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Abstract—Objective: Noise and low quality of ECG sig-
nals acquired from Holter or wearable devices deteriorate
the accuracy and robustness of R-peak detection algo-
rithms. This paper presents a generic and robust system
for R-peak detection in Holter ECG signals. While many pro-
posed algorithms have successfully addressed the problem
of ECG R-peak detection, there is still a notable gap in the
performance of these detectors on such low-quality ECG
records. Methods: In this study, a novel implementation
of the 1D Convolutional Neural Network (CNN) is used in-
tegrated with a verification model to reduce the number
of false alarms. This CNN architecture consists of an en-
coder block and a corresponding decoder block followed
by a sample-wise classification layer to construct the 1D
segmentation map of R-peaks from the input ECG signal.
Once the proposed model has been trained, it can solely be
used to detect R-peaks possibly in a single channel ECG
data stream quickly and accurately, or alternatively, such a
solution can be conveniently employed for real-time moni-
toring on a lightweight portable device. Results: The model
is tested on two open-access ECG databases: The China
Physiological Signal Challenge (2020) database (CPSC-DB)
with more than one million beats, and the commonly used
MIT-BIH Arrhythmia Database (MIT-DB). Experimental re-
sults demonstrate that the proposed systematic approach
achieves 99.30% F1-score, 99.69% recall, and 98.91% pre-
cision in CPSC-DB, which is the best R-peak detection per-
formance ever achieved. Results also demonstrate similar
or better performance than most competing algorithms on
MIT-DB with 99.83% F1-score, 99.85% recall, and 99.82%
precision. Significance: Compared to all competing meth-
ods, the proposed approach can reduce the false-positives
and false-negatives in Holter ECG signals by more than 54%
and 82%, respectively. Conclusion: Finally, the simple and
invariant nature of the parameters leads to a highly generic
system and therefore applicable to any ECG dataset.
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I. INTRODUCTION

ACCURATE detection of R-peaks is essential for the diag-
nosis of cardiovascular diseases (CVD) in electrocardio-

gram (ECG)) signals. The QRS complex, which is dependent
on the accurate detection of R-peak, is the most important
feature in the diagnosis of several cardiac pathologies. Although
a wide variety of modalities such as blood tests, stress tests,
echocardiograms, and chest X-rays have been used for CVD
diagnosis; Electrocardiography is perhaps the most significant
process for non-invasively monitoring and clinical diagnosis.
ECG records the time evolution of the heart’s electrical activity
and helps in the diagnosis of numerous cardiovascular abnor-
malities such as premature ventricular contraction (PVC or V
beats) and supraventricular premature beats (SPB or S beats).
The introduction of low-cost wearable ECG monitors gives us
a significant motive to investigate highly accurate and robust
automated detection of R-peaks in single-lead ECG signals.

Although many R-peak detection methods have been pro-
posed throughout the last several decades, robust and accurate
peak detection is still a challenging problem, especially in
noisy, degraded, and dynamically varying rhythms, particularly
common in Holter registers. Holter monitor is an ambulatory
ECG device, for portable cardiac monitoring and frequently, it
is corrupted by a substantial proportion of motion artifacts [1].
Thus, R-peak detection is severely affected by the ECG signals
with such poor signal quality and high noise levels [2].

R-peak detection (segmentation) is the base of arrhythmia
detection and classification. ECG-based applications are gener-
ally divided into four phases: preprocessing (filtering), ECG sig-
nal segmentation (QRS complex detection), feature extraction,
and classification algorithms. Poor segmentation performance
propagates the error to subsequent steps and directly reduces
classification efficiency. Much of the work in the literature
focuses on minimizing the number of false positives during
the classification step, ignoring the fact that the error started
to spread during the segmentation step [3], [4].

