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Abstract
This study assesses the performance of a multivariate multi‐step charging load prediction
approach based on the long short‐term memory (LSTM) and commercial charging data.
The major contribution of this study is to provide a comparison of load prediction be-
tween various types of charging sites. Real charging data from shopping centres, resi-
dential, public, and workplace charging sites are gathered. Altogether, the data consists of
50,504 charging events measured at 37 different charging sites in Finland between January
2019 and January 2020. A forecast of the aggregated charging load is performed in 15‐
min resolution for each type of charging site. The second contribution of the work is
the extended short‐term forecast horizon. A multi‐step prediction of either four (i.e., one
hour) or 96 (i.e., 24 h) time steps is carried out, enabling a comparison of both horizons.
The findings reveal that all charging sites exhibit distinct charging characteristics, which
affects the forecasting accuracy and suggests a differentiated analysis of the different
charging categories. Furthermore, the results indicate that the forecasting accuracy
strongly correlates with the forecast horizon. The 4‐time step prediction yields consid-
erably superior results compared with the 96‐time step forecast.

1 | INTRODUCTION

In 2017, the transport sector was responsible for 27% of all
greenhouse gas emissions in the European Union, with pas-
senger cars accounting for 44% of the transport emissions [1].
Electric vehicles (EVs) are one of the solutions to cut carbon
emissions in the transport sector and achieve the climate
protection goals. Other related concerns, such as urban air
pollution and its impact on health, have also encouraged pol-
iticians to promote the adoption of EVs [2].

The resulting anticipated large‐scale EV rollout represents
both a considerable challenge and an opportunity for the po-
wer system. On the one hand, the simultaneous charging of a
large number of EVs could lead to severe bottlenecks in the
distribution network, requiring costly grid upgrades [2–4]. On
the other hand, EVs could also benefit the power system by
providing ancillary services. Due to their fast‐response ability,
high degree of flexibility, and energy storage capacity, EVs

could facilitate the seamless integration of intermittent
renewable energy sources into the power grid [5–7]. A large
number of EVs could also benefit transmission system
operators by providing their flexibility in the form of a control
reserve to the energy market [8, 9], or assist distribution system
operators in terms of voltage regulation, congestion manage-
ment, peak shaving, and valley filling measures [10–12].

For both cases, an accurate short‐term EV charging load
forecast is of utmost importance. For grid operators, the
aggregated charging load forecast is relevant to detect bottle-
necks in the distribution grid at an early stage and initiate
appropriate measures [13]. Aggregators, who aggregate a large
number of EVs, also rely on accurate capacity predictions to be
able to market EV flexibilities in the energy market for ancil-
lary services [4, 14].

With this motivation in mind, this work introduces a novel
charging load prediction application based on the long short‐
term memory. A multivariate multi‐step forecasting approach
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is presented, which considers important determinants of the
load curve as multivariate inputs and allows the forecast of the
whole prediction horizon in a single computation.

The subsequent parts of this paper are organised as fol-
lows. Section 2 presents the state of the art in recent studies.
Section 3 deals with the basics of LSTMs and the origin of the
data used in this work. Section 4 introduces the methodology
of the charging load forecast. Section 5 presents the results,
which are further discussed in Section 6. Conclusions and di-
rections for future research are provided in Section 7.

2 | RELATED RESEARCH

In this section, a literature review of the state of the art in the
field of EV short‐term charging load forecasting is conducted
to identify the shortcomings in previous research and highlight
the contributions of this work.

2.1 | Linear methods

Linear forecasting approaches use linear functions to model
time series behaviour. Popular methods include autoregressive,
moving average, autoregressive moving average, and autore-
gressive integrated moving average (ARIMA) processes. Con-
cerning the prediction of the EV charging load, ARIMA
models in different versions are particularly popular among all
linear approaches. A plain ARIMA model is introduced in [15]
to forecast the day‐ahead EV charging demand in 15‐min
(min) resolution. The prediction error is lowered with larger
aggregation. Another work [16] examines the applicability of
an ARIMA model to predict the EV charging demand of the
next 24 h (h). The proposed decoupled forecaster, which
independently predicts the charging demand and the conven-
tional electrical load, significantly reduces the prediction error
compared to an integrated forecaster.

The works in [17–19] present a more sophisticated version
of the ARIMA model. While paper [17] introduces a fractional
autoregressive integrated moving average (FARIMA) model,
article [18] proposes several seasonal autoregressive integrated
moving average (SARIMA) approaches for EV charging load
forecasting. The FARIMA model outperforms various ARIMA
models for all forecast horizons up to 120 min. The SARIMA
models achieve superior results compared to a persistence
forecast and a modified pattern sequence‐based forecast
(MPSF). Similar to the work in [18], study [19] introduces two
seasonal autoregressive integrated moving average models with
exogenous variables (SARIMAX). Compared to a random
forest (RF) and gradient boosted regression tree (GBRT)
model, the SARIMAX models outperform both machine
learning algorithms for different forecast horizons.

2.2 | Non‐linear methods

Contrary to the results in [19], several studies indicate a superior
performance of non‐linear methods for EV charging load

predictions. Compared to their linear counterparts, non‐linear
approaches rely on non‐linear functions to capture more
complex time series behavior. Study [20] applies four different
algorithms, namely the RF, support vector regression (SVR),
time weighted dot product based nearest neighbor
(TWDPNN), and MPSF for 24‐h charging load forecasting.
The evaluation is based on two different datasets – charging and
station measurements. The most accurate predictions based on
the charging measurement are achieved by using the TWDPNN
approach, whereas the MPSF provides the most precise results
for the station measurement dataset. An approved RF algo-
rithm is applied to predict the EV charging load of single and
grouped EV charging stations in [21]. The analysis reveals that
in contrast to an aggregated prediction, more precise results are
obtained while performing individual forecasts.

