects and types
are actually loosely coupled in the Python runtime environment. This is both a great
benefit, as it imposes great freedom, but also a potential risk for runtime errors. The
controllers communicate with the devices through drivers, and controllers contain all the
business logic. View layer, consisting of widget-based components and complete views,
is used for graphical user interface and all user-interaction. This has the clear benefit
that if the interface is to be changed to another technology, for instance to a web-based
interface, it would require rewriting only the view layer. Or if the program was decided to
run completely on command line and not have graphical user interface at all, that would
be possible as well. The internal signaling uses QT signal and slot -objects, which work
well in scenarios like this where there are multiple producers and consumers for the
data. In addition, using signal / slot mechanism to dynamically connect the components
to each other allows running unit tests for each component.
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4.2 State machines

Most calibration procedures follow a simple state machine architecture, as depicted in
Figure 4.2. The state machines in this project are implemented using Python 3’s asyncio-
library and th Qt framework. The complete calibration software contains multiple state
machines, one for each calibration sequence. In addition, drivers often contain their own
state machines, GUI may include a state machine, and a top-level application has one
too.

Figure 4.2. Calibration state machine

The first state in each calibration state machine is the idle-state, since there is no
calibration in progress yet. The next phase is to start or initiate a calibration. This may
require manual intervetion from user, such as connecting correct equipment to the
medical system that is being calibrated, setting correct optical filters if needed and
creating initial values that are then further optimized throughout the calibration. Also an
important aspect in starting each calibration is asserting the correct configuration in
order to ensure a safe and effective calibration. Such assertions may include reading
existing configuration and verifying that the meters and optics work as expected. Then,
an iterative step loop is exectued to either sweep over power or other range, or iteratively
optimize certain factor. Sometimes the parameters of interest cannot be directly
measured, but must be derived from other measurements. In such cases, some sort of
sweep is performed and a linear or nonlinear regression is applied for calculating the
parameters. It is possible that iterative steps fail, either due to a user error, a faulty
device or other error. In case of error, the calibration must be stopped in a controlled
manner, ensuring that the laser is always turned off and other equipment are released
as well. After successfully iterating the calibration steps, the state machine returns to
idle state and further post-processing can be applied. After post-processing the raw
data, the results are saved and persisted both to the device’s internal memory as well as
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to the company’s internal storage.

As for the device drivers, they usually contain a simple state machine for initialization,
communication and deinitialization. However, due to the nature of I/O communications,
the state machine may need to cover asynchronic calls between the physical device. For
example, when using serial transmission, where a message may arrive asynchronically
after calling, a special logic must be included in order to match the transmitted and
received messages after parsing the messages and identifying separate message
packets.

The application level state machine is similar to a driver state machine, in that it only has
states for initialization, normal operation and deinitialization. During the initialization
phase, all hardware drivers are initialized and configured prior to proceeding to normal
operation. The same applies to deinitialization. In addition, normal operation state
consists of states idle and calibration. This acts as a synchronization mechanism to
ensure that only one calibration can be run at a time. Since many calibrations use
multitude of peripherals, it is insufficient to only synchronize access to each device, so
the synchronization must be handled in a higher level of abstraction.

4.3 Asynchronic device drivers

One of the important questions when developing an application with I/O-operations, let
alone communicate with dozen of devices, is to decide how the application manages
the execution flow of the program. A traditional solution for I/O-operations is to use a
callback-based executio flow. The trouble with callbacks is, however, that handling the
state as well as synchronizing acccess to the data gets complicated and error-prone very
quickly. Thus the architectural desicion was made to use the Python’s Asyncio library.
Asyncio’s eventloop executes in a single thread, providing a concurrent execution for
asynchronic tasks. Asyncio does not provide real CPU-level parallel execution, because
all of the tasks are scheduled to be run in a single OS thread.

Inside the Asyncio eventloop, any device or timer that requires action is then handled
concurrently. User interactions are also handled inside this eventloop and actions are
dispatched for device operations as needed. While Asyncio generally works very well in
I/O-bound systems, it does incorporate additional challenges. First, connecting the Qt
runtime to Asyncio had to be solved.

All drivers that communicate with an I/O-bound resource, including remote database
connection and storage, are synchronous by design. Synchronous, in this case, means
that the function call will block the program execution for as long as the actual
communication with the device takes place. Asynchronous function call, in contrast,
hands the execution back to the eventloop executor and lets the eventloop execute other
tasks, while actual communication with an I/O-bound device is waiting for completion.
I/O-bound devices always create delay, ranging from milliseconds to seconds. For
instance, a single Serial Peripheral Interface (SPI) transfer takes a couple of
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milliseconds, while database query may easily take one or more seconds to complete.
In such scenarios, the main thread and user-interface thread cannot afford to wait that
long, and drivers must communicate with other resources during those intervals. First,
because of external constraints and timings, physical devices need may need
continuous exchange of data for preventing buffer overflow or other execution errors.
Second, the end-usre may not tolerate the application being non-responsive for most of
the time. Hence, asynchronic drivers must be implemented to allow the overall system to
operate properly. If Asyncio library was not available, a callback-based system would
have been needed. This would have complicated the overall architecture and
implementation of the program significantly.

In this project, with Python 3 and Asyncio library being available, each function call must
conform to Asyncio’s concurrent calling convention. In practice, each all blocking call
must be encapsulated with await-keyword or use Asyncio futures. An overall architecture
for asynchronic calls using synchronic I/O-calls is presented in Figure 4.3.

Figure 4.3. Software architecture for asynchronic & synchronic calls

By using this technique, it is possible to manage the calibration as a single state machine
that communicates with multiple devices in an asynchronous manner, while still using one
thread for the application execution. Drivers naturally contain separate threads for low-
level communications. This ensures that necessary timeouts are never exceeded and
physical devices function as intended.
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4.4 Calibration system safety

Since the calibration software controls physical equipment, including using a relatively
high-power laser, it is mandatory that the software is safe to use. Safety, in this case,
means that the software will not send illegal or bad control commands to any equipment,
use the laser on without direct control over it or send any other command that might
damage the laser system or any equipment. The greatest risk related to the calibration
process and the calibration system is the laser device itself and its optical output, which
can easily lead to eye damage if not properly protected against. While the operator must
use safety goggles during operation to prevent eye damage, careless operation or faulty
functioning may still lead to e.g. device or system damage. Thus it is imperative that
the calibrator system always shuts down the laser, regardless of any errors during the
operation or calibration procedures.

