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Abstract 

During the last few years, textile solar cells with planar and fiber-shaped configurations have attracted enormous 

research interest. These flexible-type solar cells have a huge potential applicability in self-powered and battery-

less electronics, which will impact many sectors, and particularly the Internet of Things. Textile solar cells are 

lightweight, super-flexible, formable, and foldable. Thus, they could be ideal power-harvester alternatives to 

common flexible solar cells required in smart textiles, electronic textiles, and wearable electronic devices. This 

review presents a brief overview on fiber-shaped and planar-shaped solar cells, and it introduces the most recent 

research reports on the different types of textile solar cells, including details on their fabrication techniques. It 

also addresses the current challenges and limitations of their technology development, and the encountered 

issues for their future application and integration in novel devices. 

Keywords: Fiber -shaped solar cells; Textile solar cells; Power harvesting; Smart textiles; Electronic textiles; 

Wearable electronic devices; 
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1. Introduction 

Relying on fossil fuels for addressing the global energy demand is a key current concern for the society, as they 

lead to environmental pollution upon the release of carbon dioxide and other greenhouse gases. This results in 

global warming and climate changes, which are significant challenges in a world with a continuously growing 

population. Thus, the utilization of clean and renewable energy resources is an urgent and high-demand 

necessity. Solar energy is a promising alternative to fossil fuels as it is renewable, clean, eco-friendly, 

sustainable, abundant, and readily available. Hence, in the last decades, many research efforts have been devoted 

to improving the performance and the stability of emerging photovoltaic (PV) technologies, such as dye-

sensitized [1-10], organic [11-24], and perovskite PVs [25-44]. While the conventional silicon solar cells are 

heavy, fragile, and rigid, the above-mentioned latest PV technologies offer unique advantages over the silicon 

counterparts, namely the solution processability, the flexibility and their being lightweight. These features enable 

their integration in portable electronic applications. Recently, scientists have carried out significant research and 

development efforts to bridge the performance and stability gap of flexible solar cells [45-63]. Their photoactive 

materials should be able to generate high Power Conversion Efficiencies (PCE) while having at the same time 

excellent tolerance towards mechanical bending and stretching stress [64]. However, despite the progress of the 

latest years, flexible solar cells can still only endure a limited bending radius. This ultimately reduces their 

applicability in super flexible products, such as cases where formability, pliability, foldability, and wearability 

are requested, e.g. in Wearable Electronic Devices (WEDs). WEDs are typically battery-powered and mainly 

constructed on textile-based materials such as fibers and fabrics. The textiles have super flexible structures 

which make them capable of formability and wearability according to the users’ body form. However, batteries 

will decrease their flexibility and increase their weight, in turn creating inconvenience in their use. Textile-based 

PVs are the new generation of super-flexible PVs. They could be alternative to embedded batteries inside WEDs 

due to their light-weight and compatibility with WEDs structures. 

Smart textiles and electronic textiles (e-textiles), which emerge from the convergence and integration of textiles 

and electronics are also kinds of WEDs that can sense, react or adapt to the environment. The textile industry is 

experiencing a growing demand for high-tech materials with the increasing integration of e-textiles to create 
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self-powered WEDs. Due to their unique formable structure, WEDs can be promisingly used in various fields 

such as health care, sport or military applications [65-67]. Therefore, textile-based PVs or textile solar cells are 

promising power harvesting candidate to enhance self-powered WEDs. 

Textile solar cells can be fabricated in two ways, namely from (1) Fiber-Shaped Solar Cells (FSSCs) that are 

interlaced together, or (2) Planar-Shaped Solar Cells (PSSCs) that are fabricated directly on a textile substrate. 

The PSSC has an easier processing via direct fabrication on a prepared textile substrate, compared to FSSC. 

However, in contrast to PSSCs that could absorb light only from one side, FSSCs could potentially harvest 

sunlight from all three dimensions due to their cylindrical structure [68]. Besides, as they are light-weight and 

compatible with fabric weaving, their integration into textiles can be utilized for various applications [69]. 

Although textile solar cells are discussed in some articles [70, 71], a comprehensive overview of textile solar 

cells, with special focus on FSSCs and PSSCs approaches towards a new generation of super-flexible solar cells, 

is not yet thoroughly reported in the literature. This review aims at filling this knowledge gap. FSSCs and PSSCs 

could potentially play a significant role in future applications, and especially for the development of battery-less 

self-powered WEDs. Although self-powered smart textiles and e-textiles need to simultaneously harvest and 

store the required electrical energy [72], the focus of this review is limited to investigate the recent research on 

progress of FSSCs and PSSCs which are two approaches for fabricating textile-based solar cells. We have 

highlighted the relevant fabrication techniques, the advantages, and limitations together with the current 

challenges for Roll-to-Roll (R2R) production. Finally, the new applications and the perspectives of FSSCs and 

PSSCs research are discussed.  

 

2. Structure and performance of flexible FSSCs 

In order to fabricate a FSSC, the PV active layers should be coated on a cylindrical substrate (e.g. thread, metal 

or carbon wire, optical fiber, among others). They function either by absorbing the light from the external coated 

layer, or, in the case of an optical fiber, by in-coupling of light from the cross section of the fiber into internal 

PV active layers [73]. The fabricated FSSCs can subsequently be embedded inside a textile or interlaced together 

in order to form a textile solar cell. Recent research and development efforts have led to fabrication of Fiber-
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Shaped Dye-Sensitized Solar Cells (FSDSSCs) [74-88], Fiber-Shaped Organic Solar Cells (FSOSCs) [89-92], 

and Fiber-Shaped Perovskite Solar Cells (FSPSCs) [93-101]. Figure 1 shows a schematic drawing for some of 

the fabricated FSSCs demonstrated to date. Their structure and PV parameters, including short-circuit current 

density (JSC), open-circuit voltage (VOC), Fill Factor (FF) and PCE, are also summarized in Table 1. For these 

FSSCs, the structure, fabrication techniques, performance, and applications have been well studied and reported 

[102-106].  