Moreover, considerable attention has been paid to artificial
neural networks (ANNs) lately. The predictive performance of
different neural networks (NN) is frequently addressed in the
literature [22–25]. Article [22] performs a 24‐h charging load
forecast based on historical driving patterns. Three different
ANNs – a simple ANN, a rough artificial neural network
(R‐ANN), and a recurrent rough artificial neural network
(RR‐ANN) – are deployed and compared to a Monte Carlo
simulation (MCS). RR‐ANNs generate the most accurate pre-
dictions. In [23], a novel reinforcement learning technique is
introduced to forecast the EV charging load under three sce-
narios – uncoordinated, coordinated, and smart charging. The
proposed Q‐learning technique increases the prediction accu-
racy compared to a simple ANN and a recurrent neural network
(RNN). The work carried out in [24] studies the short‐term
charging load predictability of four different types of ANNs
– a deep neural network (DNN), an RNN, an LSTM, and a
gated recurrent unit (GRU). GRUs with one hidden layer
achieve the most accurate prediction results. Study [25] pro-
vides a further evaluation of different ANN approaches for
super short‐term charging load forecasting. The predictive
performance of a simple ANN, an RNN, an LSTM, a bidi-
rectional LSTM, a GRU, and a stacked auto‐encoder (SAE) are
analyzed. The LSTM yields the best performance in both case
studies – the charging in public and at commercial buildings.

Similar to the results in [25], articles [26–28] demonstrate the
superior performance of the LSTMs for EV load forecasting.
The study in [26] develops an LSTM for single‐step predictions.
The analysis demonstrates that the LSTM outperforms a simple
ANN, both for a forecast horizon of 15 and 30 min and that the
prediction error diminishes with decreasing forecast horizon.
Another LSTM forecasting approach is presented in [27]. The
work considers four types of EVs – private and commercial EVs,
electric busses, and electric taxis. Based on the MCS, the LSTM
outperforms a backpropagation (BP) network and SVR. Paper
[28] proposes an LSTM‐based approach with hybrid classifica-
tion to forecast EV travel behaviour and their electrical demand.
Compared to copula, quasi‐MCS, and MCS, the novel approach
improves the forecast accuracy, thus, resulting in lower EV
aggregator costs. The research in [29] presents a hybrid model of
extreme gradient boosting and LSTM for domestic charging
station load forecasting. Multivariate inputs are used to predict
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the EV consumption in the next period. Study [30] proposes a
hybrid approach of a deep belief network (DBN) and the LSTM
network for short‐term EV load prediction. The LSTM‐DBN
achieves superior forecasting results compared to a single
DBN and single LSTM.

2.3 | Hybrid methods

Similar to studies [29, 30], other hybrid approaches as com-
pounds of different models have gained great popularity in
recent studies. Paper [33] combines a deterministic bottom‐up
approach with a probabilistic RF model for the short‐term
forecast of the aggregated load of 46 privately owned EVs in
Austin, Texas. The proposed model shows superior perfor-
mance compared to a persistence forecast, but similar to a
GBRT model. The study in [31] combines a least squares
support vector machine (LSSVM), fuzzy clustering (FC), and a
wolf pack algorithm (WPA) to predict the load of electric bus
charging stations. The FC‐WPA‐LSSVM model outperforms a
WPA‐LSSVM, a regular LSSVM and a BP‐NN. Article [32]
proposes another hybrid approach, combining a lion algorithm
with the niche immune (NILA) and a convolutional neural
network (CNN), for short‐term EV charging load forecasting.
Taking into account the multivariate inputs, the NILA‐CNN
shows superior performance to a single CNN, a lion algo-
rithm, CNN, and an SVM. The work in [34] introduces a
hybrid model, based on wavelet decomposition (WT), con-
volutional neural networks, and probabilistic queuing, for day‐
ahead charging load predictions. The WT‐CNN outperforms a
BP‐NN, an SAE, an RNN, an SVR, a time‐delayed neural
network (TDNN), and a growing DBN.

2.4 | Research gaps and contributions of
this work

Table 1 outlines the main findings of the literature review. All in
all, three major limitations can be summarised. The studies
either lack real charging data [16, 17, 22, 23, 27] or the data
employed is outdated, making it difficult to transfer the results
to today's strongly changed situation in terms of a larger
number of EVs, different charging powers, and the altered
utilization of EVs [15, 18–20, 33, 34]. Moreover, most of the
works only perform single‐step predictions [16, 20, 21, 23–27,
29, 31, 32] which limits the scope of practical applications due
to the short forecast horizon. Lastly, although in Ref. [25] it has
been indicated that the achievable prediction accuracy may be
dependent on the type of charging, no attention has been paid
to the analysis and comparison of different charging sites.

This work contributes to the identified research gaps in the
following ways:

� Introducing a novel multivariate, multi‐step LSTM applica-
tion, which significantly extends the existing short‐term
forecast horizon by providing a 4‐time step (ts) or 96‐ts
prediction at once,

� Comparing and assessing the forecasting accuracy at
different categories of charging sites which exhibit different
charging characteristics, and

� Using a large amount of high‐quality charging data from
various commercial charging sites.

3 | DESCRIPTION OF THE DATASET
AND LSTM

This section deals with both the characteristics of the real
charging data used in this work and the LSTM fundamentals.

3.1 | Introduction of the dataset

This study is based on real charging data of 50,504 slow
charging events with a maximum capacity of 22 kW, measured
at 37 different charging sites in Finland between January 2019
and January 2020. While the smallest charging site contains less
than 10, the largest one features nearly 300 charging stations.
An overview of the characteristics of the charging data is
illustrated in Table 2.