Additional steps were taken for ensuring these requirements. For instance, the contains
timeouts for turning the laser off. Also a graceful shutdown is implemented in case any
runtime errors occur that might crash the application. The best way to ensure such
operation is by abstracting the calibration procedure to a separate class, which enforces
a stop function that is called after any calibration, be it failed or successful. Python

includes try-except syntax and a contextmanager for ensuring that shutdown sequence
is always executed. Additionally, a clear indicator must be shown to the operator of any
laser activity.

4.5 Software Licenses

As with almost any software these days, the implemented calibration software uses
numerous 3rd party libraries, most of which are licensed under open-source licenses.
These licenses grant a user the right use, modify and share these libraries. Licenses
might have additional constraints for usage as well and distributing the software. The
most common open-source licenses are GPL and its variants, Apache and MIT license.
The most important libraries and their licenses are collected to Table 4.1.

Table 4.1. Open source licenses for libraries used in calibrator software

Library License

QT 5 GPL3

PyQt5 LGPL3

Scikit-Image Custom

OpenCv Apache 2

Numpy BSD-3

Scipy BSD-3
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Pyqt5 and its license GPLv3 being the strictest, renders the whole project as a GPLv3
licensed project. This imposes the additional requirement that if the calibration system
and software is ever to be distributed to external parties, according the GPLv3 license the
full source code must be available along with distributed software. Since the calibration
system is not intended to be published or shipped to any 3rd parties, the licensing does
not add any additional risks.

4.6 Device drivers

An important level of abstraction in the working calibration software is the device drivers.
Since the the calibrator system aims to measure physical quantities and control physical
devices, the drivers are a mandatory layer for communicating with devices. Depending
on the physical device, a few communicating mechanisms are used, such as serial
communication, SPI and a General-Purpose-Input-Output (GPIO) are used.

4.6.1 GPIO

There are primarily two ways for using GPIO directly from userspace. First, the GPIO
pins can be memory-mapped with mmap, after which they are available through normal
file system operations. Memory-mapping and sysfs operation is shown in Program 4.1.
The exact GPIO identifier is always platform-specific. This is a very convenient way to
prototype and develop peripherals and external devices, but may not be suitable for
production use.

1 # reserve GPIO pin 10 for use:

2 echo 10 > /sys/class/gpio/export

3
4 # set pin 10 direction to out, making it available for & writing:

5 echo out > /sys/class/gpio/10

6
7 # read input pin, file contains ’0’ or ’1’:

8 cat /sys/class/gpio/10

9 # write output pin, either 1 or 0:

10 echo 1 > /sys/class/gpio/10

11
12 # when done, free the pin:

13 echo 10 > /sys/class/unexport

Program 4.1. Using GPIO in Linux through gpio sysfs

A second way to use GPIO from userspace is with the io_ctl() syscall. While the syscall
can be invoked directly from Python, multiple libraries exist to abstract it for direct use in
Python. In this project, a library called RPi.GPIO [32] was used to directly read and write
GPIOs from Python driver.
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1 # factory is a singleton object, only one instance exists

2 board = gpio_factory ().init_board(board_name)

3
4 # initialize pins

5 gpio_input = board.get_input(input_pin)

6 gpio_output = board.get_output(output_pin)

7
8 # gpio is now ready to use:

9 input_value = gpio_input.read()

10 gpio_output.write(1)

Program 4.2. GPIO board and pins using a factory pattern

The RPi.GPIO library routines were abstracted behind a factory-pattern. The intent was
to ensure a modular design and to make porting the application to another platform an
easier task to accomplish. The driver factory then, combined with an abstract gpio_board,
gpio_input and gpio_output classes, has an interface and workflow, as shown in Program
4.2.

4.6.2 SPI

SPI was used between ADC, DAC circuitry and the PC host system. RaspberryPi
provides two or more SPI buses, depending on the model being used. Since the GPIO
pins have alternative functions as well, the pins must be explicitly reserved for SPI. This
is done by configuring the pins in the Linux device tree data structure. While this can be
done manually, it is easier to do with RaspberryPi’s hardware configuration file,
/boot/config.txt [33]. On RaspberryPi, the /boot/config.txt acts as an overlay
description for manipulating the underlying Device Tree. During boot, the overlay is
combined and as a result, a complete device tree description is passed to the Linux
kernel, containing the edits included in the /boot/config.txt.

While implementing the SPI communcation with ADC and DAC circuits, there were issues
related to SPI bus clock phase and polarity. The problem was that the DAC and ADC
circuit used different settings, but they were connected to the same SPI bus. The solution
was to either do a hardware fix for inverting the bus polarities, or fix it using a software
function wrapper, both of which were tested in the propotyping phase. Eventually the
polarity issue was resolved using software wrapping function for setting correct SPI bus
settings while communication to each converter unit.

A Python package spidev was used for communication. The package wraps SpiDev

Linux driver and uses it as an underlying library. The usage is straightforward. After
opening the bus and the given device by its address, data packets can be sent and read.
It is even possible to modify the bus settings between packets, which was required for
communicating with different peripherals.
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4.6.3 Camera

Industrial cameras are widely available with two interfaces: USB3 and GigE. Univeral
Serial Bus version 3 (USB3) is a conventional USB-connector with a guarantee of enough
bandwidth for real-time video. Gigabit-Ethernet (GigE) is another solution, that is useful
especially in scenarios where there are multiple high-speed devices, such as cameras,
and possibly even long distances and wirings between the devices. Due to its simplicity, a
camera with a USB3 interfaces was selected. The only problem with USB3 version of the
camera seems to be an unreliable initializion and deinitializion when plugging it into the
PC. This can be overcome by reattaching camera and trying again, which in this case is
acceptable. While this is a minor problem, it is inconvenient for the end-user to reconnect
the camera for resolving the issue. For a more autonomous scenario, though, this kind of
unreliable behaviour would be unacceptable.

The camera manufacturer provided a low-level compiled driver library for operating the
camera, which contains both C and Python interfaces for communicating with the
camera. This driver implements communication with both USB3 and GigE cameras,
meaning that changing the camera model is possible later on. The usage is relatively
simple: initialize the camera, configure the exposure time if needed, grab an image or
configure a continuous grab mode, enabling stream of images. After getting data from
the camera, an image manipulation pipeline is utilized for computing a feature vector
containing the description of the laser beam.