One of the most widely used R-peak detection algorithms
was developed by Pan and Tompkins (P&T) [5], which served
as the benchmark for more than three decades. Hamilton algo-
rithm emerged as a modification to the classical P&T method
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based on an optimized decision rule process [6]. There are
several other popular methods for R-peak detection based on
various signal processing techniques such as Wavelet transform
[7], Hilbert transform [8] as well as their modifications with
improved detection thresholds [9], Phasor transform [10], and
ensemble empirical mode decomposition [11], [12]. Discrete
wavelet transform (DWT) decomposes a signal into different
frequency components, each with distinct coefficients, which
contain sufficient information of the original signal [13]. Sa-
hoo et al. have reported 99.87% sensitivity in QRS complex
detection using DWT [14]. Similarly, other techniques such as
empirical mode decomposition (EMD) have helped in removing
baseline wandering in ECG signals [15], Kabir and Shahnaz
have provided better time resolution in removing noise from
ECG using the combination of EMD and DWT [16]. Digital
filters along with EMD have also been used to improve R-peak
detection [17]. Slimange and Ali in [12] have used a nonlinear
transformation technique based on EMD to achieve 99% sensi-
tivity and specificity. Hilbert and wavelet transform with varying
thresholds have also been used for R-peak detection [18].

Many of the aforementioned algorithms depend on two main
stages: R-peak enhancement and detection. The first stage in-
volves preprocessing techniques such as filter banks and spectral
analysis, which are sometimes referred to as feature extraction
to enhance the R-peak as compared to other ECG waves (P and
T waves). The detection stage involves decision making based
on a threshold to define the onset and offset of the R-wave. Such
algorithms are lightweight and can be used easily with wearable
or embedded devices. However, they usually perform well only
for high quality and clean ECG signals and are not robust to
noise [19], [20]. Thus, many proposed algorithms evaluate their
detectors on MIT-BIH arrhythmia or similar datasets that contain
high-quality ECG signals in standard clinical settings. Most
of the QRS detection algorithms had high detection sensitiv-
ity and positive predictivity in the MIT-BIH arrhythmia data
set. (>99%) [21], [22]. The performance of such algorithms
significantly deteriorates when tested in a highly dynamic and
noisy ECG dataset with severe artifacts. Even the basic QRS
detection can be invalid in the low signal quality ECG analysis.
There are some public datasets [23], [24] that contain noisy
ECG signals with R-peak annotations, but they contain a limited
number of ECG beats, and hence they are not suitable for a proper
performance evaluation in general.

The applications of machine learning, e.g., sigmoid radial
basis functions [25], Hidden Markov model (HMM) [26], and
artificial neural network-based QRS analysis [27] have also been
investigated for peak detection and classification of ECG signals.
Rodriguez et al. have proposed a novel QRS complex detection
method [28] using adaptive threshold with Hilbert transform and
Principal component analysis (PCA). Deep learning has been
very successful in speech recognition, natural language pro-
cessing, and computer vision. In recent years, one-dimensional
convolutional neural network (1D-CNN) has also been inten-
sively studied for its speed and efficiency in managing complex
tasks, that have been demonstrated in several signal processing
applications [29], [30] motor fault detection [31] and classifi-
cation of electrocardiogram signals [32] and advance warning

system for cardiac arrhythmias [33]. Two parallel 1D residual
neural networks were proposed by Wang et al. which can obtain
the time domain characteristics of QRS waveform and attained
99.98% positive predictive value and 99.92% sensitivity on
MIT-BIH Arrhythmia dataset (MIT-DB) [34]. Laitala et al. have
proposed R-peak detection using Long Short-Term Memory
(LSTM) network which excels at temporal modeling tasks that
include long-term dependencies, making it suitable for ECG
analysis [35]. Similarly, Vijayrangan et al. have proposed a deep
learning-based method using U-Net combined with Inception
and Residual blocks on a combination of datasets and have
achieved around 98.37% accuracy [36]. A two-level CNN was
proposed by Xiang et al. with a precision and sensitivity of
99.91% and 99.77%, respectively over the MIT-DB [37]. Oh
et al. tried to use UNET for “sample-wise classification” of
ECG into R and Non-R peak labels. A major drawback of this
proposed approach is that it has suffered too many false positives,
caused by the misclassification of surrounding samples at the R
peak, with a sensitivity level as low as 29.55% despite the fact
that ECG quality is high [38].