The charging events are clustered according to the four
categories of charging sites selected for this work. The data for
the first category, the charging at shopping centres (SCc), stems
from one charging site. The charging events of 21 sites are
assigned to the second category named residential charging
(REc), representing the charging at home. The third category,
public charging (PUc), covers the charging at car parks that can
be used by all EV drivers. The last category, workplace
charging (WOc), refers to EV charging at company premises
that can only be used by the staff working in the vicinity. Eight
and seven sites are assigned to PUc and WOc, respectively.

3.2 | Long short‐term memory

The charging load of EVs is typically subject to strong time
dependencies as the load corresponds to cyclical and seasonal
patterns. The LSTM is able to overcome the vanishing or
exploding gradient problem of RNNs, and to learn both
long‐term and short‐term dependencies, thus making it an
ideal choice for this work [35]. The ability to learn temporal
correlations stems from the unique structure of an LSTM
cell, illustrated in Figure 1. The LSTM at a single ts t consists
of three gate units, namely the forget f t, input i t, and output
gate ot.

The functionality of the LSTM cell can be expressed
mathematically by the following formulas [36]

f t ¼ σ
�
W f ;xxt þW f ;hht−1 þ bf

�
ð1Þ

i t ¼ σ
�
W i;xxt þW i;hht−1 þ bi

�
ð2Þ
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TABLE 1 Literature review on studies addressing the issue of short‐term EV charging load forecasting

Year ref. Proposed model(s)
Baseline
model(s)

Superior
model Forecast approach

Reso‐
Lution

Data
characteristics

Data origin
[year]

2016 [16] ARIMA – Decoupled
forecast

24‐h (single‐step) 1‐h Travel behaviour USA

2016 [20] MPSF, SVR,RF,
TWDPNN

– MPSF,
TWDPNN

24‐h (single‐step) 1‐h Charging &Station
records

UCLA (USA)
[Dec 2011 ‐
Feb 2014]

2016 [17] FARIMA ARIMA FARIMA 2‐h 1.2‐min Travel behaviour Seattle (USA)

2017 [18] SARIMA MPSF,Persistence SARIMA 1‐, 2‐, & 24‐h 1‐h Charging data
(aggregated)

California (USA)
[Jan 2011 ‐
Jan 2013]

2018 [31] FC‐WPA‐LSSVM BP‐NN, LSSVM,
WPA‐LSSVM

FC‐WPA‐
LSSVM

24‐h (multivariate &
single‐step)

1‐h Electric bus
charging data

Baoding (China)
[2017]

2018 [32] NILA‐CNN CNN, SVM,Lion
CNN

NILA‐CNN 24‐h (multivariate &
single‐step)

30‐min Public charging
(aggregated)

Beijing (China)
[Jun 2017 ‐
Nov 2017]

2018 [21] RF – – multivariate & single‐
step

15‐min Public charging
(single & aggr.)

Shenzhen (China)
[2016 ‐ 2018]

2019 [15] ARIMA – – 24‐h 15‐min Non‐residential
charging (aggr.)

California (USA)
[2013]

2019 [22] ANN, R‐ANN,RR‐
ANN

MCS RR‐ANN 24‐h 1‐h Travel behaviour USA [2017]

2019 [26] LSTM ANN LSTM 24‐h (Single‐step) 15‐ &30‐
min

Public charging
(aggregated)

Shenzhen (China)
[Jul 2017 ‐ Jul
2018]

2019 [25] ANN, GRU, LSTM,
RNN, SAE, DNN,

– LSTM 1‐, 5‐, & 15‐min
(single‐step)

1‐min Public &
commercial
charging (aggr.)

Shenzhen (China)
[ Jun 2017 ‐
Jul 2018]

2019 [24] GRU, bidirectional
LSTMLSTM,
RNN

– GRU 24‐h (multivariate &
single‐step)

1‐h Public charging
(aggregated)

Shenzhen (China)
[Apr 2017 ‐
Jun 2018]

2019 [33] Bottom‐up RF GBRT,Persistence Bottom‐up RF 24‐h (multivariate) – Residential
charging (aggr.)

Austin (USA)
[2015]

2019 [19] GBRT, RF,SARIMAX Persistence SARIMAX 7‐, 14‐, & 28‐days 24‐h Charging data
(aggregated)

Netherlands
[ Jan 2012 ‐
Mar 2016]

2019 [27] LSTM BP, SVR LSTM Univariate & single‐
step

1‐h Simulated charging
data

–

2020 [23] Q‐learning technique ANN, RNN Q‐learning 24‐h (single‐step) 1‐h Simulated charging
data

–

2020 [34] WT‐CNN &
probabilistic
queuing model

BP‐NN, SVR,
SAE, TDNN,
RNN, DBN

WT‐CNN 24‐h (multi‐step) 1‐h Traffic flow data England, U.K
[ Jan 2014 ‐
Dec 2014]

2020 [30] LSTM‐DBN DBN, LSTM LSTM‐DBN Multivariate 15‐min Charging data
(aggregated)

Liaoning, China
[Jan 2018 ‐
Mar 2018]

2020 [28] LSTM Copula, MCS,
quasi MCS

LSTM Day‐ahead 1‐h Travel behaviour USA [2017]

2021 [29] Extreme gradient
boosting LSTM

– – Multivariate & single‐
step

1‐h Charging data
(aggregated)

Jiangsu, China
[ Jan 2017 ‐
Dec 2018]
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~c t ¼ ϕ
�
W