4.6.4 Spectrometer

The spectrometer uses a USB3 interface for communication and a low-level driver is
supplied by the manufacturer. In addition to init() and deinit() the driver contains
functions take_measurement(time_ms) and take_dark_measurement(time_ms) and a
few more methods. Because a spectrometer has inherently background noise in the
measurements, it is useful to reduce the background noise by taking an average of
multiple samples that do not contain any actual signal. This so-called dark measurement
is then subtracted from each sample. Depending on the spectrometer the dark
measurement reduction is either automatic or manual operation.

The spectrometer operation did not include any difficulties besides handling the data.
The data is a 1-dimensional array of illumination in each point of the sensor. Depending
on the spectrometer, a span of 1 nm may contain dozens or hunders of measurement
points. Also an automatic exposure control was implemented for assisting the end-user.
After these functionalities it is possible to measure the spectral characteristic of the laser
beam. Interesting factors are the distribution of the energy over wavelength as well as
the peak wavelength.
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4.7 Host system

As the calibration system contains not only software, but in-house built electronics and
equipment as well, the host system plays an important role too. Because the low-level
interfaces, such as SPI and GPIO, were needed in this project, it was concluded that
Linux was the optimal operating system. A PC can be any computer that supports these
peripherals. To make the prototyping and development easier, a RaspberryPi was
chosen as the computer unit. Should there be a good reason, RaspberryPi can also be
easily replaced, given the new unit has the same peripherhals available. For
performance reasons, an external SSD hard drive is used for root filesystem. The Boot
partition must reside in an SD-card, though.

Another important decision to make is selecting a Linux distribution to use. Since all
distributions use more or less the same Linux kernel, the distribution mostly affects the
environment and tooling, such as package managers and kernel version. Usually a
custom distribution is built for embedded environments. However, building a custom
distribution did not provide any benefits for this project, but whould have required a
substantial amount of additional work. For this reason, the RaspberryPi’s official
distribution, Raspbian, was selected. Raspbian is an easy to use, widely available and a
well supported distribution, It is based on the latest stable Debian, so there’s a good
level of security for stability. For configuring the hardware peripherals on RaspberryPi,
the GPIO and SPI peripherals needs to be enabled. While this can be achieved with
command-line tool raspi-config, peripherals are managed the easiest through
RaspiberryPi’s boot overlay filesystem, available in /boot/config.txt.

In order to be able to actually use the calibrator software, the host system needs a
network connection. This includes configuring the DHCP settings and a possible VPN
access. Additionally, a display is needed. Because the Qt window is used as a GUI, the
end-user must be able to view the X window, either over VNC connection, X-forwarding
the window with SSH or by physically attaching a display. The final thing to configure
and install are the device drivers for e.g. SQL database and USB devices, such as
camera and spectrometer. Due to the nature of how permissions are managed in Linux,
all devices are going to need separate handling for allowing user to access them. This is
done easiest by creating a separate unix user account and assigning devices to that
account using suitable udev-rules, residing in /etc/udev/rules.d/ directory. Vendors
may even provide their own udev-rules to aid the setup of their products.

4.8 Profiling The Laser Beam

Beam profiling is the operation of measuring the laser beam shape optically, typically
with a camera. Since a laser ideally has only one discrete wavelength it emits at, that
can measured with a spectrometer, the color data of the beam profile is irrelevant. Using
a color camera, which uses an optical filter called a Bayer array for capturing color data,
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would in fact, decrease the quality of the raw image, because a Bayer filter reduces the
amount of light that the sensors receives [34]. Hence, a grayscale camera with a large
enough sensor area was selected.

The laser output is pointed directly to the camera sensor, through some attenuation with
ND-filters. For optimal results and minimal distortion, it is best to not use any optics,
if possible. The optical beam shaper unit contains optics for the laser beam, so it was
concluded that the camera does not need any additional optics.

For this project, the product specification in Table 3.1 lays out the requirements for optical
inspection for the laser beam. In this case, the laser beam can be considered to be
geometrically circular object in the center of the image. One parameter to measure is
the actual circularity, which might not only be elliptical but have defects and a certain
roundness as well. Thus measuring ellipticity, though sufficient, is not a perfect measure
for the circularity. The simplified pipeline that was developed is depicted in Figure 4.4. The
feature vector contains the beam diameter, the relative circularity, the standard deviation
of the beam intensity, the mean brightness and a few debug values such as threshold
values.

Figure 4.4. Simplified beam profiling pipeline

The beam profiler, which is written with Python 3, uses numerical and machine vision
libraries such as SciKit-Imaging as well as OpenCV. Both of these are widely used
libraries for image manipulation. From these two, OpenCV is probably more performant,
especially in low resource environments. SciKit-Image, on the other hand, is better
suited for prototyping, testing and developing image processing algorithms. It is
expected that the whole pipeline must be refactored to only use OpenCV in the future.
The processing pipeline’s development process is largerly trial-and-error. Systematic
approach helps, and the problem must be split into smaller pieces.
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4.8.1 Processing Pipeline

The image processing pipeline consist of multiple distincts stages, where each one uses
its own algorithm or multiple algorithms for achieving the results. The first step in
processing the image is downsampling it. The necessity for downsampling depends on
environment and computer resources. With RaspberryPi, it is necessary to downsample
the image to 1/4th or 1/8th, at least for the segmentation of the image. Following
downsampling is thresholding the image and segmenting it based on the previously
determined threshold level. The purpose of thresholding is to find an initial value to
separate the beam from background in the image. The initial threshold does not need
necessarily need to be correct, but a good initial value decreases the time an iterative
approcash requires for finding best threshold value. The better the initial guess is,
though, the better the segmentation will be, as well. As for thresholding, SciKit-Image
package skimage.filters provides various algorithms, such as Li, Otsu, and local
thresholding [35]. Most of these algorithms are covered in [36].

After the threshold value has been determined, the next step is to segment the image
into uniform areas and to find edges between the regions. Segmentation simply means
that the image is split into multiple regions, where each region represents an object or a
partial object. In this project, the image is segmented into three regions: the background,
the beam edge region, and the uniform beam region. The distinction between the beam
edge and the beam region originates from the optical beam shaper unit’s specification,
where the laser beam is said to have both the beam area itself and a lower-power outer
region. The segmentation can happen with any number of filters combined. Software
libraries often contain functions for finding contours or edges in various cases. Many of
these existing solutions were tested, such as finding circles using Hough Transformation
[36], [29], but it proved to be insufficient where there are either aritifical reflections in the
image, or the laser beam is not completely circular.