All of the abovementioned algorithms were only tested on the
high-quality clinical ECG records such as in the MIT-DB with a
limited number of beats, i.e., the total number of beats of about
100K. A faster regional CNN was proposed by Yang et al. by
turning a 1D ECG signal into a 2D image. The model was tested
on the 24 hours wearable ECG recordings and showed promising
results with 98.52% positive predictively and 98.76% sensitivity
[39]. This was the first study that evaluated noisy and low-quality
ECG records acquired by a wearable ECG sensor. Another major
issue in using deep learning methods for R-peak detection is the
limited number of ECG beats partitioned further for training,
validation, and test sets. Besides, most of these methods test their
robustness by artificially adding noise, i.e., baseline wanders and
motion artifacts to ECG records in the MIT-DB. Such artificial
artifact creation may not represent the actual variations and
degradations that occur in Holter and mobile ECG devices.
Thus, the performance of these algorithms would deteriorate
in practice specifically on Holter devices where the signal is
corrupted with a high level of noise and frequent artifacts and
ECG baseline level varies drastically and abruptly. The chal-
lenges for accurate peak detection in Holter devices include
powerline interference, baseline wandering, amplitude variabil-
ity, multi-source PVC, noise, and other abnormal interference
such as atrial fibrillation (AF) and electrode sliding interference.
Fig. 1 shows typical ECG signals from the CPSC-DB where the
benchmark Pan-Tompkins method yields many false-positives
(FPs) and false-negatives (FNs). Therefore, there is a need for a
robust and highly accurate R-peak detector for low-quality ECG
signals.

To address the aforementioned limitations and drawbacks,
in this study, we propose a novel and robust peak detection
technique that can specifically be used for Holter devices or any
other ECG acquisition system in non-clinical settings. For this
purpose, first, we labeled the R-peak locations of the largest ECG
Holter dataset with more than 1M beats. Then, we formulate
R-peak detection as a 1D segmentation problem to enable the
detection of the precise localization of R peaks with minimal
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Fig. 1. Typical Holter ECG segments from the record of patient 6 in the CPSC dataset. Red circles represent the R-peaks detected by the
Pan-Tompkins method where several false-positives (FPs) and false-negatives (FNs) are visible.

post-processing. To accomplish this, the 1D Encoder-Decoder
CNN model is constructed for the peak detection in a 20-second
normalized ECG segment that outputs a reconstructed signal of
equal length with a 1D segmentation map where a 5-sample
pulse is centered at the location of each R-peak. It is also
desirable to minimize (or suppress) false alarm rate especially
when patients are in the intensive care unit (ICU) as higher false
alarms decrease the quality of care by increasing patient delir-
ium through noise pollution and slowing staff response times
[19], [40], [41]. Thus, the proposed approach further improves
the accuracy with a verification model that can approximately
reduce 21% of the false alarms.

We evaluate the proposed approach on both benchmark
datasets, MIT-DB and CPSC-DB, and thus, this becomes the
first method that has ever been evaluated with more than 1M
annotated beats (N, S, and V type beats). An extensive set of ex-
perimental results show that the proposed approach outperforms
all state-of-the-art R-peak detection methods in CPSC-DB with
a significant performance gap while it achieves a similar or better
result in MIT-DB without explicit training in this dataset. The
proposed method is further evaluated specifically for the R-peak
detection of abnormal beats (e.g., S and V beats). This is indeed
a challenging task compared to the detection of normal beats. In
short, the novelty and significant contributions of the study are
as follows:

� We propose a robust algorithm for the R-peak detection in
low-quality Holter ECGs. Despite numerous classification
methods in this domain, we approach this as a regression
problem for utmost robustness and detection performance.
From each ECG segment, a pulse train is produced from
which the R-peaks can be detected through minimal post-
processing.

� We propose a novel verification model to reduce the num-
ber of false alarms in R peak detection with a significant
margin.

� We demonstrate the generalization capacity of the pro-
posed algorithm by evaluating it on the gold benchmark

MIT dataset and achieved a state-of-the-art performance
level without even training over this dataset.

� We provide ground truth peak locations for the largest
Holter ECG dataset with more than 1M beats and this
dataset will be released with R-peak annotations.

