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ABSTRACT

Received signal strength measurements of commodity ra-
dios can be utilized for sensing the surrounding environment.
This work harnesses the signal strength measurements for
estimating time periods when a person is stationary and mov-
ing. A novel reciprocal signal strength model is presented,
and an energy detector is developed. It is shown that the
decision threshold can be calculated in closed form for the
proposed model. In addition, the observation time window
can be minimized to one communication cycle which equals
58 milliseconds in our case. Using real-world experimental
data from two different environments, it is demonstrated that
movement can be correctly detected over 99% of the time.

Index Terms— Movement detection, energy detector, re-
ceived signal strength, reciprocal channel

1. INTRODUCTION

The radio of commodity wireless devices, provided that it can
measure the received signal strength, can be used to develop
novel radio frequency (RF) sensing applications [1]. These
applications leverage human-induced perturbations to prop-
agation patterns of radio signals which causes a measurable
change in the received signal. Since the changes in the mea-
sured signal are a function of the person’s position, electri-
cal properties and velocity [2], RF sensing enables a wide
range of applications including but not limited to: localiza-
tion [3], breathing monitoring [4], occupancy assessment [5]
and crowd size estimation [6].

One of the pioneering works in RF sensing demonstrated
that people alter the mean and variance of the signal strength
[7] and it was shown that anomalies in the measurement
statistics can be used to detect the presence of people [8].
Modeling the vacant and occupied states independently im-
proves detection performance [9] and it also enables device-
free localization [10, 11, 12]. The statistical model also
depends on the number of people [3, 5], and the linear re-
lationship between the number of people and average signal
strength was used in [6] to estimate crowd sizes up to thou-
sands of people. The aforementioned works rely on training

for estimating the measurement statistics. Systems that do
not require training and that can detect movement have been
presented in [13, 14, 15]. However, the decision is made
using data over a several second time window and precise
movement detection is not possible.

In this work, an energy-based movement detector that uti-
lizes a novel reciprocal signal strength model is presented.
It is shown that the decision threshold can be calculated in
closed form for the proposed model, as opposed to works in
[7, 13, 14] that rely on ad hoc methods. The proposed recipro-
cal model also minimizes the used observation time window
to one communication cycle. The achieved decision agility is
a significant improvement compared with the related works,
which typically use a data set acquired over tens of commu-
nication cycles [13].

2. ENERGY DETECTOR

In this paper, we are interested in detecting movement of
a person using L observations y = [y1, . . . , yL]T . This
problem can be formulated as binary hypothesis testing in
which the detector decides between the null hypothesis H0

(no movement) and the alternate hypothesis H1 (movement).
Applying Bayes’ criterion to the minimum probability er-
ror detector and assuming the priori probabilities are equal
results in the following likelihood ratio test [16, sec. 5.2]
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where p(·) denotes the likelihood. Let us assume that un-
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If it is further assumed that the measurements in each state are
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The presented detectors use the Bayes’ criterion which re-
quires that the priori probabilities of the hypothesis are known
and it is possible to assign costs to the decisions. However, it
is very difficult to assign realistic costs and priori probabil-
ities for the considered problem and therefore, the Neyman-
Pearson criterion is better suited. This criterion requires that
the probability of false alarm, Pf , is fixed to some value while
the probability of detection, Pd, is maximized [16, sec. 5.4].
The distribution of the sufficient statistic is not tractable in
Eq. (2) and the Neyman-Pearson criterion cannot be used with
this signal model. On the other hand, the sufficient statistic,
ε ,

∑L
l=1 y

2
l , given in Eq. (3) has a known distribution and

as a result, Pf and Pd can be derived in closed form. Now,
ε is an L degrees of freedom chi-squared distributed random
variable with density function [17, p.45]
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where Γ(·, ·) is the upper incomplete gamma function [18,
sec. 6.5]. Let fε|H0

(x|H0) denote the conditional density of
ε under hypothesis H0, then the probability of false alarm,
Pf , Pr [ε > γ|H0], is
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where Γ(·) is the regularized upper incomplete gamma func-
tion. Since Γ(·) has an inverse, the decision threshold can be
determined from Pf using
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Similarly, we can derive an expression for the probability of
detection, Pd , Pr [ε > γ|H1], given by
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In this paper, we consider two detectors with different sig-
nal models and decision criterion. The first is an energy de-
tector with unequal variance (EDUV), which is the likelihood
ratio test given in Eq. (2), and it uses the Bayes’ criterion. The
second is an energy detector with equal variance (EDEV) in
Eq. (3) and it uses the Neyman-Pearson criterion. Despite
their differences, operation of the detectors are the same; they
calculate the sufficient statistic, ε, and make a decision based
on a threshold, γ, associated with the decision criteria.

Fig. 1: Energy detector example. On top, signal strength in
both directions of a reciprocal link and in the middle, yl(k).
On the bottom, the normalized sufficient statistic ( ) and
movement indicator ( ), 0 for H0 and 1 for H1.