A sample view of the thresholding and segmentation is presented in Figure 4.5. In the
figure, markers are drawn in the eventual threshold. Anything over 85% is interpreted
as the beam top area, and the region between powers of 5%-85% is interpreted as the
beam edge area. Edge area is a circular belt around the beam top area. Various features
are then calculated around these two regions as well as between their relative size and
power they contain.
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Figure 4.5. Beam profiler cross-section of the beam

Sample images of the beam profiling can be seen in Figures Figure 4.6 and Figure 4.7.
Both figures show the original grayscale image in left, which is colorized to mark the
brightness of each pixel. On the right is same beam but with the segmented beam edge
mask drawn on with white color. In addition, the calculated center of the beam is marked
with white circle. The beam edge area is drawn with white, while the beam area is drawn
with gray color. Figure 4.6 depicts a larger laser beam, where the beam is nearly perfect
circle. Figure 4.7 on other hand depicts a smaller laser beam, where the shape is not as
close to a perfect circle.

A laser beam has one particular trait, known as the speckle, that might seriously affect
the results of the beam profiler and must taken into account. Speckle is the high-contrast,
grainy, binary-like, noisy effect inside the beam, that naturally occurs in lasers due to the
interference of the coherent light with itself [37]. Since one of the purposes of the optical
beam shaper unit is to minimize and level out the speckle in the laser beam, most of the
noise has already been removed from the laser beam. Thus, further noise reduction or
high-contrast elimination is not necessary. Some level of speckle is still present in sample
Figures 4.6, 4.7 and 4.5.

The beam profiler also includes necessary automation, such as an automatic exposure
control. The intensity inside the laser beam in the image is much higher than the
background noise outside the beam, i.e. there is a high contrast and a clear separation
between the background and the laser beam in an image. Priority is given to the beam
area, which should be well exposed but not saturated. This may be difficult to achieve,
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Figure 4.6. Sample of big spot size and its segmented mask

Figure 4.7. Sample of small spot size and its segmented mask

given the image contains a laser beam with speckle effect. Thus, controlling the
exposure requires successfully running the pipeline in Figure 4.4, prior to calculating
optimal camera exposure. This can be problematic and a heuristic is needed for
handling edge cases, such as identifying whether the beam is actually present or not,
either because the laser is turned off or not pointing towards the camera in the first
place. In addition, there might be reflections in the image, due to the multiple filters in
place before the camera sensor.
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4.8.2 Optimizing CPU usage

After the initial beam profiling pipeline was implemented and it gave acceptable results,
further analysis was done on profiling the CPU and memory usage of the beam profiler
pipeline itself. For properly profiling and benchmarking the beam profiler, it was
necessary to isolate the profiling pipeline algorithm from the rest of the application and
execute it on its own. In the test environment, the Python script only transferred raw
images from the camera, processed the images and saved the extracted output data. In
addition, the script was profiled with both a laptop and the target machine.

For measuring the CPU usage of each function and their internal procedures, a python
package line-profiler was used. The source code must be modified to mark the
functions of interest, whose timing is then measured during execution. An example of
taking the measurements is shown in Program 4.3. First, the @profile function
decorator must be added. Then the application is executed as normal, with the
exception of invoking the kernprof script. Next the application is executed for sufficiently
long time. Since the objective is to identify the most expensive function calls in regards
to CPU time, a relatively short test time is sufficient, ranging from 10 to 30 seconds.

1 # inject profiling decorators for functions of interest:

2 # In e.g. application.py:

3 #

4 # @process

5 # def execute():

6 # ...

7 #

8 # Execute, measuring timing

9 python-venv/bin/kernprof -l application.py

10
11 # after execution, generate text-formatted results:

12 python-venv/bin/python -m line_profiler application.py.lprof

Program 4.3. Benchmarking a python script

Since the beam profiler has an FPS of 1-10, there are already more than 100 executions
after 10 seconds. The absolute time an individual function has been executed may not
be accurate, but the relative execution times are accurate. After executing the
application, execution is stopped and results are saved in the corresponding output file.
Then the output is decoded to plain text, which contains actual function and variable
names. Invoking the line-profiler should not increase the execution time significantly,
however, some overhead and an increased execution time is expected.

The initial timings for the beam profiling pipeline are shown in Table 4.2. The measured
execution time varied between 10 to 20 seconds, to average out any inconcistencies
between each pipeline execution. Total time marks the total execution time of the beam
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profiling pipeline. If the pipeline was to execute 100% time and the application was nnot
executing the drivers or GUI simultaneously, these would result in FPS of 2.6 for laptop
and 0.42 in target machine.

Table 4.2. Unoptimized beam profiler pipeline execution

Operation Total time spent (µs) Relative time spent (%)

Laptop (i5-7200U)

Total time 388810 100

Preprocess 1362 0.3

Smoothing 49177 12.6

Copy image data 966 0.3

Segment image 158257 40.6

Extract output features 180410 46.2

Target machine (Armv7l)

Total time 2374088 100

Preprocess 6730 0.3

Smoothing 270808 11.4

Copy image data 4141 0.2

Segment image 826297 34.8

Extract output features 1266112 53.3

Table 4.2 shows that, first, the pipeline is faster on a laptop than on the target system,
roughly 20 times faster. While this is anticipated, it is not exactly clear which function
actually executes faster in the target machine without measuring it. Clearly taking a copy
of the data is 4 times slower, where the output extraction is 7 times slower. It seems
evident that the extraction slows down the most and thus it is worth being optimized first.
In addition, it takes 53% of the total execution time in the target machine, which alone
could provide the greatest reduction in execution time, if optimization is possible. Due to
the fact that the execution timing differs on machine being used, it is crucial to keep
measuring the timings every time when making any adjustments to the beam profiling
pipeline. The first options for optimizing the extraction were investigating whether
OpenCV or ScienceKit-Image provides faster execution for each function, whether there
are any redundant function calls or data copies and whether the execution order has any
effect on the timing. As a result, it seems OpenCv executes most of the operations
faster. OpenCV always performs faster or does Skimage perform better with certain
functions. Data copies are not expensive in terms of CPU-time.

An alternative optimization technique would be to parallelize the execution. Since
feature extraction relies completely on segmenting the image, the segmentation cannot
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be parallelized from extraction. The extraction, on the other hand, does not mutate the
segmented image, and it contains multiple separate function to calculate separate
numerical values. Each one of these feature calculations could be parallelized, though.
Some of them are expensive, so parallelizing might decrease the execution time.