~c;xx t þW
~c;hht−1 þ b

~c

�
ð3Þ

c t ¼ f t ⊙ c t−1 þ i t ⊙ ~c t ð4Þ

ot ¼ σ
�
W o;xx t þW o;hht−1 þ bo

�
ð5Þ

ht ¼ ot ⊙ ϕðc tÞ ð6Þ

W f ;x, W f ;h, W i;x, W i;h, W o;x, W o;h, W
~c;x, and W

~c;h label
weight matrices, bf , bi, bo, and b

~c are bias vectors. Operations
þ and ⊙ denote the element‐wise addition and multiplication,
and ϕ depicts the tanh activation function. The forget gate de-
termines which information from the previous cell state, c t−1, is
preserved. The cell state represents the long‐term memory of
the LSTM. The input gate decides which information from the
candidate cell state, ~c t, is to be used to update the previous cell
state. The output gate controls which part of the new cell state,
c t, to output and pass as the hidden state, ht, the short‐term
memory, to the next LSTM cell. The current input, x t , and
the previous hidden state, ht−1, are multiplied with their
respective weights along the bias vectors form the inputs for all
three gates. The sigmoid function, σ, introduces non‐linear
characteristics to the gates and decides which signals pass the
gates. While a value of zero causes signals to disappear, a value of
one ensures that the signals pass the gate.

4 | METHODOLOGY

The methodology of the proposed multivariate multi‐step
LSTM is shown in Figure 2 and consists of three main
stages – data preprocessing, LSTM implementation and
training, and LSTM forecasting. EV, electric vehicle; LSTM,
long short‐term memory

4.1 | Data preprocessing

The following paragraph details the data preprocessing.

4.1.1 | Aggregated charging load time series
generation

In the first step, the event‐based charging data is converted
into a time series of aggregated charging load values in 15‐min
resolution under the assumption of a constant charging power.

T A B L E 1 (Continued)

Year ref. Proposed model(s)
Baseline
model(s)

Superior
model Forecast approach

Reso‐
Lution

Data
characteristics

Data origin
[year]

2021 This
paper

Novel LSTM
implementation
with multivariate
inputs and multi‐
step forecast
horizon

Comparison of different
charging sites & forecast
horizons

1‐h & 24‐h
(multivariate &
multi‐step)

15‐min Charging data
(aggregated)

Finland [ Jan
2019 – Jan
2020]

Abbreviations: ANN, Artificial neural network; ARIMA, autoregressive integrated moving average; CNN, Convolutional neural network; DBN, Deep belief network; DNN Deep neural
network EV, electric vehicle; FARIMA, Fractional autoregressive integrated moving average; FC, Fuzzy clustering; GRU, gated recurrent unit; LSTM, long short‐term memory; MCS,
Monte carlo simulation; MPSF, modified pattern sequence‐based forecast; NILA, Lion algorithm by niche immune; R‐ANN, rough artificial neural network; RR‐ANN, recurrent rough
artificial neural network; RF, Random forest; SAE, stacked auto‐encoder; SARIMAX, Seasonal autoregressive integrated moving average (with exogenous variables; TWDPNN, time
weighted dot product based nearest neighbour; SARIMA, Seasonal autoregressive integrated moving average; WPA, Wolf pack algorithm.

TABLE 2 Characteristics of the EV charging data

Type of charging
# Charging
sites

# Charging
events Measured period

Shopping centre 1 9283 01.01.19 –31.12.19

Residential 21 10,920 21.01.19–20.01.20

Public 8 18,785 31.01.19–30.01.20

Workplace 7 11,516 31.01.19–30.01.20

Abbreviations: EV, electric vehicle.

F I GURE 1 Architecture of an long short‐term memory cell at a single
time step t.
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The data contains both the plug‐in‐ and power‐to‐zero‐
timestamps and the original amount of energy, energyor ,
charged for each charging event. Consequently, initially, the
original charging time, tor , in min is derived by measuring the
deviation between both timestamps. In case the power‐to‐
zero‐timestamp is missing due to measurement errors, a
nominal charging power of 1.8 kW is assumed as most of the
charging events indicate charging at low powers. The original
charging time is calculated by dividing the original amount of
energy charged by the assumed charging power. Subsequently,
since the charging times might change due to the analysis in-
terval of 15 min, the original charging time is adjusted subse-
quently. If the original charging time lasts less than 15 min, it is
rounded up to a full 15‐min interval. Otherwise, a modulo
operation, mod, is performed and the modified charging time,
tnew, is calculated according to (7).

tnew ¼

8
<

:

15 tor < 15min
tor − modðtorÞ modðtorÞ < 7:5min
tor − modðtorÞ þ 15 else

9
=

;
ð7Þ

Furthermore, the modified charging load, loadnew , of each
charging process is calculated according to (8) under the
premise of a constant amount of energy charged. Lastly, by
aggregating the calculated load of each charging event, the
charging load time series is generated, spanning one year with
96 load values for each day.

loadnew ¼
energyor
tnew

ð8Þ

4.1.2 | Multivariate input selection

To determine the important features to be fed to the LSTMas
multivariate inputs to support the detection of interrelation-
ships, an analysis of the characteristics of the charging load is
carried out. Figure 3 illustrates the development of the
aggregated charging load over the course of a year at all four
categories of charging sites and reveals two particularities. First,
an increase of the aggregated load over the course of the year
can be observed for all charging sites. The strong impact of
holiday periods on REc, PUc, and WOc marks the second
conspicuity. The Finnish summer holidays in July and the
winter holidays in December noticeably reduce the load. Both
findings support the selection of a month indicator as a feature.
However, since the data only covers one year, a feature month
would lead to unknown indicators during the data split and is,
thus, omitted.

