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Abstract – This paper presents a case study – developing a 

computer-based classification framework to classify masonry 

bricks into three quality categories – carried out as a part of the 

Robocoast R&D Center project. The project aims at better 

collaboration between universities and industry by establishing an 

innovation platform where companies can bring their challenges 

to be addressed together with university experts. The project also 

promotes collaboration between universities being a part of the 

RoboAI Competence Centre – a joint research and innovation 

platform of Satakunta University of Applied Sciences (SAMK) 

and Tampere University, Pori unit. Automatic classification of 

bricks is important as it is foreseen that a robotic arm, powered by 

an automatic classifier, could replace the heavy and tedious work 

currently performed by humans in brick factories. A 

convolutional neural network-based solution, using a pretrained 

VGG-16 deep learning architecture, is proposed. Overall accuracy 

of 88 % was obtained when considering all three quality classes. 

When only discarding class 3 bricks, i.e., those that are not suitable 

for any construction work, the accuracy was 93 %.  

Keywords—university-industry collaboration, classification,  

data acquisition, CNN, transfer learning 

 

I. INTRODUCTION 

 
Opening a dialogue between university and industry can 

sometimes be challenging. Both parties are driven by slightly 
different motives and goals. A solution to this has been sought 
in the Robocoast R&D Center project, which aims to create a 
better connection between academia and industry. A major 
aspect of the collaboration is to provide companies with an 
innovation platform where they can present their challenges and 
together with university experts, a possible solution to the 
challenge is found. Another important part of the project is to 
establish an innovation platform for collaboration between 
universities in the region. A RoboAI innovation platform for 
research and development as well as education and competence 
has been established between Satakunta University of Applied 
Sciences (SAMK) and Tampere University Pori unit. RoboAI is 
also a competence center of the Robocoast Digital Innovation 
Hub. There are a few objectives that the innovation platform 
offers to the region's industry: 

• to support the growth of technology industry and 
enterprises in the region 

• to increase competitiveness and create a solid basis for 
industrial digitalization 

• to offer a common research infrastructure and high-
quality research and international product development 
platform for the companies to use. 

The project carried out various pilot studies together with 
industry. This paper presents a case study conducted by our 
research group of Data Analytics and Optimization (DAO) 
together with an industrial partner. Our research group has 
versatile competence in the different sectors of data analytics 
and decades of experience in applying data analytics for the 
needs of science and industry. 

This paper presents a challenge brought up by an industrial 
company to which a solution is developed. We first describe the 
problem of masonry brick classification on a brick factory 
production line. We then present the data acquisition framework 
used to obtain the data for training the deep learning algorithms. 
After that, the solution employing the pretrained VGG-16 
network architecture in presented, the classification results are 
given and some issues to be considered when the developed 
framework will be used in the production environment are 
discussed. 

 

II. BRICK QUALITY ASSESSMENT 

Bricks are the oldest known building material to humans. 
Bricks and brickmaking dates to 7000 BC in southern Turkey 
and in the ancient settlement near the city of Jericho. Industrial 
revolution after 1885 transformed brickmaking from handwork 
to machinery-based production [1].  Nowadays large-scale brick 
production is fully automated, including robotics as described in 
[2]. 

Brick quality is closely related to the production conditions 
in the factory such as humidity, temperature in various 
compartments and its control, modernity of the machinery etc. 
These conditions become more importing in small production 
units. Raw material properties should be as uniform as possible, 



as well as the mixing, drying, firing and cooling phases in 
masonry brick industry. The environmental conditions can be 
monitored using sensor networks to get feedback for quality 
improvement. In [3], for example, a cost-effective PLC based 
sensor / monitoring system has been tested in a small masonry 
brick plant.  

Brick quality is usually inspected manually in smaller plants 
when sorting the bricks to separate storage platforms such as 
pallets, for example. It is easy to classify the bricks if the bricks 
are labelled to broken or not broken. However, if there are more 
classes such as 1st quality (flawless), 2nd quality (minor issues) 
and 3rd quality (broken or severely deformed), then the 
classification requires expertise and trained eye. In [4], an 
image-based crack detection system of bricks using 
conventional signal processing methods is presented. 

When reviewing research papers on brick classification, a 
common task considered seems to be that of brick recognition 
from the brick walls using AI [5,6]. In [5], the degradation 
aspects of mortar and bricks are searched from the image to 
evaluate the repairment need of the brick wall. In [6] brick 
identification is extended to rocks and ashlar and damage 
identification also includes biofilms etc. 