Based on the measurements presented in Table 4.2, multiple optimization were
conducted, always running the benchmark again to verify actual improvements. Notably,
an alternative implementations for functions were written, OpenCV and Skimage
comparisons were done and unneccessary executions, such as image copies, were
eliminated. The optimized results and their timing is presented in Table 4.3. After some
novel optimizations, the processing time for single image was reduced by 20% on both a
laptop and RaspberryPi system.

Table 4.3. Optimized beam profiler pipeline benchmark

Operation Total time spent (µs) Relative time spent (%)
Laptop (i5-7200U)

Total time 313196 100

Preprocess 1362 0.4

Smoothing 49177 15.7

Copy image data 966 0.3

Segment image 128188 40.9

Extract output features 133503 42.6

Target machine (Armv7l)

Total time 1882589 100

Preprocess 6730 0.4

Smoothing 270808 14.4

Copy image data 4141 0.2

Segment image 650678 34.5

Extract output features 950232 50.5
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4.8.3 Memory usage

Last, the beam profiler’s memory usage was analyzed. Although there was no direct
necessity for decreasing the memory usage, it is reasonable to verify the memory usage
for both short-term and long-term operation. The results were measured with a Python
package memory-profiler in a similar fashion as the exeuction times were measured in
Program 4.3.

Program 4.4 shows capturing and viewing a measurement of a Python script memory
usage. The results, shown in Figure 4.8 were measured with a Laptop with 20 GiB of
RAM. This affects the interval the Python garbage collector needs to free memory and
thus how often garbage collector is executed, which can be considered as an
unneccessary execution and might be something worth optimizing.

1 # inject profiling decorators for functions of interest:

2 # In e.g. application.py:

3 #

4 # @process

5 # def execute():

6 # ...

7 #

8 # Execute, measuring timing

9 python-venv/bin/mprof -l application.py

10
11 # plot the memory usage over time

12 # optional argument: –flame

13 python-venv/bin/mprof plot

Program 4.4. Benchmarking a python script memory usage

In each execution, about 72 MiB of memory is used for each frame. Also from the figure
it is apparent that after a few seconds of warm-up the memory consumption stays well
under 500 MiB throughout the execution. The same measurement was measured for a
much longer period, 10 minutes, just to ensure that the memory usage in fact stays within
th 500 MiB limit.
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Figure 4.8. Beam profiler memory usage

Using a Bash command cat /proc/{procid}/smap in Linux it is possible to observe the
memory usage of each library during the execution, as seen from the operating system
process records. The beam profiler allocates 44 MiB for static libraries, such as Qt and
the camera driver. The rest is allocated for heap and is used throughout the execution.

4.8.4 Improving memory usage with mmap

To further optimize the memory useage, the algorithm would need to be revised. Since a
single picture is a relatively large array (1024 x 1024 x 8 bit = 1.05 MB), additional copies
of the sama data should be made sparingly. Sometimes it is difficult to estimate the
copies that external libraries may create. For instance libraries that are used for graphical
representation may create additional copies of the data. OpenCV does not copy the
array but modifies the input data array directly. While this is beneficial for most of the
cases, modifying the original image may render it unusable for other algorithms that are
executed concurrently. Since in this project multiple features are extracted separately,
each feature requires its own copied data to operate on. So, for instance, extracting
10 features requires creating 10 copies of the image, which in 20 FPS would require
allocating 1.05 MB x 10 x 20, requiring 210 MBs memory allocation each second. Also a
possible solution would be to allocate a static memory region for use, which can then be
memory mapped for use. [38].

Since each feature extraction only partially modifies the original array, it would be
possible to use a copy-on-write feature on the underlying data, if the operating system
supports it. As this implementation relies on Linux features, a memory mapping can be
configured to use copy-on-write mode, as described in the Linux manpage [39].
Depending on the amount of modified data, using the mmap with copy-on-write may
save significant amounts of memory that is being actually allocated. Manpage also says
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that the original data should not be modified after calling mmap, because after modifying
the original data the behaviour would be undefined. Numpy array can be
memory-mapped using the commands shown in Program 4.5.

1 from numpy.lib.format import open_memmap

2
3 # initialize 10 instances of image arrays

4 arrays = open_memmap("/tmp/array", mode="c", shape=(10 , 1024 ,

1024 , 3))

Program 4.5. Using a copy-on-write feature with mmap

While using the memory mapping feature, it is possible to statically allocate all the
memory that is required for processing a single image. When statically allocating the
memory region, not only is garbage-collector under much less stress to execute, but
also it is guaranteed that only only single image’s data is stored in memory at a time.

4.9 LIV characterization

LIV characterization is one of the first characterizations to perform for a new device,
because many other characterization rely on a known output power from the laser
device. The task that the LIV characterization attempts to solve is, as presented in
Section 2.1, that the LIV curve is a function between laser current and output power.
Although an LIV also describes the relation between the laser current and voltage, it is
not of interest here, because in this case the laser modules are driven with constant
current and not constant voltage. An LIV characterization is unique to each device and it
must be measured individually to determine the system’s exact operation.

The characterization procedure is straighforward: sweep the current area that is of
interest, measuring power in each step. Smoothing, or averaging, is applied to power
measurement for each measurement. Additional values, such as an internal photodiode
reading or voltages, is recorded as well. Since the non-lasing region is not of interest,
the region is usually swept with far fewer measurement points, whereas the threshold
region requires the most measured points. The linear region requires fewer points as
well.

The output of the LIV characterization is a lookup table, which maps a laser current to
corresponding output power. All other output values are interpolated as needed. For
practical reasons, the calibration table cannot have infinite amount of rows, but is limited
to about 30 rows. Characterization itself usually incorporates more then 30 measurement
points, so the measured points must be fit or mapped into smaller table, preserving the
accuracy of the characterization. This is solved with an algorithm that does not select
any measured point, but rather interpolates best approximated points. These points are
layed out so that the linear area of the LIV curve has fewest points whereas the non-linear
threshold area has most of the points in the table. This way, the relative error stays within
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Figure 4.9. Downsampling LIV characterization

specified limits. An example of measured and downsampled data is shown in Figure 4.9.
A simple way to achieve such table, where most of the points is centered around the
thershold area, is by doing a reverse fit for the data. By doing so, the power is mapped
to currents, at not the opposite, which is the eventual goal. Since it is known that the
threshold is well below power of 10 mW, roughly half of the data points can be fixed to
powers of 0-10mW. The other half of the points can be distributes along the two linear
areas outside thershold area.