Figure 4 provides a detailed analysis of the charging sites by
visualising the charging load for three different weeks of the
year. When comparing the load curve of the first week of
February (green) with that of the end of November (grey), the
increase in charging load over the course of a year is evident.
Moreover, a clear impact of the type of day and time of the day

F I GURE 2 Methodology of the LSTM EV
charging load forecast
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can be seen for REc, PUc, and WOc. The charging load varies
significantly between weekdays and weekends, and the time of
the peak load follows a clear pattern. SCc is the only charging
site that exhibits a highly random load pattern. When looking
at the purple plot, the influence of public holidays on the load
is evident as well. For all charging sites, the load is considerably
reduced during the three Christmas holidays. Consequently, to
help the LSTM to detect interrelationships, each load value is
linked to a quarter hour indicator, type of day indicator, and
public holiday indicator, collectively representing the multi-
variate inputs to the LSTM.

4.1.3 | Scaling and encoding of data

To avoid data leakage, the time series is split into training and
test sets with a 90% to 10% ratio prior to the scaling and
encoding. Furthermore, 20% of the training data is used to
validate the model performance during training, resulting in a
72% training, 18% validation, and 10% test split.

To accelerate network convergence and allow the LSTM to
process categorical features, the load is normalised, and the
indicators are encoded. The commonly used min‐max scaling
method is used to normalise the load values [37]. The popular

F I GURE 3 Aggregated electric vehicle charging load over the course of one year illustrated for each category of charging site

F I GURE 4 Aggregated charging at each
category of charging site exemplified for three
different weeks
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one hot encoding technique is used to encode the binary
character of the public holiday indicator [38]. For the quarter
hour and type of day indicators, sine/cosine encoding is tested
as well to allow a better representation of the cyclic nature of
both indicators [39, 40].

4.1.4 | Supervised learning framing and reshaping
of data

Finally, the data is converted into a supervised learning prob-
lem and formatted such that the shape meets the specific
LSTM requirements. In the first step, the normalised and
scaled data is concatenated into a single array for every 15‐min
ts. Using one hot encoding, each ts possesses 106 dimensions
of feature space, this number is reduced to seven while using
the sine/cosine encoding.

Subsequently, the data is framed in a supervised learning
manner by separating the data into input and output sequences.
In this study, two approaches are examined – the stateless and
stateful mode. The sliding window approach is applied for the
stateless mode. In the stateful mode, the data is prepared in
such a way that the fixed input sequences adjoin each other
without overlapping. For both cases, the input data contains
the load value and all indicators for each ts, the output only
contains the load to be compared with the predicted load.

In the last step, the data is reshaped in the required 3‐
dimensional shape, defining the number of samples, the
number of input ts, and the number of features for each ts.

4.2 | Long short‐term memory
implementation and training

The most suitable LSTM configuration is selected in two steps.
First, the LSTM is trained with initially selected hyper-
parameters (hp) on different approaches: the two encoding
techniques, the two modes, and a varying number of input ts.

In stateless mode 4, 8, 16, and 32 ts are tested as inputs for the
4‐ts forecast, 96, and 192 ts for the 96‐ts prediction. The equal
amount of input and output ts are applied in the stateful mode.
Subsequently, based on the minimal validation loss, the most
suitable approach undergoes tuning.

4.2.1 | Training and hyperparameter tuning
implementation

The LSTM is implemented as illustrated in Figure 5, using the
Sequential Model in Keras. While indices n denote the number
of input features, indices tin depict the amount of input ts for
each sample. Indices tout define the number of predicted load
values subsequent to the input sequence.

Table 3 provides an overview of the hp selected for initial
training and hp tuning. The tuning, based on a random search,
is performed in hyperopt, a popular library for conducting hp
optimisation in Python. A detailed description of the hyperopt
is given in [40]. The number of evaluations is set to 50 and the
seeding is set to one to ensure the comparability between the
different charging sites and reproducibility of the results.

4.2.2 | LSTM training process

The training proceeds as follows. The training and validation
data is shown to the LSTM in the input layer. Both data sets
consist of multiple samples which are successively processed
by the hidden layer(s), each comprising the input and output
sequences. For each sample, the concatenated features of each
ts form the current input for the LSTM cell. In the stateless
mode, the final state of each processed batch is removed. In
the stateful mode, however, the final state is provided as the
initial state for each sample in the next batch. The state is
manually reset after each epoch as each epoch contains the
same time series data. After the input data has been processed
by either one or two hidden layers, the final state of the last cell

F I GURE 5 Architecture and training process
of the long short‐term memory. MSE, mean
squared error
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in the last hidden layer is passed to a dense layer which outputs
the number of ts to be predicted for each input sequence.
Once a certain number of samples, defined by the batch size, is
processed, the predicted values are compared with the desired
real load values to calculate the training and validation loss.
Based on the mean squared error (MSE) during training, the
weights are then modified after each batch size by the Adam
optimiser using backpropagation through time. This process is
repeated until the maximum number of epochs is met or the
training is terminated prematurely by the implemented early
stopping callback.

4.3 | LSTM forecasting

After the completion of the random search, the LSTM with the
optimal hp configuration performs the load forecast.

4.3.1 | Implementation of the forecast

The forecast is carried out with a batch size of one, to avoid
errors in the prediction process caused by the varying batch
sizes during training. For every input sequence of the test data,
the model predicts the subsequent four or 96 ts. Afterwards,
both the normalised real and predicted load are converted to
load values in kW. The inverse normalisation is performed with
the initial parameters of the min‐max scaler that have been
saved during the preprocessing stage for this purpose.