 

Figure 1. Schematic representation of (a) FSDSSC, Reproduced with permission from ref. 78, Copyright 2016 Elsevier. (b) 
FSDSSC from different views showing the PV mechanism, Reproduced with permission from ref. 85, Copyright 2017 
Elsevier. (c)  FSOSC, Reproduced with permission from ref. 89, Copyright 2014 John Wiley & Sons. (d) FSOSC with multi 
walled carbon nanotube (MWCNT) as the top electrode, Reproduced with permission from ref. 92, Copyright 2014 John 
Wiley & Sons. (e) top view and cross section of a FSPSC, Reproduced with permission from ref. 97, Copyright 2016 Wiley. 
and (f) FSPSC with different coated PV layers, Reproduced with permission from ref. 101, Copyright 2018 Wiley. 

 



5 

 

Table 1. Structure and PV parameters of different types of fabricated FSCs

Structure Type JSC (mA cm-2) VOC (V) FF PCE (%) Ref.

Ti wire / TiO2 NPL / N719 / Ī-I3¯ / Pt wire DSSC 10.60 0.68 0.83 6.00 [74]

Ti wire / TiO2 CL / TiO2 NPL / N719 / Ī -I3¯ / Pt wire DSSC 12.58 0.68 0.71 6.12 [82]

Ti wire / graphene-TiO2 / N719 / Ī-I3¯ / Pt wire DSSC 6.09 0.75 0.70 3.26 [81]

Ti wire / aligned TiO2 nanotube arrays / N719 / I¯-I3¯ / MWCNT array DSSC 16 0.71 0.61 7.13 [88]

Ti wire / TiO2 NPs / organic dye / I¯-I3¯ / Pt wire DSSC 7.54 0.64 0.64 3.12 [85]

Ti wire / TiO2 nanotube / N719 / I¯-I3¯ / Pt-coated carbon fiber DSSC 11.92 0.74 0.64 5.64 [79]

Ti wire / TiO2 nanotube arrays / N719 / I¯-I3¯ / CoNi2S4 nanoribbon-CF DSSC 15.30 0.68 0.68 7.03 [77]

Ti wire / TiO2 nanotube arrays / N719 / I¯-I3¯ / CoNi2S4 nanorod-CF DSSC 8.60 0.65 0.73 4.10 [77]

Ti wire / TiO2 nanotube arrays / N719 / I¯-I3¯ / Pt wire DSSC 14.20 0.68 0.67 6.45 [77]

Ti wire / TiO2 nanotube arrays / N719 / I¯-I3¯ / Bare CF DSSC 7.10 0.65 0.23 1.03 [77]

spring-like Ti wire / TiO2 nanowire array / N719 / I¯-I3¯ / Pt wire DSSC 7.58 0.69 0.60 3.13 [80]

Ti wire/ TiO2  NPs / N719 / Ī-I3¯ / Pt wire DSSC 10.36 0.63 0.71 5.03 [75]

Ti wire with Microridges / TiO2  NPs / N719 / Ī-I3¯ / Pt wire DSSC 12.34 0.69 0.74 6.29 [75]

Ti wire with microridges : nano rods / TiO2  NPs / N719 / Ī-I3¯ / Pt wire DSSC 14.79 0.70 0.78 8.13 [75]

Ti wire with Ti nanorods / TiO2  NPs / N719 / Ī-I3¯ / Pt wire DSSC 13.10 0.70 0.77 7.05 [75]

Ti wire/ TiO2 nanotube array / N719 / I¯-I3¯ / Pt:CS-CNT composite fiber DSSC 19.43 0.73 0.71 10.00 [83]

Ti wire / aligned titania nanotubes / N719 / I¯-I3¯ / Aligned CNT fibers DSSC 8.60 0.68 0.38 2.20 [84]

Ti wire / aligned titania nanotubes / TiO2 NPs / P3HT:PCBM / PEDOT:PSS / aligned
MWCNT fiber

OPV 7.38 0.53 0.41 1.60 [92] 

Ti wire / aligned titania nanotubes / P3HT:PCBM / PEDOT:PSS / MWCNT sheet OPV 6.33 0.51 0.38 1.23 [89] 

CNT array / compact n-TiO2 / meso-TiO2 / CH3 NH3 PbI3− x Cl x / P3HT:SWNT / 
Ag nanowire network / CNT array 

OPV 8.75 0.62 0.56 3.03 [95] 

Stainless steel wire / compact n-TiO2 / meso-TiO2 / MAPbI3 / OMeTAD / CNT sheet Perovskite 10.20 0.66 0.49 3.30 [93] 

Ti wire / TiO2 nanotube array / CH3NH3PbI3 / CNT film Perovskite 2.62 0.92 0.48 1.16 [100] 

Ti wire / compact -TiO2 / meso-TiO2 / CH3NH3PbI3 / Spiro-OMeTAD / Ag NWs Perovskite 11.97 0.73 0.44 3.85 [94] 

Ti wire / compact -TiO2 / TiO2 nanotube array / CH3NH3PbI3 / aligned CNT sheet Perovskite 8.90 0.85 0.48 3.6 [98] 

Ti wire / compact -TiO2 / meso-TiO2 / CH3NH3PbI3 / Spiro-OMeTAD / Au Perovskite 14.18 0.87 0.61 7.53 [101] 

Ti wire / compact -TiO2 / meso-TiO2 / CH3NH3PbI3-xClx / Spiro-OMeTAD / Au Perovskite 12.32 0.71 0.61 5.35 [97] 

(PEN/ITO) strip / compact -TiO2 / CH3NH3PbI3 / CNT sheet Perovskite 15.90 0.91 0.66 9.49 [99] 
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3. Design and fabrication of textile-based PSSCs  

 