The characterization is validated against the ideal LIV curve for known laser
characteristics. First, the linear area must be linear all the way to the maximum output
power with small relative error allowed. Second, the output power must reach a required
minimal limit. Third, the curve must be non-monotonic for interpolation to work correctly.
Usually non-monotonic values don’t occur in the linear region, since the relation
between the laser current and output power is in fact monotonic. But in the non-lasing
region, where output powers are small and noise level is relatively high, the power
measurements may have non-monotonic values. Non-monotonic values are either
discarded, or if there are too many values to be discarded, the device must be
characterized again.

The laser’s temperature must also be monitored during the LIV characterization to retain
the characterization accuracy. Drifting the temperature causes not only the wavelength
but also the laser’s output power to drift as well, as described in 2.1. In this
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measurement setup, both the wavelength and power affect the measured power,
because the power meter is calibrated for the specific wavelength of the target system.
In the case of a temperature drift, given the device controls temperature correctly, it is
enough to pause the characterization process for a few seconds and try again, letting
the device temperature stabilize first. Although the laser device monitors and controls
laser module’s temperature, during abnormally fast power sweeps, which do not occur in
normal treatment situations, it is possible to drift the temperature for short periods of
time. Certain edge cases may occur, which must be handled and the characterization
may even need to be run again. LIV graph also verifies that the laser device operates as
expected and is not a faulty unit. For a faulty unit a closer inspection is needed, ranging
from properly securing connectors to replacing the laser modules or some other
components.

4.10 Chacterizing calibration system’s internal parameters

As the calibrator system itself contains electrical and optical subsystems, the various
subsystems need to be characterized as well. For instance, the built-in power meters
need to be characterized for the intended use. A power meter in this case is a photodiode-
based current source, which is first converted to voltage and amplified, and after that it
is converted to digital signal with an ADC and transferred with SPI bus the PC. So both
the voltage conversion and the amplification response needs to be determined for correct
gain and offset.

The photodiode’s current response is linear to the light it receives, so only a linear fit,
consisting of gain and offset combination, should be enough for characterizing the power
meter. However, for an extremely low powers the linear fit doesn’t may produce high
relative errors, even if the absolute error stays low. Fox decreasing the relative error,
a second linear fit was made in low-power region. These two fits together provide an
excellent relative and absolute error throughout the operating area.
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Figure 4.10. Power meter characterization

Generating two fits is essentially an optimization problem, where both relative and
absolute errors across the regions are the parameters to be minimized. A sample
characterization is shown in Figure 4.10, where two fits are used for power meter
characterization. In this scenario, the first few samples are used for the lower fit, and the
rest of the data points are used for the upper fit. Upper fit is then etrapolated to lower
powers to visualize the difference between the lower and the upper fit in lower power
region.

The most important parameter to control during the characterization is the cutoff power
between the high and low power fits. It is even possible that one fit provides good
enough results. A python package scipy provides function optimize for this kind of
optimization tasks, where a parameter is algorithmically and iteratively tuned while the
output parameter is being minimzed. The only thing left to do is to setup the optimization
problem correctly for scipy.optimize. While the power meter’s characterization should
be constant over time, it is considered a best practice to periodally check and correct the
characterization. Thus, the power meters need to be characterized yearly to guarantee
their operation.
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5 VALIDATION

Since the device that is being calibrated is a medical device, the tools used to
manufacture and calibrate one must be validated as well. In the context of this work it
has the implication that the calibration system itself must be verified and validated.
Verification protocol ensures that the specification describes the operation of the
calibration system. After verification, a validation protocol is executed according to a
validation plan by personnel not affiliated with construction of the calibration system.
The validation protocol is a series of individual tests that one can run with the required
equipment. Each test verifies a single feature or operation, and usually multiple tests are
required for verifying a single specification item. A protocol test contains detailed
instructions with ideally zero ambiguity, along with a defitinion for pass criteria, which
has to be met in order for the test to pass.

Only after each test in the validation protocol has passed, the calibration system can be
used in a production environment for calibrating medical laser systems prior to shipping
them to customers. Every time the calibration system is modified in any way, the
complete verification and validation protocol must be executed again prior to re-entering
the production phase. After calibrating a device, it must be verified with meters that were
not being used during the calibration. This is to eliminate the effect of faulty meters
during the calibation.

A detailed validation protocol was created to verify the calibration system’s operation,
containing multiple dozens of tests. A sample validation protocol is presented in Table
5.1. Since the system contains a dozen calibrations, each calibration procedure was
validated separately. All of the customized electronics and meters were validated against
a commercial, comparable meters, such as a power meter or a spectrometer. All digital
processing must be validated as well, in the level that the results must be consistent and
the medical device must still operate as specified.
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Table 5.1. A sample of the validation protocol

Requirement Validation method Acceptance criteria

1. Laser system is
fully operable after
automatic calibration

Validate device according to
device verification sheet

Device passes all
verification tests

2. Calibration data and
raw measurements
are found in external
storage

Check external storage it has
all data related to calibration

Calibration data exists
on external storage

3. laser device is
interoperable with
any optical beam
shaper unit

Operate evice with other
optical beam shaper units

Laser system operates
as specified in the
product specifaction

4. Capable of measuring
laser device’s internal
reference voltages

1. Characterize vref as per
process instructions.
2. Measure vref manually
using a multimeter.

Vrefs measured with
calibation system and a
multimeter match each
other.

5. Software can read
and write device
configuration files from
file system

Read and write configuration
file to local file system

Configuration file is
intact

6. Software can read
and write device
configuration files from
target device

Read and write configuration
file contents to target device

Device configuration is
identical after writing
and reading it.

7. Software can read
and write device
configuration files to
the external storage

Read and write configuration
file contents to the external
storage

Device configuration is
identical after writing it
to the external storage.

5.1 Evaluating the calibration quality

To evaluate the performance and the accuracy of the overall device calibration, a total of
20 devices were being calibrated and their operation was verified using external beam
profiler and power meters. The results are shown in the following sections. Overall, the
evaluation was sucessful, since each device fulfills the medical device’s s’specification,
guaranteeing that the device operates properly.
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5.1.1 Beam profiler

The beam profiler is validated against a commercial profiler. Although the algorithms differ
to some extent, and commercial one is a black box in terms of its internals, the results
should be comparable, especially when the beam is circular. In some cases the profiler
that was being built in this project has better accuracy than a comparable commercial
beam profiler due to its different, simpler algorithm, that is being used for determining the
beam spot area.