4.3.2 | Metrics

Six different error metrics are employed to evaluate the model
performance. The mean absolute error (MAE) in kW, calcu-
lated according to (9), measures the precision of the forecast by
averaging the error between the predicted and real load, and is
selected due to its simple comprehensibility. While N depicts
the number of forecasts, loadt indicates the real charging load
at time t, and loâdt the predicted one. However, the MAE is

scale‐dependent, which implies the need for additional error
metrics to allow a better comparison of the different charging
sites. Given its scale‐independence, the popular mean absolute
percentage error (MAPE) would provide an easily interpreta-
tive error metric. However, the charging load time series
exhibit a charging load of zero at numerous points in time. For
this reason, MAPE cannot be used for overall comparison, as
the calculation is based on the division of the error by the true
load value at each ts. To overcome these difficulties, two var-
iants of the normalised mean absolute error (NMAE) are used
as shown in Equations (10) and (11). The MAE is normalised
by the mean charging load and the difference between the
maximum loadmax and minimum load loadmin, respectively.

MAE ¼
1
N

XN

t¼1
jloadt − loâdtj ð9Þ

NMAE1¼MAE
, 1

N

XN

t¼1
loadt ð10Þ

NMAE2¼
MAE

loadmax − loadmin
ð11Þ

For the 96‐ts forecast, three additional metrics are used to
better assess how well the daily peak load can be predicted,
both in terms of temporal occurrence and magnitude of the
peak load. The timing and magnitude of the peak load are
especially important for assessing possible congestions in the
distribution network. The average peak deviation, pdev, in
kW between the actual daily peak load, loaddm, and predicted
daily peak load, loâddm, is calculated according to Equa-
tion (12). While D specifies the number of predicted days, dm
denotes the daily peak. Likewise, the MAPE in % is calcu-
lated according to Equation (13). Finally, Equation (14)
specifies the average time deviation, tdev, in min separating
the real and predicted peak load. Variable slot corresponds to
the respective 15‐min interval of the real and the predicted
peak load.

TABLE 3 Initial hyperparameters and
search space

Type of hp Initial Training Hp Tuning

Optimiser Adam No tuning

Loss function MSE No tuning

Activation function Tanh & hard sigmoid (cell), ReLU (dense layer) No tuning

# Epochs 500 1000 (no tuning)

# Hiddenlayers 1 1, 2

# Units 2, 8, 32, 128 2, 4, 8, 16, 32, 64, 128

Learning rate 0.001 0.01, 0.001, 0.0001

Batch size 1 (stateful), 32 (stateless) 16, 32, 64, 96

Dropout [%] 0 0, 20, 50

Abbreviations: MSE, mean squared error; ReLU, Rectified Linear Unit activation function.
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pdev¼
1
D

XD

d¼1

jloaddm − loâddmj ð12Þ

MAPE ¼
1
D

XD

d¼1

ðloaddm − loâddmÞ
,

loaddm � 100 ð13Þ

tdev¼
1
D

XD

d¼1

jslotðloaddmÞ − slotðloâddmÞj � 15 ð14Þ

5 | RESULTS

Having covered the methodology of this work, this chapter
addresses the training, tuning, and prediction results.

5.1 | Initial training results

Table 4 illustrates the selected approach for each charging site
and forecast horizon based on the minimum validation loss
obtained during initial training. In all cases the minimum loss is
recorded while training the LSTM with 128 units.

The small epoch number for most of the charging sites
indicates that the LSTM suffers from early overfitting. More-
over, the different modes, encoding techniques, and input ts
only yield small differences in the validation loss. However, in
all the cases the lowest MSE is obtained while using the
stateless mode. The sine/cosine encoding shows a slightly
superior performance in most cases. Finally, using the same
amount of input ts yields the lowest MSE for the 96‐ts fore-
cast. For the 4‐ts prediction, 16 input ts results in the lowest
validation loss for SCc, Rec, and WOc, whereas four input ts
achieve the best fit for PUc.

5.2 | Hyperparameter tuning results

The maximum and minimum validation loss obtained during
tuning, and the chosen superior hp combination is given in
Table 5. The maximum and minimum validation loss differ
considerably. The highest MSE values are obtained for the 4‐ts
prediction while using a high dropout or learning rate. For the
96‐ts forecast, a small number of units lead to the highest
validation losses. While comparing the minimum loss between
random search and initial training, it is evident that the hp
tuning only yields improvements for half of the forecasts. The
lowest losses are obtained with a high number of units (64 or
128). In most cases, an LSTM with only one hidden layer
seems sufficient. Only for the REc 96‐ts forecast and WOc 4‐
ts prediction the minimum loss is recorded while using two
hidden layers. All batch sizes are applied for the different
forecasts. Dropout generally does not have a positive effect on

training, except for the 96‐ts REc forecast. Lastly, in most of
the cases, the learning rate of 0.001 yields the lowest loss.

5.3 | Forecasting results

In the following sections, the forecasting results are analysed
both graphically and numerically.

5.3.1 | Graphical results

Figure 6 illustrates the forecasting results for the 36 days of
test data for each category of charging site for both the 4‐ts
(green) and 96‐ts (purple) prediction. While comparing the
outcomes with the real charging load (grey), it becomes
apparent that the 4‐ts prediction achieves superior results
compared to the 96‐ts forecast. The 4‐ts forecast yields a
relatively precise picture of the real load curve in grey, with
no major outliers to be seen.

Considering the 96‐ts prediction results, three short-
comings can be identified. First, the LSTM is not capable
of predicting the charging load on public holidays. The
projected load almost exclusively exceeds the real load by a
substantial margin and exhibits a course similar to that of
non‐holidays. Second, the LSTM is not able to accurately
predict the level of real peak load for most days, frequently
exceeding the predicted peak load substantially. Finally, the
LSTM struggles to anticipate the impact of holiday periods.
This is particularly evident for REc, where the forecast
significantly exceeds the reduced real charging load during
the winter holiday period.