� Finally, this is the first study that has been quantitatively
evaluated over the largest Holter ECG dataset for R peak
detection. In particular, the proposed algorithm achieved
enhanced sensitivity performance for detecting abnormal
S and V beats specifically.

The rest of the paper is organized as follows: Section II
outlines the ECG datasets used in this study. The detailed R-peak
detection approach is presented in Section III. In Section IV,
the performance and robustness of the proposed approach are
evaluated over the two benchmark datasets using the standard
performance metrics and the results are compared with the
previous state-of-the-art works. Finally, Section V concludes
the paper and suggests topics for future work.

II. DATASETS

This section talks in detail about the two databases that are
used for training and evaluation of the novel R-peak detection
algorithm.

A. China Physiological Signal Challenge-2020

The China Physiological Signal Challenge (2020) dataset
(CPSC-DB) consists of 10 single-lead ECG recordings which
are collected from arrhythmia patients, each of the recordings
lasts for about 24 hours (shown in Table I) [42].

Table I also indicates if the patient has undergone atrial
fibrillation (AF) or not. All ECG data were acquired by a unified
wearable ECG device with a sampling frequency of 400 Hz and
the total number of beats is 1026095. The recordings include
irregular heart rhythms as well as SPB (S) and PVC (V) type
beats. All recordings are provided in MATLAB format with
corresponding S and V beats annotations. R-peak annotations
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TABLE I
DETAILED INFORMATION ON THE ECG DATA FROM CPSC-DB

for each ECG cycle were annotated by a team of biomedical re-
searchers. To show the robustness of the R-peak detector against
noise and other artifacts, CPSC-DB presents a real-world Holter
dataset containing numerous ECG containments and artifacts.

B. MIT-BIH Arrhythmia Dataset

The second benchmark dataset used for evaluation and per-
formance comparisons is the MIT-BIH arrhythmia dataset that
consists of 48 two-lead ECGs from 47 subjects which are
sampled at 360 Hz and each record covers 30 minutes [43].
This dataset has been widely used as a benchmark and it is the
most popular clinical ECG database for the evaluation of peak
detection algorithms. The signals in this dataset are relatively
clean and of high-quality, collected in clinical settings. The
modified lead II ECG was used in this study and the total number
of beats is 109475.

III. METHODOLOGY

The proposed method is illustrated in Fig. 2. The raw ECG
segment of 20 seconds is fed into the proposed 1D CNN model.
The model’s output is further verified by another (verification)
model that detects the false alarms. Unlike other approaches
[35], [36], all beats including arrhythmia beats were used for
training and detection as the detection of arrhythmic beats is the
most challenging problem.

A. Problem Formulation

Encoder-Decoder (E-D) CNN models are popularly used in
biomedical image segmentation applications. The model con-
sists of a contracting as well as an expanding path. The con-
tracting path consists of the repeated application of convolutions
each followed by a Rectified Linear Unit (ReLU) and max
pooling operation for downsampling. In contrast, the expanding
path consists of the feature map upsampling, which is followed
by a convolution (“up-convolution”) after concatenation with
the corresponding feature map from the contracting path, each
followed by a ReLU.

We formulated peak detection as a 1D segmentation problem
to segment R-peaks that involve signal to signal transformation
and maps the input ECG to a pulse train where each pulse has

a width of 5 samples and is centered at the R-peak location.
The dataset consists of the ith input ECG signal, x(i) linearly
normalized between +1 and -1, and a 1D segmentation map,
y(i) that was obtained from R-peak locations. The proposed
network is based on the implementation of the 1D convolutional
encoder-decoder model. The encoder block takes a 20-second
ECG segment as input, downsamples it after passing through
convolutional kernels, and produces the compressed discrimina-
tive feature representation, z(i). This compressed feature vector
is then mapped reversely using the decoder block that upsamples
the obtained features from the encoder to construct the output
segmentation map ŷ(i) using Eq. (1).

z(i) = E
(
x(i), θ1

)
ŷ(i) = D

(
z(i), θ2

)
(1)

where E and D represent the encoder and decoder blocks. The
weight vectors θ1 and θ2 in Eq. (1) are optimized by minimizing
the binary cross-entropy (BCE) loss between the predicted and
the actual R peak segmentation map.