Spot size calibration was evaluated verification, three separate spot sizes for each unit.
The results are shown in Figure 5.1. A spot size target was given to the device, for
instance 1000 µm. The actual spot size was then measured with an external beam profiler
and the spot size diameter was recorded. It must be noted, that since any digital beam
profiler relies heavily on purpose-built algorithms, the results may be different depending
on the beam profiler. It is known that the external beam profiler measures beam diameter
differently than the one built during this project.

Figure 5.1. Spot size measurements

From the Figure 5.1 can be seen that the implemented beam profiler seems to
overestimate the size of the smaller spot sizes, since the lowest spot sizes of 1000 µm
are generally higher than reference. Also smaller spot sizes have more variance and
have greater inaccuracy in the calibration process itself. This is likely due to the fact that
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smaller spot sizes are not perfectly circular and have minor imperfections, which can be
depicted in Figure 4.7. Since the implemented beam profiler calculates the average
diameter using the whole beam spot area rather than just two diagonals, the diameter
can differ from the external beam profiler. Figures 5.2 and 5.3 show no outliers,
indicating that the characterization setup works as expected.

Table 5.2. Relative error for beam profiling

Spot diameter Mean relative error Standard deviation Absolute maximum relative error

1.0 mm 4.0 % 3.8 9.4 %

3.5 mm 1.1 % 2.9 7.7 %

7.0 mm -1.0 % 1.4 4.5 %

Figure 5.2. Spot size ADC 1 channel
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Figure 5.3. Spot size ADC 2 channel

5.1.2 LIV-characterization

LIV-characterization, in which the laser’s optical power is measured against the laser’s
driving current, requires multiple steps for full validation. First, an operator must run the
full characterization procedure, following corresponding process instructions. Next the
in-house built power meters are validated and verified using a commercial and calibrated
power meter and results are compared. Then the LIV-characterization is executed
manually with external power meter and then the characterization results are compared.
At this point, it is known that not only are the measurements accurate, but the
post-processing is also accurate and gives correct results. Last, the characterization
data is saved to the device as well as to an external storage and both are read and their
content is verified, to ensure that the data is identical with the original output data. Since
there are effectively four separate power meters in the setup, each one being used for
different optical outputs and wavelengths, they must be verified separately.

All 20 calibrated devices were verified using an external power meter. For each device,
three power levels were being tested. As depicted in Figure 5.4 and Figure 5.5,
calibrated devices fulfill the device specification. With the treatment beam, Table 5.3
shows that calibrated mean error grows linear with power, indicating that the caliration
system’s internal calibration is non ideal. As for the aiming beam, there is no similar
linear trend with relative mean errors, as seen in Table 5.4.
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Figure 5.4. Treatment beam LIV verification

Table 5.3. Relative error for treatment beam LIV

Power Mean relative error Standard deviation Absolute maximum relative error

6 mW 2.0 % 5.5 10.5 %

130 mW 0.4 % 5.1 11.0 %

920 mW -3.5 % 5.0 13.9 %



44

Figure 5.5. Aiming beam LIV verification

Table 5.4. Relative error for aiming beam LIV

Power Mean relative error Standard deviation Absolute maximum relative error

19 µW 4.6 % 7.4 12.6 %

450 µW 0.1 % 7.6 15.6 %

3200 µW 4.8 % 8.0 22.0 %

5.2 Calibration system

The calibration system must have a capability to communicate with the device as well
as read and write configurations from it, as was specified. JSON (JavaScript Object
Notation) is being used as the serialization format in PC, but any other format, such as
plain text or yaml, could have been selected as well. The calibration system must be able
to produce and serialize the json file from the device’s configuration, as well as upload the
complete deserialized JSON file to the device’s memory. In addition, these JSON files
are persisted to an external database in a text format. The validation simply tests that
uploading and downloading from and to both the device and the external storage works
and file content stays intact. The device also has checksums in place for detecting and



45

preventing corrupted configurations, so verifying the communication with the device is not
necessary in this context.

The user must be able to view certain device parameters, such as temperatures,
controlling parameters and some intermediate control values. The existence for each
required value is verified separately with a test for each parameter. Some of these are
user-editable, but most of them are read-only.

5.3 Laser system interoperability

The medical system consists of two components: a laser device system and an optical
beam shaper unit. A requirement for the calibration system is to enable the evice to use
any optical beam shaper unit and still produce output power with high accuracy, as
specified in the system’s requirements. One of the motivations for an automated and
comprehensive characterization was to enable the interoperability between different
optical optical beam shaper units, without having to characterize each set of laser
devices and optical beam shaper units with each other.

For a complete interoperability, several parameters need to characterized for both to the
laser device and to the optical beam shaper unit. With a successful characterization
process, replacing the beam-shaper-unit should still result in the medical system to
operate under it’s specification.
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6 IMPROVEMENTS

Although the project requirements were met during the development of the calibration
system, the software components that were implemented are planned to be used in other
projects as well. Having a modular design and implementation, it is easy to modify the
application and extract components and functionality as is needed. There are still multiple
options for refining and tuning the application or its components. In this chapter there
are listed a few scenarios, which might improve the performance of either the whole
calibration system, or some components or measurement equipment. It is possible that
in the future some of these improvements will be investigated further or implemented as
needed.

6.1 ADC noise filtering

When converting analog signals to digital, both the measured signal and the conversion
introduce some noise into the output. The input signal will inherently contain background
noise and may additionally contain some electrically induced noise from the printed circuit
board and components next to the chip. In addition, the ADC conversion introduces
various noises, such as quantization noise [25].

One possible mitigation for decreasing the noise level incorporates digital signal
processing methods. In the case of unwanted noise, a digital low-pass filter would be
suitable, which would only allow frequencies of interest, such as < 5 Hz, to pass through.
Such a DSP filter is unfortunately not effective with the current system, because the
ADC sampling interval is not deterministic and inherently contains some jitter. This is
due to the fact that the sampling synchronization is done on top of an operating system.
A novel implementation would use a moving average filter, decreasing the noise level by
some degree. A more effective solution, however, would be to incorporate a microntroller
and delegate the ADC sampling to it and transfer buffered values with e.g. SPI bus the
host PC. An alternative to this would be to write a Linux kernel driver for the ADC and
possibly incorporate a Real-Time-Kernel. But the problem with the kernel module is that
it would require a significant amount of work and it would be completely tied not only to
the operating system, but also to the architecture at hand. Also maintaining a kernel
driver significantly increases the time and resources needed for maintaining the system.
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6.2 Accelerating beam-profiling

Beam profiling is algorithmically the most expensive operation in this calibration setup.
The reason is simply that an image of 2000 x 2000 pixels requires a significant amount
of arithmetic operations even for simple transformations. With high enough FPS and a
complicated pipeline this will easily become a bottleneck, which will limit the software’s
capabilities. An easy way to decrease the stress, especially in high-FPS scenarios, is by
downsampling the image to a smaller size, for example to 1/4th or even 1/16th of the
original image. Decreasing the resolution may, however, decrease the quality of the
measurement and may introduce an additional noise to the image, decreasing the
profiler’s performance.