5.3.2 | Numerical results

Table 6 summarises the numerical results. As previously evi-
denced during the graphical analysis, reducing the forecast
horizon from 96 ts to 4 ts considerably reduces the prediction
error. The MAE for REc, PUc, and WOc can be more than

TABLE 4 Summary of the best approach after initial training

Site SCc REc PUc WOc

horizon 4‐ts 96‐ts 4‐ts 96‐ts 4‐ts 96‐ts 4‐ts 96‐ts

Min. Val. lossa 5.29 8.94 2.83 8.35 2.02 9.79 1.85 6.95

# Epochs 17 7 49 31 14 147 221 130

# Input ts 16 96 16 96 4 96 16 96

Modeb SL SL SL SL SL SL SL SL

Encodingc S/C OH S/C S/C S/C S/C S/C OH

Abbreviations: PUc, public charging; REc, residential charging; SCc, shopping center
charging; WOc, workplace charging.
aAll MSE values (validation loss) are given in units of 10−3.
bSL = Stateless mode.
cS/C = Sine/Cosine encoding, OH = One hot encoding.
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halved in most of the cases. For SCc, the MAE is reduced in all
cases by more than 2 kW. The lowest overall MAE for both the
forecast horizons is recorded for REc. WOc generates the
second lowest MAE values, followed by PUc. The highest
MAE values are seen for SCc.

A different picture emerges while looking at the NMAE1
and NMAE2 results. For the 4‐ts prediction, the lowest
NMAE1 is obtained for PUc, followed by REc, WOc, and SCc.
Conversely, using the NMAE2, the most precise results are
seen for WOc, followed by PUc, Rec, and SCc. For the 96‐ts
forecast the lowest NMAE1 again is obtained for PUc and
REc, however, the least accurate prognosis is given for WOc
this time. In contrast, the lowest NMAE2 is seen for WOc,
followed by SCc and PUc. REc ranks last.

While comparing the clustered NMAE1 results, it can be
seen that the 4‐ts forecast yields the most accurate forecast for
PUc and REc. SCc and WOc score the poorest results.

Conversely, while using the NMAE2 as the evaluation crite-
rion, varying results are visible depending on the type of day.
For weekdays the most accurate predictions are seen for WOc
followed by PUc, Rec, and SCc. While REc yields the most
exact forecast for weekends, WOc, PUc, and SCc take the
second, third, and fourth place. For public holidays, REc ranks
first again, followed by SCc, PUc, and WOc. Similar findings to
the NMAE1 results of the 4‐ts forecast can be seen for the
NMAE1 results of the 96‐ts forecast. REc and PUc achieve the
most precise scores in most of the cases. However, for public
holidays, SCc outperforms PUc and comes in the second place,
behind REc. Looking at the NMAE2 results, the poorest
performance for weekdays can be observed for Rec, whereas
SCc yields the most accurate results. On weekends SCc ranks
first again, and WOc ranks the last. For public holidays, WOc
performs particularly poor again. REc obtains the most
favourable score.

TABLE 5 Summary of tuning results
and selected hyperparameters Site SCc REc PUc WOc

horizon 4‐ts 96‐ts 4‐ts 96‐ts 4‐ts 96‐ts 4‐ts 96‐ts

Min. lossa 33.68 13.51 10.17 21.04 12.08 32.34 47.24 14.55

Max. lossa 5.33 8.78 2.83 8.00 2.03 9.05 1.59 7.25

Improvement No Yes No Yes No Yes Yes No

# Hidden layer 1 1 1 2 1 1 2 1

# Units 128 128 128 128 128 64 64 128

Batch size 32 64 32 16 32 96 96 32

Dropout [%] 0 0 0 20 0 0 0 0

Learning rate 0.001 0.01 0.001 0.001 0.001 0.0001 0.0001 0.001

Abbreviations: PUc, public charging; REc, residential charging; SCc, shopping center charging; WOc, workplace charging.
aAll MSE values are given in units of 10−3.

F I GURE 6 Forecasting results for the 36 days of test data illustrated for all categories of charging sites
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Table 7 quantifies the LSTM’s difficulties in predicting
peak loads with a forecast horizon of 96 ts in numerical terms.
The pdev, the MAPE, and the tdev are given for each charging
site. For all forecasts, the average deviation between true and
predicted peak load amounts to 29.16 kW for SCc, 6.37 kW for
REc, 14.17 kW for PUc, and 17.85 kW for WOc. The MAPE
amounts to 53.19% for SCc, 34.38% for REc, 37.16% for PUc,
and 128.97% for WOc. The average deviation between real and
predicted time of the peak load in minutes are 153, 88, 104,
and 285 for SCc, REc, PUc, and WOc, respectively.

Examining the scores grouped by weekdays, weekends, and
public holidays, several discrepancies between the charging
sites can be highlighted. For SCc, on weekends and public
holidays, the absolute and relative errors can be reduced rela-
tive to weekdays. In addition, the time deviation between true
and predicted occurrence of the peak load is significantly
lowered as well. For REc, in contrast, the highest relative and

absolute errors are seen for public holidays, although the time
deviation is minimised. For PUc and WOc, according to the
MAPE, the most precise results are achieved during the week.
For WOc predictions on weekends, the absolute error amounts
to 4.73 kW and the MAPE to 100% due to a constant pre-
diction of 0 kW. Therefore, no deviation between the time of
the true and predicted peak load can be calculated. The highest
error scores between the real and predicted peak load are
recorded on public holidays for both charging sites and the
time deviation between true and predicted peak load amounts
to a multiple of the deviation during the week.

6 | DISCUSSION

In this section, the initial training, hp tuning, and forecasting
results are discussed in more detail.

6.1 | Initial training results

Four key findings can be summarised. To begin with, the in-
clusion of multivariate inputs shows a positive influence on the
training results in terms of validation loss. However, a detailed
analysis of the impact on the training results and forecasting
results was not part of the analysis. Since the training data used
in this work spans less than one year for each category of
charging site, the inclusion of multivariate inputs is selected to
help the LSTM identify patterns in the data. With multiyear
data available, the importance of including multivariate inputs
may decrease or become obsolete.