Loss =
1

N

N∑
i = 1

yi × log ŷ + (1− yi)× log (1− yi) (2)

B. Data Augmentation

Data augmentation is an essential step when dealing with
limited training examples, to teach the network the desired
robustness and invariance. In the case of the CPSC dataset,
arrhythmia beats are significantly scarcer than the normal beats.
To make the S- (Supraventricular ectopic beat) and V- (Ventric-
ular ectopic beat) beat detection more accurate and robust, we
generate augmented arrhythmic beats from the 20 second ECG
segments containing one or more arrhythmia beats by adding
baseline wander and motion artifacts from the Noise Stress Test
Database (NST-DB) [23]. The effect of augmentation on detector
performance specifically for S- and V-beats has been discussed
in detail in Section IV. Further implicit data augmentation is
done by using Dropout layers at the end of the encoding layers.

C. Network Architecture

The architecture of the proposed model is adapted from the
UNet model [44], which is commonly used in 2D medical image
segmentation. 1D E-D CNN models were used both with and
without skip connections. To show the effectiveness of skip
connections that is the core idea in the UNet architecture, we
also performed experiments without the skip connections. The
proposed architecture of the model is illustrated in Fig. 2. The
proposed model is based on multiple hidden layers to learn
high-level feature representations of ECG data.

The input layer of both models accepts input with variable
sizes. We choosed 20 second ECG windows for the selected
model architecture and parameters. However, the proposed
method can be performed in any practical (e.g., 5s – 30s) window
size. The model is designed for signal-to-signal mapping and it
contains 6 layers in the encoder block as well as 6 layers in
the decoder block with 1 output layer having a total of 38209
trainable parameters. The input is downsampled by the encoder
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Fig. 2. The proposed systematic approach and network architecture.

through 6 layers of convolutions with a downsampling factor
of 2. The kernel size is set to be 9, 6, and 3 for every two
consecutive layers. The number of filters starting from 16 is
increased by a factor of two after every two consecutive layers.
Each convolution is followed by batch normalization and Relu
activation. In the decoder block, the compressed feature vector is
upsampled by the same number of transpose convolutions with
a reverse configuration of the encoder block.

The two main reasons to employ the batch normalization layer
after the convolution layer are: improved generalization and
speeding up the training process. To down-sample the 1D feature
map while retaining important information, the max-pooling
layer connected to the batch normalization layer is used. The
features were downsampled by a factor of 2 in each encoding
layer. Finally, the output 1-D segmentation mask is generated
by using a filter size of 1 for convolution operation in the last
layer. All convolutional layers in this architecture use the ReLU
activation function, except for the final one. The last layer uses
SoftMax activation to get a one-dimensional segmentation map
for R peaks.

D. Training

The proposed CNN model for each fold is implemented
in Python by using Keras which is the high-level API of

TensorFlow, a highly productive platform for solving machine
problems. To train both variants (UNET and E-D CNN), Adam
optimizer is used with a learning rate of 10−3, and the network
parameters of the model were initialized randomly in the range
of [−0.1, 0.1].

The models are trained for 50 epochs with a batch size of 64.
10-folds cross-validation is used, i.e., for each fold ECG records
of the 9 patients were used to train the model, and the remaining
one was used for evaluation. Data augmentation techniques
over the abnormal beats such as adding Gaussian noise with
random variance, combining a sinusoidal signal with random
initial phase and amplitude were used. Finally, as the objective
function for training the network, we used the cross-entropy loss
[2] and the loss is summed up over all the available samples in
a mini-batch.