Python 3 provides various libraries and interfaces, such as OpenCv and SciKit-Image,
that are used for image manipulation. Both of these use Numpy-arrays as the underlying
data structure, where indexing and data manipulation is fairly performant. However,
given that the calibrator has to keep up with other tasks as well, such as frequently
communicate with the devices, update GUI and run the calibration state machine itself, it
cannot afford to use 100% of the CPU time only for the image manipulation.

Usually this is resolved by splitting the program into multiple threads, which can then be
run with multiple CPU cores in parallel. But, in case of Python language, the Python
Global Interpreter Lock (GIL) prevents the use of multithreaded computing, effectively
rendering multithreaded applications to a single thread at a time [40]. To overcome this
limitation, there are a couple of solutions. First, Python has a module library called
multiprocessing for running multiple processes, not just threads. Separate processes
are not limited by GIL, enabling true parallel computing between processes. While
multiprocesing would theoretically solve the problem at hand, it introduces other issues,
mainly the problem of sharing data between processes, which is an error-prone and
difficult task to do.

Sharing the program’s state between multiple processses is discouraged, and a queue-
based message passing is recommended instead. Message sharing works well, when
the data that is being sent is fairly modest in size. Normal Python objects will be easy
to pass between processes. But sharing images of multiple Megabytes will likely result
in not only additional copies of the data, it may even be challenging to share that data
directly. An alternative may be by using memory-mapping with mmap syscall, which will
allocate shared memory area, which multiple processes can then access and manipulate.

An second alternative to threading in Python would be to offload the image manipulation,
or parts of it, to a separate library or binary. Such library could written with lower level
language that has been optimized for speed, for instance with C++. The library would
export an interface for the image manipulation process or separate functions for parts of
it, then execute the processing in a separate thread. Calling the interface from Python
wouldn’t then consume the Python process’s time, since the processing would be done
in a separate thread. This way, the python threads would be available to execute other
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operations simultaneously. The difficulty in creating an external library is to complexity it
adds. The library needs to be written and built for multiple operating systems, because
the profiler needs to cross-platform program as well.

Another alternative for improving the beam profiler performance would be to parallelize
the algorithm itself. Table 4.3 shows that, on target machine, the output extraction is
the most CPU intensive operation. While the segmentation isn’t as easy to parallelize,
because it is a sequential operation, constantly mutating the data, the feature extraction
phase does not mutate the data in any way. Thus it would be possible to run each
distinct extraction in separate threads, vastly decreasing the time spent on extraction.
The segmentation could be partly parallelized as well, with the cost of added complexity.
Since image data is not modified, the only overhead would be to start threads and and
wait for each one of them. For an improved results, a threadpool of background tasks
would likely be the best option.

Additionally, a hardware acceleration would provide substantial improvements [24]. For
instance, OpenCV has a limited support for accelerating the computing with external
resources, such as a GPU. But the acceleration once again adds much more complexity
to the system so the benefit must be significant and it is likely the last option to try.
Although RaspberryPi includes a GPU, acceleration would most likely require additional
hardware or a GPU that supports certain matrix operations directly.

6.3 Generalizing the beam profiling pipeline

It is likely that the laser beam profiling software, that has been built during this project,
will be used in other projects as well. In current implementation, the beam profiling
pipeline has been optimized to work with the laser system at hand. Although it works as
expected, multiple components, such as the feature extraction and segmentation, can
be used in other projcets as well. On the other hand, it is likely that exactly these two will
be modified to suit other projects. Through OOP pattern, inheritance, and clear
separation of responsibility, it would be possible to create highly modular implementation
for beam profiling.

Depending on application and optics the laser looks a bit different in the image. Due to
the nature of the divergence of the laser beam it has either gaussian intensity curve, or
it is sharp edged beam. For a complete abstraction and modularity, the camera driver,
along with each step in the beam profiling pipeline should be independent and completely
opt-out, allowing any project to use the part of the pipeline that is needed.

6.4 Possibility for remote calibration

One possible further development task for this calibration system is the possibility of
calibrating devices remotely. The rationale behind this scenario is that, as the products
reside around the globe, it is costly and creates downtime to ship devices back to the
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factory for calibration. The option for remote calibration has been taken into account in
the calibration system’s requirements.

With a remote calibration capability it would be possible to calibrate the devices either
in certain remote locations that have the capability to calibrate, or to ship the calibration
system directly to the client. Most of the requirements related to the remote calibration
capability arise from guaranteeing a safe usage even for non-trained personnel, as well
as for enforcing correct setup of instruments for each calibration phase.
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7 CONCLUSIONS

The objective of this thesis was to develop a working software in the calibration system,
for calibrating a medical laser system. The target of calibration, the medical laser system,
consists of three central components: a laser device, an optical beam shaper and an
external graphical user interface. The calibration system includes a multitude of both
commercial and custom built equipment, such as power meters, spectrometer and a
camera.

The intent was to create a software that utilizes various electronics and equipment,
which is capable of calibrating the medical system as a whole, so that the device
operates as it is specified. In order to characterize the laser system, multiple separate
characterizations are required, some of which are fully automatic and some of which
require user interaction.

When developing the calibration software, close interaction with hardware and multiple
physical peripherals for communicating with the equipment was required. After that, all
the calibration procedures were written, often consisting of various post processing steps.
Algorithmically, the most complex piece was the beam profiler, which incorporated image
processing and various machine vision techniques. The beam profiler is comparable to
the performance of a beam profiler software available on the market.

During the development process multiple refactorings were required. While it may give
the impression that the initial implementation was of poor quality, it is actually the nature
of software development that the program is in fact evolutionary and iteratively built. After
writing each software component one by one, the complexity increased slowly. After some
time, it made sense to decrease the complexity by refactoring the software components.

The results were very promising, since an assembled device can be verified to operate as
specified after it has been succesfully calibrated with the developed system and software.
After validating the calibration software and the system around it, it can be concluded that
the calibration system is suitable to be used in a production of the medical laser system.
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