3.1. Textile-based dye-sensitized PSSCs (PSDSSCs)  

3.1.1.  Counter electrodes in PSDSSCs 

In  2014 Xu et al.[107], designed and fabricated a cotton textile counter electrode for a PSDSSC, in order to 

replace FTO in the cells. The electrode was coated with Ni by a low temperature electroless plating technique, 

and was prepared with polypyrrole (PPy) as a catalytic material by dip coating followed by in situ 

polymerization of the pyrrole monomer on the Ni-coated textile. Figure 2 shows the J-V characteristics of the 

fabricated PSDSSCs with the Pt-coated FTO and the PPy/Ni-coated fabric counter electrode. When testing the 

adhesion between the Ni-coated electrode and fabric demonstrated relatively high resilience to delamination 

effects was demonstrated. As shown in Table 2, the PCE, fill factor, JSC and VOC of the fabricated PSDSSC with 

the textile-based counter electrode are all lower than for the conventional DSSC with Pt-coated FTO counter 

electrode, dropping almost 50% in PCE when moving to a fabric electrode material. Still, this work is relevant 

because it demonstrated a possible route for development of a textile-based counter electrodes for PSDSSCs. 

 

 

Figure 2. (a) (J-V) characteristics of fabricated PSDSSCs with Pt-coated FTO and PPy/Ni-coated fabric counter electrodes 
measured under AM 1.5 illumination. (b) testing the adhesion between Ni-coated and the fabric by tape paste, Reproduced 
with permission from ref. 107, Copyright © 2014 Elsevier. 
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Table 2. PV parameters for both fabricated PSDSSCs with Pt-coated FTO and PPy/Ni-coated fabric counter electrodes, 

 Reproduced with permission from ref. 107 Copyright © 2014 Elsevier. 

Counter electrode JSC (mA cm-2) VOC (mV) FF PCE (%) 

Pt-coated FTO 15.10 704 0.58 6.16 

PPY/Ni-Coted fabric 9.60 652 0.52 3.30 

 

Arbab et al. [108], fabricated another textile counter electrode with polyester fabrics in 2015. They demonstrated 

the coating of a layer of multiwalled carbon nanotubes (MWCNT) layer with different thicknesses, and various 

MWCNT sizes. Interestingly, different enzymes were used on the polyester fabric, via a simple tape casting 

technique, in order to decrease the agglomeration of the MWCNTs without perturbing their electronic properties. 

Figures 3(a-c) depict the most relevant different fabrication steps and the schematic illustration of different 

layers in the fabricated PSDSSC. Figure 3(d) also shows that the adhesion between the coated MWCNTs and 

fabric was strong, as proven by a scotch tape test. The device characterization, Figure 4 and Table 3, showed 

that, although the efficiency of the fabricated PSDSSC with the textile counter electrodes was lower compared to 

the reference PSDSSC with the standard Pt-FTO coated glass counter electrodes, yet the PSDSSC with the 

flexible counter electrode demonstrate quite reasonable PCE values of 5.7%, due to an almost fully retained VOC 

and FF.  
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Figure 3. (a) schematic illustration of different steps for fabrication of the PSDSSC with textile-based counter electrode (b) 
schematic structure of PSDSSC with textile-based counter electrode (c) schematic structure of conventional PSDSSC with 
Pt-coated FTO counter electrode (d) testing of the adhesion between the fabric and MWCNT layer, Reproduced with 
permission from ref. 108 Copyright  2015 Wiley. 
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Figure 4. J-V characteristics of the fabricated PSDSSCs using (a) different size of MWCNT (b) different layer thickness of 
E-MWCNT (c) different enzymes and (d) the comparison between the conventional Pt coated FTO glass and the textile 
MWCNT coted counter electrodes, Reproduced with permission from ref. 108 Copyright 2015 Wiley. 

 

Table 3. PV parameters of fabricated PSDSSCs with different counter electrodes, Reproduced with permission from ref. 108 
Copyright 2015 Wiley. 

Counter electrode JSC (mA cm-2) VOC (mV) FF PCE (%) 

Pt/ FTO 14.18 701 0.72 7.16 

E-MWCNT/ fabric 11.92 688 0.69 5.69 

 

In a similar research work, Sahito et al. [109], fabricated a flexible and Highly Conductive Graphene-Coated 

Cotton Fabric (HC-GCF), and employed it as a counter electrode in PSDSSCs. In order to develop a positively 

charged surface the graphene oxide nanosheets were coated by cationization of a cotton fabric, , followed by 
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soaking of the cotton fabric in graphene oxide nanosheet (GON) dispersions. A chemical reduction method was 

used to turn the graphene oxide into graphene nanosheets, using a hydrazine monohydrate solution. The surface 

resistance of the highly conductive graphene coated cotton fabric was 7  Ω sq-1. A power conversion efficiency 

(PCE) of 6.93% was obtained in comparison to 8.44% for the DSSC with Pt-FTO counter electrodes. The 

fabrication process and device performance results are shown in Figure 5 and Table 4.                                                                      

 

Figure 5. (a) Schematic explanation of the different fabrication steps used for developing the PSDSSC with textile-based 
counter electrodes (b) J-V curves of Pt and HC-GCF counter electrode based PSDSSCs, Reproduced with permission from 
ref. 109 Copyright 2016 Elsevier. 

Table 4. PV characteristic of the Pt and HC-GCF counter electrode based PSDSSCs, Reproduced with permission from ref. 
109 Copyright 2016 Elsevier. 