3. RECIPROCAL OBSERVATION MODEL

This section introduces the observation model of the energy
detector and methods to estimate parameters of the model.
Let us consider link l that consists of nodes i and j, and time
window T = {t | (k − 1) T < t ≤ k T} in which k denotes
the sample number and T duration of the time window. At
time ta ∈ T , node i transmits and the signal strength mea-
sured at node j is rij(ta). Correspondingly, node j transmits
at time tb ∈ T and the signal strength measured at node i is
rji(tb). The difference in signal strength is

yl(k) = ∆rl(k)− µl + n(k) (8)

where ∆rl(k) = rij(ta)− rji(tb), µl is an offset between rij
and rji and n is zero-mean Gaussian measurement noise with
variance σ2

l,0.
In a reciprocal channel, the channel gains are identical

in both directions. Although the radio channel is recipro-
cal, measurements of the radio channel are not reciprocal for
three reasons. First of all, additive noise contributes to each
measurement randomly. Second, the hardware used by the
transceivers are not identical and the hardware induced ef-
fects are different in each direction. As shown on top of
Fig. 1, there is a constant offset between rij and rji. This
offset can be estimated and removed from the observations
to assure yl is zero-mean Gaussian. Lastly, half-duplex na-
ture of the PHY layer means that the link cannot be measured
simultaneously in both directions which introduces a small
time difference between the measurements. As shown on top
of Fig. 1, the signal strength has a strong correlation in both
directions since ta − tb is in the order of milliseconds and
the channel gain is almost identical for every k. Thus, yl(k)



Fig. 2: The experimental layouts in which the nodes ( ) and
the reference positions ( ) are illustrated.

reflects changes in the channel gain if yl(k) � N (0, σl,0).
This is an indication that the channel gain is changing rapidly
which can be associated to movement of a person as shown in
the middle of Fig. 1. Using yl(k) as input, the energy detec-
tor calculates the square sum of L links and movement of the
person can be detected as shown on the bottom of Fig. 1.

The reciprocal observation model of the energy detector
given in Eq. (8) requires compensating for the offset, µl, so
that yl is zero-mean Gaussian. In addition, variance of each
link and in the two states is required by EDUV. The maximum
likelihood estimates of the parameters are given by

µ̂l = 1
K

∑K
k=1 ∆rl(k),

σ̂2
l,i = 1

Ki

∑K
k=1 (∆rl,i(k)− µ̂l)2,

(9)

where ∆rl,i is the subset of measurements for which Hi is
true and Ki is the number of measurements in that subset.
Batch estimation and supervised training is used for simplic-
ity because focus of this paper is not on parameter estimation.
We are solely interested in the reciprocal observation model
and performance of the energy detector.

4. EXPERIMENTS

The reciprocal observation model and energy detector are val-
idated using Texas Instruments CC2531 USB dongle nodes
[19] that operate on the 2.4 GHz ISM band. The nodes
communicate in a round-robin fashion in which one node
transmits at a time and the other nodes are in reception mode.
The nodes transmit sequentially and a communication cycle,
which defines T of the reciprocal model, consists of one
transmission by every node. The nodes communicate on a set
of frequency channels C ∈ {11, . . . , 26} defined by the IEEE
802.15.4 standard [20]. The channel is updated at the end of
each communication cycle following a predefined list. Once
each node has transmitted on every channel, the schedule is
restarted from the beginning. A detailed explanation of the
communication protocol can be found in [21] and [22].

The experiments are conducted in an open indoor environ-
ment and in a downtown residential apartment. In both exper-
iments, 20 nodes are deployed as illustrated in Fig. 2. Length
of the communication cycle is T = 20τ ≈ 58 ms, where τ

EDEV EDUV BM
Pd [%] 99.65± 0.56 98.81± 1.43 96.02± 6.00
Pf [%] 1.37± 0.97 0.15± 0.16 4.23± 4.44
σ2
0 [dB2] 0.29± 0.13 2.24± 2.94
σ2
1 [dB2] 1.14± 1.64 6.57± 7.63

Table 1: Detector performance summarized by different met-
rics (mean ± one sigma).

is the transmission interval. The person visits the reference
positions one after the other and upon reaching a reference
position, they stop, remain stationary for a few seconds, and
then walk to the next reference position. The person is car-
rying a video camera in order to measure the time intervals
of no movement and movement as a baseline, and in post-
processing, the measurements and video streams are synchro-
nized. The experiments in both environments are conducted
with one, four and sixteen channels and each experiment is
approximately 9 minutes long. See [22] for more details.

The presented system is evaluated with respect to a
variance-based motion detection system which calculates
the sample variance for each transmitter-receiver pair [13]

sij = 1
N−1

∑N−1
m=0(rij(k −m|C|)− r̄ij)2,

whereN is the measurement buffer length and r̄ij mean of the
buffer. Note that the reciprocal observation model calculates
yl(k) over one communication cycle whereas the variance-
based detector defines sij over (N−1)|C|+1 communication
cycles. Since this paper aims at detecting movement with the
shortest possible time window, the buffer length is set to N =
2. Now, a detector that is equivalent to the variance-based
detector can be obtained by defining the observation model as

yl(k) = rij(k)− rij(k − |C|) + n(k)

and thereafter, the sufficient statistic is calculated using
Eq. (2). The benchmark (BM) system also uses supervised
training for estimating the variance of each link.