E. Verification Model

Once R-peak locations with their occurrence probabilities
have been obtained from the 1D segmentation map, they are
then passed through a verification model to remove any unlikely
R-peak based on a timing criterion, i.e., if the predicted locations
of the two beats fall within a window of 300 milliseconds, one
of the beats is identified as a false alarm. The window length
of 300 milliseconds is chosen to avoid the removal of actual
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Fig. 3. Illustration of the verification model. Red dotted lines represent the R peak predictions of the proposed model. Two closely predicted beats
(B1 and B2) are visible. B1 will be detected as false peak by the verification model due to a low beat score and it will be removed automatically.

beats as FPs in AF patients. In AF, heart rate can go up to
125-150 beats per minute due to the rapid rate of fibrillatory
impulses [45]. Firstly, to capture the morphology of the whole
QRS complex, 60 samples window is extracted from both beats
by taking the predicted R-peak location as the midpoint of the
beat. Then, the two reference beats of the same sample size
are extracted. The criteria for choosing these reference beats is
that the probability of the beats must be greater than 0.5. The
first beat that satisfies this criterion before and after two closely
located beats are selected. The beat similarity score (SBi

) for
the consecutive beats, i = 12 is expressed by the formula as
follows:

SBi
= ρ (Bi, BP )× ρ (Bi, BN ) (3)

where BP and BN are previous and next reference beats, re-
spectively. The Pearson product-moment correlation coefficient
(ρ) can be expressed as,

ρX,Y =
cov (X,Y )

σX × σY
(4)

where cov is covariance and σ is the standard deviation.
The beat with a minimum similarity score (SBi

) is assumed
to be a false beat and hence, removed from the R-peak locations.
The verification model is illustrated in Fig. 3.

IV. EXPERIMENTAL RESULTS

In this section, we will first present the experimental setup
used for testing and evaluation of the proposed R-peak detector
on 1D E-D CNN. An extensive set of peak detection experiments
and comparative evaluations against the five state-of-the-art
classifiers from the literature over both datasets will be presented
next. For CPSC-DB we performed 10-fold cross-validation. For

MIT-DB, the proposed model was trained only on the CPSC-DB
data and tested on MIT-DB. For the proposed method, ECG
records from MIT-DB were resampled at 400 Hz to match the
sampling frequency of the training data (CPSC-DB).

A. Evaluation Metrics

Quantitative performance of the different models and ap-
proaches are compared using three performance measures that
are commonly used: Precision, Recall, and F1-score. Note that,
the measurement of True Positives (TP), False Negatives (FN),
and False Positives (FP) were taken within a tolerance of ±75
ms [2] of the truth peak location.

Recall (%) =
TP

TP + FN
× 100 (5)

Precision (%) =
TP

TP + FP
× 100 (6)

F1 (%) =
2× Precision×Recall

Precision+Recall
× 100 (7)

Since this is an R-peak detection operation, True Negatives
(TN) do not exist as a performance measure.

B. Results on CPSC-DB

Table II exhibits the R-peak detection performance of CPSC-
DB. From the results, it is evident that the proposed model
achieved the top performance on CPSC-DB with a top F1 score
of 99.30%. Moreover, the proposed approach is very effective
in detecting S and V type beats as it only misses less than 1%
of total arrhythmia beats while most of the competing methods
do not even consider the arrhythmia beats in their experiments.
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TABLE II
PEAK DETECTION PERFORMANCES OF THE PROPOSED APPROACHES AND COMPETING ALGORITHMS ON CPSC-DB

TABLE III
PEAK DETECTION PERFORMANCES OF THE PROPOSED APPROACHES AND COMPETING ALGORITHMS ON MIT-DB

The best results are highlighted in bold.

Compared to all competing methods, the proposed approach
reduced the FPs and FNs on R-peak detection by more than 54%
and 82%, respectively. Such a substantial reduction especially
on FNs over all competing methods shows that the proposed
approach with 1D CNNs can indeed accomplish a superior
learning capability and robustness to detect the actual peaks on
such low-quality ECG signal.

The peak location of S and V beats is crucial because peak
detection is the prior operation to an automated ECG beat
classification and arrhythmia detection. This aim cannot be
fulfilled if the peak detector fails on an abnormal beat. As shown
in Table II, once again the proposed approach has achieved a
significant performance gap on detecting both S and V beats
over the competing methods, i.e., the proposed approach reduced
the missed S and V beats (FNs) by more than 80% and 95%,
respectively.