Counter electrode JSC (mA cm-2) VOC (mV) FF PCE (%) 

Pt - FTO 15.88 670 0.79 8.44 

HC-CGF 14.75 660 0.71 6.93 

 

In 2016 Arbab et al. [110], fabricated a textile fabric counter electrode in PSDSSCs based on activated charcoal 

doped multi walled carbon nanotubes (AC doped MWCNT), which was printed on a 100% polyester woven 

fabric by doctor blading technique (Figure 6). Three types of activated charcoal coal (composite A), coconut 

shell (composite B) and pine tree (composite C) were used with different wt% of AC in order to fabricate the AC 
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doped MWCNT. Results showed that the pine tree composite (composite C) with 0.8 wt% of AC into the 

MWCNT dispersions reached the highest PCE (7.29%) for the textile fabric counter electrodes (Figures 7(a,b), 

Tables (5,6). Figure 7(c) and Table 7 depict the comparision between PV parameters of PSDSSCs fabricated 

with Pt and carbon fabric counter electrodes. 

 

 

Figure 6. FE-SEM images of (a) uncoated polyester fabric (b) AC doped MWCNT coated fabric (c) image of the flexible 
carbon fabric (d) Low magnification FE-SEM image of the AC doped MWCNT (e) High magnification FE-SEM image of 
the AC doped MWCNT (f) Cross-sectional FE-SEM image of the carbon fabric composite with the image of the carbon 
fabric composite, Reproduced with permission from ref. 110 Copyright 2016 Wiley. 
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Figure 7. J-V curves of fabricated PSDSSCs based on (a) three types (composite A, B and C) of carbon fabric composites 
counter electrodes and (b) different wt% of charcoal on PV performance (c) the comparison  between I-V curves of 
PSDSSCs fabricated with Pt and carbon fabric CEs, Reproduced with permission from ref. 110 Copyright 2016 Wiley. 

Table 5. PV performance of PSDSSCs fabricated with different carbon fabric composites, Reproduced with permission 
from ref. 110 Copyright 2016 Wiley. 

Type of composite JSC (mA cm-2) VOC (mV) FF PCE (%) 

Composite A 8.06 681 0.60 3.31 

Composite B 10.09 735 0.68 5.03 

Composite C 11.50 743 0.70 5.97 

 

Table 6. PV performance of PSDSSCs fabricated with carbon fabric composites of different wt% of activated carbon (pine 
type), Reproduced with permission from ref. 110 Copyright 2016 Wiley. 

wt% of carbon JSC (mA cm-2) VOC (mV) FF PCE (%) 

0 11.05 673 0.70 5.24 

0.4 11.52 769 0.74 6.56 

0.8 12.03 766 0.79 7.29 

1.6 11.50 743 0.70 5.97 

3.2 11.03 665 0.49 3.61 

 

Table 7. The comparison between PV parameters of PSDSSCs fabricated with Pt and carbon fabric CEs, Reproduced with 
permission from ref. 110 Copyright 2016 Wiley. 

wt% of 
carbon 

JSC (mA cm-2) VOC 

(mV) 
FF PCE 

(%) 

0 11.05 673 0.70 5.24 

0.4 11.52 769 0.74 6.56 
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Memon et al.[111], fabricated textile-based counter electrodes from cotton, polyester, and linen fibers using 

highly photo- and electro-catalytic activated carbon composites made from highly conductive functionalized 

Multi-walled Carbon Nanotubes with Mesoporous Activated Charcoal (M-AC/MCNT). The PCE of the 

fabricated PSDSSCs with the textile based counter electrodes based on polyester, cotton and linen was 6.26%, 

6.06% and 5.80% respectively, which is comparable to the 7.26% delivered by the reference device with Pt-

coated counter electrode reference. 

3.1.2. Insertion of DSSCs into textiles 

In 2015 Yun et al.[112], introduced in 2015 a new approach for the incorporation of DSSC electrodes into 

textiles during the weaving process of making the textile. In this structure, the TiO2 Dye-Loaded Porous (DLP) 

was coated on a metal ribbon, which was used as the photoanode. Pt NanoParticle-Loaded Carbon Yarn (Pt-

NPLCY) was used as the counter electrode. The photoanode and counter electrode was weaved together as the 

warp or weft. Finally, the fabricated DSSC textile solar cell was sewn into a garment. As shown in Figure 10, the 

Pt loaded carbon yarn was weaved as a weft, the counter electrode and the dye loaded TiO2 on a stainless steel 

ribbon having the photoanode were weaved as warps in the bottom and top of the fabric, Nylon filaments were 

weaved as warps in order to support the photoanode metal ribbon and maintaining the space between the 

photoanode and the counter electrode for preventing short circuits until filling the electrolyte. Figures 8(a-c) 

show the inserted DSSC inside a textile structure in details. The PCE of the inserted DSSC in the textile was 

2.63%, having a JSC of 5.78 mA/cm−2, a VOC of 0.725 V, and a fill factor of 0.63 (Figure 8(d)). 
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Figure 8. schematic illustration of the structure of the inserted DSSC into the textile from the (a) top view (b) cross section 
view and (c) cross sectional SEM image (d) PV characteristics curves of inserted DSSC into the textile [112]. 

 

Although this presents an innovative idea for weaving of DSSC devices into a textile structure, the fabricated 

textile solar cell was not still completely flexible due to the insertion of the metal ribbon and metal wires as 

different parts of the DSSC. 

3.1.3.  Coating DSSC layers on a textile 

Opwis et al [113], fabricated a textile-based PSDSSC on a woven fabric from glass-fibers. At first, they covered 

a glass-fiber fabric with a thin polyamide (PA) film made from R2R processing, in order to prepare a uniform 

and smooth surface for coating of the PV layers (Figures 9(a,b)). Afterwards, a titanium layer was made by 

electron beam or sputter deposition, followed by screen printing of titanium dioxide and curing at 500∘C for 5 

min. The active layer was synthesized by ruthenium-based dyes.. After adding the electrolyte, a thin film of PEN 

+ ITO was coated by the catalyst layer of Pt from the chemical reduction of H2PtCl6 at room temperature, which 

was used as the counter electrode on the previous layers. Finally, the fabricated PSDSSC (glass-fiber fabric + PA 

layer + Ti + dye-sensitized TiO2 + electrolyte + PEN + ITO + Pt) was sealed by special epoxy thermoplastic 

foils (Figures 9(c,d)). The best fabricated textile-based PSDSSC worked with 1.83% efficiency (Figure 9(e), 

Table 8). Although a novel and innovative prototype of a textile-based PSDSSC was fabricated via this 
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approach, it was carried out on a woven glass-fiber that is more expensive than conventional woven fabrics. The 

fabrication process was also done at high temperatures (500 ºC), which finally unavoidably increases the 

fabrication costs. However, such development also puts emphasis on the need for smooth and uniform planar 

layers, which yielded decent performance results in this work. 