In this paper an automatic brick classification algorithm is 
developed to be used in a brick factory to control a robotic arm 
to collect 1st and 2nd class bricks to pallets and leave 3rd class 
bricks to conveyor belt for crushing.  

 

III. DATA ACQUISITION ENVIRONMENT 

A. Material 

In this case study we tested brick classification into three 
categories using neural networks. The first class is flawless, 
good quality bricks while the second class contains bricks with 
minor defects, such as minor cracks between holes, minor 
chipping, color changes etc. These bricks can be used for 
construction in less critical sites. The third class contains broken, 
bent, miscolored or otherwise unsuitable bricks for construction. 
The brick belonging to the third class are abandoned. We 
obtained a set of tiles, consisting of 2x128 tiles of the 1st class, 
2x128 tiles of the 2nd class and 5x128 tiles of the 3rd class, as 
shown in Figure 1. 

 

Fig. 1. Two left pallets filled with 3rd class tiles, right side pallet stacked with 

2nd class tiles (9 lower rows) and 1st class tiles on top. 

B. Data acquisition 

The tiles were imaged using the IDS area camera, model UI-
3590CP-C-HQ. The camera was placed inside the dome with led 
lighting over the conveyor belt. The conveyor belt was imitating 
the conveyor belt in the brick factory. The dome height was 
adjusted in aluminum frame to match the optimal imaging 
conditions.  The camera was controlled by Halcon machine 
vision software. When the software identifies the rough shape of 
a detected brick and the color in certain limits to trigger the 
camera, the image of the brick is captured automatically. The 
image capturing setup is shown in Figure 2. 

 

Fig. 2. Image acquisition setup 

C. Data preprocessing 

Each brick was photographed from three sides, top side, 
bottom side, and the outer surface side in constant light 
conditions. Each image triplet was assembled as one image. An 
example of a brick image triplet is presented in Figure 3. 

 

Fig. 3. A first class brick image triplet. 

In Figure 4, two images of bricks classified manually into 
class 2 and three images of bricks belonging to class three are 
presented. Color variation and minor chipping can be observed 
when visually examining the 2nd class bricks. The bricks 
belonging to the third class have major defects or distorted 
shape. 



 

Fig. 4. Brick belonging to class 2 due to minor defects are shown in two 

lettmost panles. Three rightmost images present abandoned tiles that belong to 

class three. 

Total number of triplet-images are shown in Table 1. 

TABLE I.  TOTAL NUMBER OF TRIPLET IMAGES 

Class 

Triplet images for training Triplet images 

reserved for 

testing 
Number of 

images 

Number of images 

after oversampling 

1st class 256 297 128 

2nd class 256 297 128 

3rd class 593 297 296 

 

The number of images in class 3 is larger than in classes 1 
and 2 combined. To avoid class unbalance in training the neural 
network, the image sets of classes 1 and 2 were oversampled 
randomly by 2.3 times to match the size of class three dataset. 
The oversampling was done only for network training image 
triplets. 

 

IV. BRICK CLASSIFICATION USING CONVOLUTIONAL NEURAL 

NETWORK 

A. Initial experiments and transfer learning with VGG-16 

Convolutional neural networks (CNN) are based on the early 
works of Yann Le Cun. He used the backpropagation algorithms 
for training the convolutional neural network to recognize the 
handwritten digits of the area codes for US Postal Service [7].  
During several years of research, Le Cun and colleagues 
reviewed various methods for handwritten digit recognition and 
the results showed that the CNN outperformed all other models 
[8]. However, the general CNN architecture requires large 
amounts of training data.  

The VGG-16 network architecture [9] was originally 
developed for ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC-2014). The ILSVRC-2014 dataset consists 
of over 14 million images belonging to roughly 1000 classes. 
For the competition a subset of the whole image database, 
containing 1281167 training images, 50000 validation images 
and 100000 test images belonging to 1000 classes was used [10]. 
Recognition results of the VGG-16 were comparable with the 
ILSVRC-2013 winner GoogLeNet with 92.7% accuracy in top-
5 test [9]. VGG-16 network consists of several layers. The image 
input size is 224 x 224 x 3 and it is passed through several 3 x 3 

small receptive field filtering layers. Spatial padding of 1 pixel 
is added to preserve spatial resolution in convolution layers. 
Max pooling is performed using 2 x 2 -pixel windows with stride 
= 2 [9]. After convolution layers the last image representation is 
fed to three layer (4096-4096-1000) fully connected network 
with 1000 outputs. 

In our case VGG-16 network was taken to the tests as it was 
but the output layer was modified for the brick classification 
containing only three outputs in first test, as shown in Figure 5.  