5. RESULTS

There are two notable differences in the studied observation
models. The BM model captures all changes affecting the
signal strength and as a result, the observations are harder to
associate to actual human movement. The reciprocal model
only captures fast fading since other temporal changes are
within coherence time of the channel and they have the same
effect in both directions of the reciprocal links. This differ-
ence can be observed by examining σ2

i values given in Ta-
ble 1, and as shown, they are notably lower and they deviate
less for the proposed model. The results imply that the mod-
eling assumptions of EDEV are reasonable for σ2

0 but not for
σ2
1 . The second notable difference between the systems is the
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Fig. 3: In (a), example performance of the energy detectors in the apartment experiment (|C| = 16). In (b), Pf vs. Pd of EDEV
( ) and ROC in increments of two L = [8, 10, . . . , 18] ( ), L = 20 ( ) and L = 190 ( ). In (c), probability of detection as
a function of link number: ROC ( ), EDEV ( ) and EDUV ( ).

observation time window T . It is constant with the reciprocal
model, whereas with the BM model it depends on the number
of used channels, T = 20τ(|C|+ 1). This causes an undesir-
able delay in the detector output when multiple channels are
used as shown in Fig. 3a. The detection probability with the
BM model is as low as 84% using |C| = 16 and Pd > 99%
when |C| = 1. This implies that a short observation window
is a strict requirement of accurate movement detection. The
discussed differences are in favor of the reciprocal observa-
tion model and the detection performance is better and more
consistent than with the benchmark model.

In the following, performance of EDEV is evaluated using
the receiver operating characteristic (ROC) which is defined
by σ2

0 , σ2
1 and L. In the evaluation, σ2

0 = 0.29 and σ2
1 = 1.14

are fixed while L is varied. It is to be noted that as the ra-
tio σ2

1/σ
2
0 increases, the detection performance improves and

vice versa. The resulting ROC curves are illustrated in Fig. 3b
together with the experimental Pf and Pd values for every ex-
periment. As shown in the figure, performance of the detector
improves notably as L increases and already with L = 20,
Pd = 0.99 and Pf < 0.04. Interestingly, the experimental
results lie between the curves of L = [20, 190]. The sig-
nal strength changes are a function of the person’s location,
movement direction and transceiver positions [2], and if the
person is far away from the link the signal strength can remain
constant even though the person moves. Thus, the experimen-
tal results imply that there are on average 20 links or more that
detect movement since the results are above this ROC curve.

The number of nodes, n, has a direct relationship to the
cost and the deployment complexity of the system and there-
fore, it is important to investigate detection performance as
a function of n. In the analysis, nodes are removed virtu-
ally by discarding their data and this is done in two steps.
1) The data from each node is removed one at a time and
the probability of error, Pe = 1

2 (Pf + (1 − Pd)), is cal-
culated. 2) Data of the node that minimizes Pe is perma-

nently removed and thereafter, the procedure goes back to
step 1. Pd as a function of L = n(n − 1)/2 is illustrated
in Fig. 3c in which the ROC is calculated using σ2

0 = 0.29,
σ2
1 = 1.14 and Pf = 0.001. The ROC and EDEV assume

the measurements in each state are i.i.d., which is a reason-
able assumption in H0 but not H1. EDUV improves the de-
tector performance when L < 50 since the model is more
accurate. However, the improvement with respect to EDEV
diminishes as L grows. Despite modeling inaccuracies, the
ROC can be used as a pre-deployment predictor of detection
performance, providing an analytical method for system de-
sign and pre-deployment performance evaluation. If the de-
sign criteria of the system would be Pf = 0.001 and it is de-
sired that Pd > 0.9, the ROC predicts seven or more nodes are
required. The wanted performance is achieved using EDUV
and six nodes or EDEV and eight nodes. It is worth noting
that L and T have been fixed in the preceding analysis. The
detection performance could be improved by using sequential
detection [16, sec. 5.6] or by combining multiple successive
communication cycles which increases L.

6. CONCLUSIONS

In this paper, a reciprocal signal strength model is presented,
and an energy detector is developed for estimating time pe-
riods when a person is moving and stationary. The proposed
model minimizes the observation time window and it is shown
that this is a strict requirement of accurate movement de-
tection. The experimental results also imply that the model
parameters in the stationary state are known, which allevi-
ates the system from time consuming training periods. This
streamlines the deployment requirements since the decision
threshold can be computed in advance. The developed detec-
tor along with the reciprocal model enables low-cost and fast
movement detection, which is a significant improvement to
the available solutions.



7. REFERENCES

[1] K. Woyach, D. Puccinelli, and M. Haenggi, “Sensor-
less sensing in wireless networks: Implementation and
measurements,” in 2006 4th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, 2006, pp. 1–8.
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