Figure 9. The images of (a) schematic illustration of R2R coating technique (b) coated glass fiber fabric by PA (c) prepared 
textile based PSDSSC (d) 4-point configuration used for J-V characterization (e) I-V curves of fabricated textile based 
PSDSSC at different irradiance level [113]. 

Table 8. PV parameters of fabricated textile based PSDSSC at different irradiance level [113]. 

Irradiance (W/m2) JSC (mA cm-2) VOC 

(mV) 
FF PCE 

(%) 

1000 5.10 790 0.27 1.10 

500 2.55 750 0.39 1.51 

200 0.95 710 0.54 1.83 

 
3.2. Textile-based Organic PV (OPV) PSSCs  

In 2014, Lee et al.[114], introduced a textile-based OPV as a stitchable power source. They used an ITO coated 

flexible film as bottom electrode, Zinc Oxide (ZnO) as the electron transport layer, spin-coated P3HT:PCBM as 

the bulk heterojunction photoactive layer, molybdenum trioxide (MoO3) deposited by thermal evaporation as the 

hole transport layer, and finally a gold textile electrode placed as the top electrode by physical lamination onto 

the MoO3 layer. The fabricated solar cell was integrated into a textile providing a PCE of 1.79% for the textile-

based solar cell, and 2.97% for the reference organic solar cell with a thermally evaporated silver top electrode. 

Although this work demonstrated a novel idea for fabrication of a textile-based OPV device, the PCE remained 

low due to the purely physical connection between the gold textile electrode and the hole transporting layer. In 
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future, a cheaper method for developing the electrode connection from R2R production would be needed, in 

order to demonstrate the further viability of this approach.  

Kylberg et al.[115], introduced a flexible and transparent textile-based electrode made of woven polymer and 

metal fibers. The open spaces between the polymer and metal fibers were filled with a transparent polymer 

fabricated by immersing the woven textile in the liquid polymer and using doctor blading. Subsequently, the 

transparent polymer was cured and stabilized with UV light. A layer of PEDOT:PSS was coated on the prepared 

textile by doctor blading, and an active layer of poly(3-hexylthiophene) (P3HT)/ phenyl-C61-butyric acid methyl 

ester (PCBM) was spin coated on the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) 

layer. Finally, an aluminum layer was thermally evaporated as the back contact (Figure 10). Table 9 shows the 

effect of the PEDOT:PSS thickness on the performance of the fabricated solar cell using the woven textile 

electrodes, as well as reference solar cells based on FTO coated glass. A decreasing PEDOT:PSS thickness 

resulted in enhanced Jsc values due to an increased transmittance of the transparent electrode. Bending tests for 

evaluating the mechanical stability of the solar fabric with bending radius 0.6 cm were carried out, and no 

decrease in conductivity after a 100 bending cycles was reported.  

 

Figure 10. Cross sectional schematic view of fabricated OPV with transparent textile based top electrode, Reproduced with 
permission from ref. 115 Copyright 2010 John Wiley & Sons. 
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Table 9. PV performance parameters for textile based and ITO coated glass electrodes with different thickness of 
PEDOT:PSS, Reproduced with permission from ref. 115 Copyright 2010 John Wiley & Sons 

Substrate JSC (mA cm-2) VOC (V) FF PCE (%) 

Fabric (1.6 µm PEDOT:PSS) 8.50 0.56 0.46 2.2 ± 0.2 

Fabric (1 µm PEDOT:PSS) 11.50 0.52 0.37 2.2 ± 0.2 

Glass-ITO (1.6 µm PEDOT:PSS) 9.40 0.53 0.48 2.4 ± 0.1 

Glass-ITO (spin-cast PEDOT:PSS) 10.90 0.56 0.52 3.2 ± 0.1 

 

In 2015 Steim et al.[116], used a conductive fabric made of poly (ethylene 2,6 naphthalate) (PEN) with Ag 

coated metallic woven wires as the top electrode in an organic solar cell. Aluminum-doped zinc oxide (AZO) 

and Ag (AZO/Ag/AZO) was coated on a polyethylene terephthalate (PET) foil from a sputtering technique. The 

transparent bottom electrodes had sheet resistance of 10 Ωsq-1. Different layers including P3HT:PCBM, 

PEDOT:PSS HTL, and PEDOT:PSS F ET were coated on the substrate, respectively, by doctor blade technique, 

followed by lamination onto wet PEDOT:PSS F ET films using manually applied pressure. After heating at 

60ºC, the PEDOT:PSS F ET strongly adhered to the fabric and the contact between the metal wires and the OPV 

cell was formed. Finally, the OPV was encapsulated between glasses with an epoxy based liquid adhesive. 

Figure 11(a) shows the schematic structure of fabricated OPV with the fabric as a top electrode. Figure 11(b) 

shows the J-V curves for fabricated and encapsulated solar cells, which are illuminated from both the fabric and 

AZO/Ag/AZO side. Results showed that for illumination from the fabric top electrode side, JSC was 5mA/cm2, 

the VOC 0.57 V, and FF 53%, thus resulting in a PCE of 1.5%.  For the illumination through the AZO/Ag/AZO 

bottom electrode side, a similar PCE of 1.6% was obtained, with slightly higher JSC values due to the improved 

transparency. Although the top electrode inside this solar cell was fabric-based, the main substrate was a flexible 

PET sheet that is not as flexible as fabrics and textiles. 
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Figure 11. (a) Schematic image of the structure of fabricated top electrode fabric based OPV (b) J-V characteristics for the 
fabric based OPV with illuminated from both the fabric side and AZO/Ag/AZO side, Reproduced with permission from ref. 
116 Copyright 2015 AIP Publishing. 