 

Fig. 5. The VGG-16 modified structure in the three class recognition test. 

Image is reproduced from [11] 

In second test the output layer was modified for the brick 
classification containing only two outputs, as shown in Figure 6. 

 

Fig. 6. The VGG-16 modified structure in the two class recognition test. 

Image is reproduced from [11] 

As our brick image database was too small to adequately 
train a CNN capable of performing the classification task, it was 
decided to base the algorithm on a pretrained VGG-16 network 
and to use transfer learning. Pretraining was done using the 
ILSVRC-2014 dataset. In both tests fully connected 4096-4096 
network layers were trained with the brick images to obtain brick 
classification results. 

 

B. Training of the CNN 

Brick triplet images were loaded to the classification 
algorithm from three different folders according to classes. 
Classes 1 and 2 were also randomly oversampled in this phase 
to match the size of class 3. The 50/50 cross-validation division 
was made so that the training and validation data sets contain 50 
% of the data (25% each) and testing data contained the rest of 
the data. The data were organized in such a way that 149 images 
from each class were reserved for training, 148 images  

for validation and 128 images from classes 1 and 2 and 296 
from class 3 for testing. All the set selections were made 



randomly. Transfer learning of the VGG-16 model was 
performed using 15 epochs. Each epoch contained 14 training 
steps and 14 validation steps using batch size of 32. The 
computation was done in Python Keras platform. Loss function 
used during tests was categorical cross-entropy and stochastic 
gradient descent SGD utilized as optimizer with fixed learning 
rate of 0.0001. 

There were two cases is CNN training: Test 1 was to train 
and test the network to identify all three classes simultaneously. 
In test 2 the classes were trained and identified pairwise: class1 
vs. class2, class1 vs. class3 and class2 vs. class3. 

In both cases, the architecture and the hyperparameters as 
well as the data structure and organization were the same. 

 

V. RESULTS 

In test 1, the result of model training to classify all three 
classes is shown in Figure 7. 

 

Fig. 7. Training and validation curves of VGG-16 in brick classification. 

In first test training data accuracy was 99.0 %, validation 
accuracy 92.0% and test data accuracy was 88.0%. The 
confusion matrix is shown in Figure 8. 

 

Fig. 8. Confusion matrix of brick classification using 128 (for classes 1 and 2) 

and 296 (class 3) test data images in test 1. 

 

In test 2, the VGG-16 network architecture and the dataset 
division were the same as in the first test. The pairwise 
classification results are presented in Table 2. 

The results are somewhat similar when comparing the test 1 and 
test 2 results. However, it is interesting to notice that the class1-
class2 separation is more challenging when compared to class 
separation against class 3. Class 1 and class 2 bricks may be too 
close to each other near classification border cases and that may 
cause the wrong classification sometimes. The larger test set in 
class three should not affect to the results, because on both tests 
the training data sets were equal among three classes. 

 

VI. DISCUSSION AND CONCLUSION 

In this collaboration experiment it shows possibilities to 
utilize machine learning for industrial use. When we set out to 
develop a solution to the challenge posed by the industrial 
company, it was initially good to find out exactly the limits of 
the study. In initial phase, what type of brick would be selected 
for investigation. Second, how many bricks are needed to form 
a sufficient dataset. Third, which is sufficient recognition 
accuracy. And it was also important to keep in mind the follow-
up to this study. 

 



The overall quality of the recognition mechanism is good, 
but it could be better if there were more images of the three 
classes. The case study investigated how to classify bricks of 
different qualities based on cracks, colors or shape 
deformations. Only one type of brick was used in the study, 
which had factory requirements for shape and color. The results 
of the study were good and of such a quality that it is possible to 
move on to the next stage of development. The next step is to 
apply the identification method together with the robot solution, 
so that the robot can classify the bricks directly on the 
automation line and allocate them to the right pallets. 

Before applying the identification method together with the 
robot solution on the automation line, the requirements of 
different types of bricks must be taken into account. Brick types 
can vary and there can be different colors and shapes. The speed 
of the identification method must also be optimized to support a 
robust solution that is efficient enough. One solution to this 
could be to apply the reinforcement learning method, which 
would make use of an existing implementation and be able to 
identify the classification of different types of bricks. 

In reinforcement learning, there is a possibility to train the 
network online at the conveyor belt. When the bricks are passing 
the fixed camera station, an operator, near camera station, will 
decide the class information of the current brick and send this 
information to the network by pushing one of the pushbuttons 
that indicate one of the three classes, for example. With this 
information, network will gradually adapt to new information. 
This method can also be used for the totally different brick types. 
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