On the other hand, the poor performance of the competing
models is because most of them are designed for high-quality
clinical ECGs, whereas several artifacts and other variations
present in the Holter ECG database significantly deteriorated
their performances. There are also other morphological varia-
tions in Holter ECGs that are not present in ECGs acquired in
clinical settings.

C. Results on MIT-DB

The proposed 1D CNN model with skip connections (UNET)
was trained over the 10 records of CPSC-DB and was solely

evaluated on MIT-DB. The results presented in Table III show
that the proposed model achieves better detection performance
than the state-of-the-art methods except one where the perfor-
mance gap is insignificant. Such a “similar or better” perfor-
mance is achieved even though the proposed model is trained
only on CPSC-DB data while all the MIT-DB ECG records were
unseen and used solely for testing.

The contribution of data augmentation and verification on the
detection performance can be seen from the results presented in
Table IV. By data augmentation, we were able to reduce 40% of
missed detections (FNs). The tradeoff for this reduction is the
9% increase in the number of false alarms (FPs). As a solution,
by applying the verification model, 21% of the false alarms were
reduced and the state-of-the-art performance level is achieved.

Some typical ECG records from different patients and their
corresponding R-peaks detected by the proposed approach are
shown in Fig. 4. As in the cases shown in Fig. 1, it is hard for an
untrained human eye to detect some of the R-peaks accurately.
Even though extreme baseline variations, structural artifacts, and
noise are present, the proposed approach can detect almost all R-
peaks accurately. Finally, it is worth mentioning that the R-peak
locations perfectly align with the ground truth positions.

D. Computation Time

We implemented the proposed peak detection algorithm using
Python and Keras machine learning libraries. All the experi-
ments reported in this paper were performed on a 2.2GHz Intel
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TABLE IV
EFFECT OF AUGMENTATION AND VERIFICATION ON THE PROPOSED APPROACH

The best results are highlighted in bold.

Fig. 4. Some typical R-peak detection results of the proposed algorithm. Green lines represent the ground truth location of R-peaks and red
dotted lines represent the peaks detected by the model.

Core i7-8750H with 16 GB of RAM and an NVIDIA GeForce
GTX 1060 graphic card. The training phase of the model was
processed by CUDA kernels whereas the testing phase is im-
plemented without a parallelized (CUDA) version with a single
CPU. It takes about 191 msec to compute the segmentation mask
for a 20s ECG segment. P&T method takes around 73 msec to
process an ECG segment of the same length. The verification
model only takes 11 msec to validate the detected peaks for
false detections. The most important advantage of the proposed
system is its fast processing for beat detection. Specifically, for
the single-CPU implementation, the total time for a 20s ECG

segment of a signal to obtain the peak locations is about 202
msec and this indicates around 100-times the real-time speed.
This might be slower when using in Holter devices with a
low-configuration processor, but it will still be several times
faster than real-time processing speed.

V. CONCLUSION

This study describes a novel approach for R-peak detection
especially in low-quality Holter ECGs using 1-D CNN along
with a verification model. The R-peak detection is approached
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as a 1D segmentation problem; hence the R-peaks are detected
with minimal post-processing. We performed 10-fold compara-
tive evaluations over the benchmark CPSC-DB with more than
1M beats. Against the competing state-of-the-art methods, the
proposed approach not only achieved the highest detection per-
formances, but it further reduced both FPs and FNs significantly.
The most crucial advantage over the competing methods is that
the proposed approach can reduce the number of missed S and
V beats (FNs) by more than 80% and 95%, respectively. Over
the MIT-DB dataset with high-quality ECG records, it also
achieves similar or better performance than the competitors.
Finally, since the proposed 1D CNN model performs only 1D
convolutions, it achieved 100-times of the real-time speed in a
standard computer, and thus, especially for low-power, mobile
devices such as Holter monitors, the proposed approach can
conveniently be used as an R-peak detector in real-time. In
future work, we aim to explore robust quantization and model
compression techniques to further reduce the model parameters
and accelerate the inference process. Using a new-generation
heterogeneous network model such as 1D Operational Neural
Networks [50]–[54] instead of 1D CNNs is also planned to
further improve the performance and to reduce the complexity.
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