 

In 2015 Arumugam et al [117], fabricated an organic solar cell on a 65/35 polyester cotton woven fabric as a 

textile substrate. Polyurethane based interface paste was initially coated on the fabric substrate by a screen 

printing technique, in order to decrease the roughness and smoothening of the fabric surface. A suspension of 

metallic AgNW in isopropyl alcohol (IPA) was used for spray coating of AgNW as the bottom electrode. An 

electron transport layer of ZnO-NP with an average particle size <35 nm that had been dispersed (40 wt%) in 

ethanol was coated on the bottom electrode by spray coating technique. A blend of regioregular poly(3-

hexylthiophene) (P3HT):Indene- fullerene C60 bisadduct (ICBA), dissolved in 1,2-  dichlorobenzene was used 

as the photoactive layer on the electron transport layer. Then a layer of PEDOT:PSS dispersion in water was 

coated on the active layer as the HTL. At last, an AgNW was coated on the hole transport layer as the top 

electrode (Figure 12). Figure 13 shows different SEM pictures from different aspects of the fabricated textile 

solar cells. Figures 14 represent J-V curves of the fabricated textile solar cells and the same PV structure on a 

glass substrate developed by the spray coating technique. As shown in Table 10, the reference solar cells on 

glass showed an expected higher performance than the textile solar cells, partially due to uniform coverage of the 

PEDOT:PSS layer and the smoother surface of the P3HT:ICBA layer. However, the fill factors of the reference 

devices are quite low. The approach was innovative for the fabrication of a textile solar cell that could 
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potentially be embedded in wearable and formable devices, however, the device efficiency needs to be further 

boosted. This works also highlights how the development of the bottom and top electrode is one of the main 

challenges in this research field. 

 

Figure 12. Schematic illustration of (a) fabrication process of OPV textile based (b) cross sectional view of different PV 
layers (c) image of the fabricated OPV from the front side (d) image of the fabricated OPV from the back side, Reproduced 
with permission from ref. 117 Copyright 2016 Wiley. 
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Figure 13. (a) cross section SEM image of woven Polyester (65)/Cotton (35) fabric substrate (b) SEM image of the coated 
interface layer on the fabric (c) FE-SEM image of the spray coated AGNW on the fabric substrate as the bottom electrode 
(d) SEM image (cross section view) of different PV layers, Reproduced with permission from ref. 117 Copyright 2016 
Wiley. 

Figure 14. J-V curves of the OPV devices fabricated by spray coating technique on (a) fabric substrate (type 1) (b) glass 
substrate (type 2), Reproduced with permission from ref. 117 Copyright 2016 Wiley. 
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Table 10. PV parameters of fabricated OPV on fabric and glass substrates, Reproduced with permission from ref. 117 
Copyright 2016 Wiley. 

Devices Device structure JSC (mA cm-2) VOC (V) FF PCE (%) 

Type 1 IF fabric/AgNW/ZnO-NP/P3HT:ICBA/PEDOT:PSS/AgNW 0.11 0.55 0.24 0.01 

Type 2 Glass/AgNW/ZnO-NP/P3HT:ICBA/PEDOT:PSS/AgNW 0.76 0.61 0.30 0.14 

Type 3 IF fabric/pressed AgNW/ZnO-NP/P3HT:ICBA/PEDOT:PSS/AgNW 0.26 0.41 0.25 0.02 

 

Recently, Li et al.[118], have fabricated a textile OPV by printing and spray coating technique. They used woven 

65/35 polyester cotton fabric as the textile substrate. First, they coated three interface layers on the textile 

substrate with overall thickness of 250 µm in order to reduce the roughness of textile substrate for achieving a 

smooth substrate. Then, they coated Ag electrode, ZnO layer, active layer, PEDOT:PSS layer, and Ag nanowire 

layer by spray coating technique. The fabricated textile OPV has Voc of 0.5 V, JSC of 3.44 (mA/cm2), FF of 0.24 

and PCE of 0.4%. Fabricated textile solar cells were encapsulated for protecting them from air and improving 

their stability. Results showed that un-encapsulated textile solar cells could not survive more than 2 days but 

encapsulated textile solar cells could work during 30 days with 100% PCE, during 30 to 60 days with 75% PCE, 

and after 60 days with less than 25% PCE. 

 

3.3 Textile-based Perovskite (PSPSCs)  

 

In 2017, Lam et al.[119], integrated a washable and flexible perovskite solar cell on a textile. SnO2 was 

electrodeposited on the flexible ITO coated PEN substrate as the electron transporting layer (ETL). A thin layer 

of PCBM was spin coated on the SnO2 layer in order to decrease the roughness of the SnO2 coated layer for 

improved electron transport. The perovskite layer of MAPbI3 and HTL of Spiro-OMETAD were spin coated on 

the previous layers. Finally, a gold top electrode was thermally evaporated on the HTL layer. The fabricated 

solar cell was encapsulated by a 3M™ acrylic elastomer and adhered to the textile (Figure 15). This textile-based 

flexible perovskite solar cell was characterized immediately after development and after immersion in the water 
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(Figures 16(a,b) and Table 11). As the J-V in Figure 16(c) shows, the performance of the fabricated textile solar 

cell was nearly stable during the water immersion cycles, demonstrating the high barrier quality in their solution. 

Figures 16(d,e) show pictures of fabricated textile-based PSPSC and its application for lighting up an integrated 

LED inside the textile. 

Although this work demonstrated the development of a textile-based perovskite solar cell with good stability 

properties for the addressed application, it still showed limited flexibility, as the standard perovskite cell stack 

was integrated directly onto the textile. Therefore, the integrated solar cell cannot be formed and folded, 

highlighting the remaining limitations for achieving complete device flexibility.  

 

Figure 15. Schematic illustration of the fabrication process of the textile-based flexible PSPSC [119]. 
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Figure 16. Image of (a) the textile-based PSPSC immersed in water (b) fabricated textile-based PSPSC with and without 
encapsulation while immersing in water (c) J-V curves of the textile-based PSPSCs for different immersion times in the 
water (d) fabricated flexible textile-based PSPSC (e) a commercial LED lit up by the fabricated textile-based flexible PSCs 
under 0.8 sun illumination [119].  

 

Table 11. PV parameters of textile-based PSCs using SnO2 ETL and SnO2/PCBM ETL [119]. 

Electron-transporting layer  JSC (mA cm-2) VOC (V) FF PCE (%) 

SnO2 (0.8 sun)a F -13.47 1.03 0.31 5.4 

SnO2 (0.8 sun)a R -12.16 1.02 0.41 6.3 

SnO2/PCBM (0.8 sun) F -17.07 1.08 0.63 14.5 

SnO2/PCBM (0.8 sun) R -17.05 1.06 0.65 14.8 

SnO2/PCBM (1 sun) F -20.90 1.07 0.62 13.9 

SnO2/PCBM (1 sun) R -20.53 1.06 0.66 14.3 

F: forward-bias sweep (-0.1 V- 1.2 V); R: reverse-bias sweep (1.2V- -0.1V). Time of electrodeposition for SnO2: 120 s. 

In 2018, Jung et al.[120], could fabricate a textile-based PSPSCs on a Polyester/satin textile substrate. They 

coated a thin layer of polyurethane (PU) by a paper transfer lamination method on the textile in order to have an 

even and smother textile substrate surface for solution-processing. After that, they coated an inverted PV 

architecture PEDOT:PSS by scalable printing technique as the anode instead of ITO or FTO and doctor blading 

0.5 wt% single-walled carbon nanotubes (SWCNTs) in PEDOT:PSS in order to improving the conductivity 

/printing a low conductivity PEDOT:PSS HTL / printing perovskite absorber layer of CH3NH3PbI3/ printing 

PCBM by bar coating technique as the Electron Transport Layer (ETL). Finally, they thermally evaporated 8 nm 
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of Ag as transparent top-electrode. Figure 17 shows a schematic illustration for the whole of perovskite PSSCs 

textile-based structure and a cross-sectional SEM picture of PU coated textile substrate. The champion device, 

which was achieved in 600 nm perovskite thickness, led to PCE of 5.17%, VOC of 0.82V, JSC of 12.69 mA cm-2, 

and FF of 0.5. Table 12 shows PV parameters of fabricated perovskite textile-based with different thicknesses of 

perovskite layer.  

 

Figure 17. (a) Schematic illustration of textile-based PSPSCs structure (b) SEM image of the PU coated textile 

substrate, Reproduced with permission from ref. 120 Copyright 2018 Elsevier. 

Table 12. PV parameters of textile-based PSPSCs with different thicknesses of perovskite layer, Reproduced with 
permission from ref. 120 Copyright 2018 Elsevier. 

Thickness of 
perovskite [nm] 

VOC
b [V] JSC

b
 [mA cm−2] FFb PCEb [%] Integrated JSC 

[mA cm−2] 

400 0.62 ± 0.02 (0.63) 7.88 ± 0.27 (8.15) 0.33 ± 0.03 (0.35) 1.72 ± 0.186 (1.75) 8.03 

600 0.82 ± 0.02 (0.84) 12.18 ± 0.55 (12.69) 0.47 ± 0.02 (0.5) 4.86 ± 0.01 (5.17) 11.34 

600a 0.88 ± 0.01 (0.89) 12.44 ± 0.38 (12.91) 0.49 ± 0.03 (0.51) 5.55 (5.72) 12.28 

a Solvent annealed devices. 
b Values in parenthesis are the best results. 

 3.4. Comparison between different types of PSSCs textile-based 

In most of the reported studies on fabricated textile-based PSDSSCs, researchers have successfully demonstrated 

the development and fabrication of DSSC from a flexible textile-based counter electrode, which are important 

steps towards the development of textile-based PVs. However, as the DSSC is still using glass-based working 

electrodes in the mentioned works, the complete devices are not flexible, and thus they are just a first step of a 
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longer development route for textile PV devices. Fabricated textile-based OPV PSSCs are flexible enough for 

wearable applications, but they still perform poorly in terms of PCE and stability. In literature, there are fewer 

studies for textile-based perovskite PSSCs compared to those on other types of textile-based PSSCs, being 

perovskite a younger PV technology. However, the reported works demonstrate that perovskite solar cells are 

more promising than other solar cells for developing textile-based PSSCs due to their more compatible structure 

with flexible substrates, higher efficiency and stability, and at the same time easier solution-processable 

fabrication process. The textile-based PSSCs structures and their PV parameters are summarized in Table 13. 

Table 13. Structure and PV parameters of different types of fabricated textile-based PSSCs 

Structure Type JSC (mA cm-2) VOC (V) FF PCE (%) Ref. 
FTO coated glass /TiO2 NPs/ N719 / Ī-I3¯ /PPY/Ni-Coated fabric DSSC 9.60 0.652 0.52 3.30 [107] 

FTO coated glass/P25+TNT/TiO2 blocking layer/ TiO2 NPs /gel 
electrolyte/ E-MWCNTs coated fabric 

DSSC 11.92 0.688 0.69 5.69 [108] 

FTO coated glass / TNT + TiO2 NPs / gel electrolyte /HC-GCF/PET DSSC 14.75 0.660 0.71 6.93 [109] 

FTO coated glass /TNT + TiO2 NPs /gel electrolyte /AC doped 
MWCNT fabric coated 

DSSC 12.03 0.766 0.79 7.29 [110] 

FTO coated glass /TiO2 NPs /gel electrolyte /M-AC-MCNT fabric 
coated 

DSSC 12.4 0.72 0.70 6.26 [111] 

TiO2 DLP metal ribbon coated/electrolyte/Pt-NPLCY DSSC 5.78 0.725 0.63 2.63 [112] 

Pt-ITO coated PEN/ electrolyte/dye sensitized TiO2/Ti /PA coated 
glass fabric 

DSSC 5.10 0.790 0.27 1.10 [113] 

Gold textile electrode/MoO3/P3T:PCBM /ZnO/ITO coated flexible 
film 

OPV 13.11 0.57 0.24 1.79 [114] 

Al/P3HT/PCBM /PEDOT:PSS coated fabric OPV 8.50 0.560 0,46 2.20 [115] 

AZO-Ag-AZO coated PET/P3HT:PCBM/PEDOT:PSS 
HTL/PEDOT:PSS F ET/Fabric of metal and polymer fibers 

OPV 5.00 0.570 0.53 1.50 [116] 

Ag NW/PEDOT:PSS/P3HD:ICBA/ZnO-NP/Pressed Ag NW/IF 
fabric 

OPV 0.26 0.410 0.25 0.02 [117] 

Ag NW/PEDOT:PSS/Active layer/ZnO-NP/Ag-NP/Fabric OPV 3.44 0.500 0.24 0.40 [118] 

ITO coated PEN/SnO2/PCBM/MAPbI3/Spiro-OmeTAD/Au/Fabric Perovsk
ite 

20.53 1.060 0.66 14.30 [119] 

Ag/PCBM/MAPbI3/PEDOT:PSS/PEDOT:PSS-CNT/PUR/Fabric Perovsk
ite 

12.69 0.820 0.50 5.17 [120] 

 

4. Summary, challenges and outlook 

In this review, various research work on textile solar cells have been introduced and compared in this paper, 

looking into both FSSCs and textile-based PSSCs developed within the DSSC, OPV, and perovskite solar cell 

technologies. The high flexibility of FSSCs is a unique advantage that make them capable for application in 

wearable power harvesting applications. Despite the promising progress on the device performance of FSSCs, 

the fabrication of a FSSC is a cost consuming process that needs special techniques due to their three dimensions 
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and the cylindrical shape of the substrate. Furthermore, weaving of the FSSC is not an easy process, and special 

care should be taken to avoid damage on the device during the weaving process. Finally, in wearable 

applications typically only one side of the weaved FSSC will be illuminated by sunlight; while the back side will 

be dark. Therefore, the applications of these fiber-shaped solar cells are more preferred to the wearable 

applications due to their three dimensions’ absorption property. As an alternative, the PV materials could be 

developed on the textile substrates, instead of weaving FSSC into textiles as the textile-based PSSCs, which is an 

innovative area that overcomes some of the challenges of FSSC technology. However, one of the challenges is 

the integration of a stable and uniform planar layer, which also leads to the relatively planar electrodes required 

for device fabrication. Evidently, device processes that can be conducted at low temperatures are necessary in 

the final development of the textile solar cells. The fabricated textile-based PSSCs solar cell should finally be 

super-flexible, light-weight, wearable, formable and foldable, which potentially hampers the barrier 

encapsulation requirements. Here, the routes that address highly stable active layer materials should be still 

considered, at least before the textile solar cells can reach a production stage. As application areas, the PSSCs 

textile-based solar cells are recommended as the power harvesting part of smart textiles, e-textiles, and wearable 

electronic devices, due to their compatibility with wearable electronic applications. The PSSCs textile-based 

solar cells could be used in emergency situations, such as for temporary tents used in floods, earthquakes, and 

other climate change related emergencies, where the requirements of light-weight and easy installation can be 

very beneficial. They could also be applied in everyday households as solar curtains for supplying the electrical 

energy required during the daytime. Although just a few prototypes of textile-based PSSCs solar cells have been 

fabricated so far, up-scaling of these devices still needs more efforts in order to reach an optimization of the 

fabrication process from the prospective of the materials and the employed fabrication techniques. The first 

challenge in developing textile solar cells as a power-harvesting unit in smart textiles and e-textiles is to develop 

nontoxic DSSCs, OPV, and PSCs. One way in this direction would be relying on natural dyes, nontoxic organic 

materials, and lead-free perovskites in the future. On the other hand, eco-friendly approaches for fabricating 

textile solar cells might lead to less efficient devices. Retaining the super-flexibility of textile-based PSSCs solar 

cells upon devices encapsulation is another challenge, which should be thoroughly investigated by scientist. 
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Here, standard R2R processing techniques are well suited, with a variety of available thin-film coating 

techniques available both for solution processing and vacuum evaporation methods. It should be noted that in the 

device configurations employed for textile-based PSSCs solar cells, ultrahigh mechanical flexibilities are sought 

for, which potentially hampers the requirements on device encapsulation. Typically, these organic and hybrid 

solar cells are encapsulated with rigid or only partially flexible barrier layers in order to prevent the material 

from photooxidation processes, i.e. when chemical degradation takes place upon contact with oxygen and light. 

As the devices are required to be more flexible, it automatically comes along with lower barrier properties, 

which is a potential challenge for the stability of these devices. One route to alleviate this trade-off could be the 

addition of additive assisted stabilizers added into the active layers of the devices [121,122]. This has been 

demonstrated as a very promising route for organic solar cells, highlighting that one can reach longer device 

stability with lower barrier requirements [123-125]. Finally, the efficiency remains as a key challenge for making 

textile-based PSSCs solar cells for real wearable applications, which should be maximized to supply the required 

electrical energy for the relevant electronic devices. To achieve this, many more research efforts should be 

devoted in the future. 
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