Next, the early overfitting indicates that the complexity of
the model, relative to the size of the available data, is too high,
and due to changing load characteristics throughout the year,
the validation data is not fully representative for the entire
dataset. The access to charging data measured over a longer
period is, thus, of great interest to enhance the performance of
the model in future.

Furthermore, the different encoding techniques and input ts
variants only cause negligible differences in the validation loss.
Thus, the extra time needed to implement and train the LSTM
with various variants cannot be justified. Hence, the selection of
the same number of input ts and encoding choice for all sites

TABLE 6 Evaluation of forecasting results

Charging site SCc REc PUc WOc

horizon 4‐ts 96‐ts 4‐ts 96‐ts 4‐ts 96‐ts 4‐ts 96‐ts

MAEa (all) 4.35 6.78 1.53 3.37 2.7 5.84 1.85 5.35

NMAE1 (all) 0.352 0.549 0.178 0.391 0.166 0.359 0.204 0.59

NMAE2 (all) 0.041 0.065 0.038 0.083 0.032 0.068 0.021 0.06

MAEa (wd) 4.41 6.75 1.52 3.33 3.1 6.37 2.56 6.56

NMAE1 (wd) 0.369 0.564 0.175 0.381 0.152 0.312 0.191 0.489

NMAE2 (wd) 0.042 0.064 0.038 0.082 0.036 0.075 0.029 0.073

MAEa (we) 4.39 7.15 1.6 3.62 1.83 3.2 0.49 1.31

NMAE1 (we) 0.329 0.536 0.189 0.428 0.208 0.363 0.377 1.00

NMAE2 (we) 0.06 0.097 0.047 0.106 0.056 0.098 0.054 0.142

MAEa (ph) 3.71 5.74 1.36 2.89 2.48 10.64 0.88 9.51

NMAE1 (ph) 0.312 0.484 0.162 0.345 0.262 1.124 0.595 6.454

NMAE2 (ph) 0.073 0.113 0.047 0.099 0.092 0.393 0.16 1.739

Abbreviations: MAE, mean absolute error; NMAE, normalised mean absolute error;
ph = public holiday; PUc, public charging; REc, residential charging; SCc, shopping
center charging; WOc, workplace charging; wd = weekday, we = weekend.
aAll MAE values are given in kW

TABLE 7 Summary of the peak deviation, MAPE and time deviation results of the 96‐ts prediction

Charging site SCc REc PUc WOc

metric
Pdev MAPE Tdev Pdev

MAPE (%)
Tdev Pdev

MAPE (%)
Tdev Pdev

MAPE (%)
Tdev

(kW) (%) (min) (kW) (min) (kW) (min) (kW) (min)

All days 29.16 53.19 153 6.37 34.38 88 14.17 37.16 104 17.85 128.97 285

Weekdays 30.96 53.65 187 6.24 34.71 86 13.75 23.50 52 20.54 35.50 35

Weekends 26.37 53.11 95 6.29 32.00 99 11.39 43.28 116 4.73 100.00 ‐

Public holidays 24.65 49.90 85 7.64 39.80 65 26.62 121.46 615 41.01 942.13 435

Abbreviations: MAPE, mean absolute percentage error; Pdev, average deviation between real and predicted peak load; PUc, public charging; REc, residential charging; SCc, shopping
center charging; Tdev, average time deviation of predicted peak load.
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seems to be more rational. Whereas the sine/cosine encoding
offers a viable encoding variant, 16 input ts for the 4‐ts and 96
input ts for the 96‐ts prediction seem to be appropriate.

Lastly, the stateful mode does not provide benefits
compared to the stateless mode under the given conditions.
However, when multi‐year data becomes available in the
future, the stateful mode may reveal its strengths, as seasonal
relationships can be identified by the LSTM. Consequently,
with the availability of data over several years, a further com-
parison of the different modes is advisable.

6.2 | Hyperparameter tuning results

Three relevant conclusions can be drawn. First, the significant
variation between the minimum and maximum loss during
tuning reveals that the different hp combinations exert a major
impact on the generalisability of the LSTM and, ultimately, on
its predictive power. Thus, the importance of hp tuning for
selecting the most suitable LSTM model is outlined.

Moreover, the varying combinations of hp exert a funda-
mentally different impact on the validation loss for each
charging site category and forecast horizon. Thus, it is essential
to perform the hp tuning separately for each use case.

Finally, random search shows only minor or no enhance-
ments compared with the initial training. This might be due to
the limited amount of evaluations and search space. A higher
number of executions, the inclusion of other hp in the search
space, or the use of a more subtle method, like the bayesian hp
tuning, could lead to further improvements.

6.3 | Forecasting results

The results of the forecast are discussed below, followed by
implications for the practical application of the forecast.

6.3.1 | Differences between the different
categories of charging sites

The comparison of the forecasting results of the different
charging sites revealed that the evaluation is highly dependent
on the metric. However, SCc almost solely yields the poorest
results for the 4‐ts prediction, indicating that the fluctuating
load hinders the predictive power of the LSTM.

Further, evident discrepancies involve the varying results
for weekdays, weekends, and public holidays. While the
lowest NMAE1 is obtained for SCc and REc on public
holidays, the public holiday load predictions for PUc and
WOc are significantly less accurate than the predictions on
weekdays and weekends. This finding is attributable to the
distinct load profile characteristics rather than to the different
forecasting ability of the LSTM. While the load for PUc and
WOc shifts radically on public holidays, the change for REc
is less pronounced. With SCc, the load profile also varies

noticeably, but the entire load series shows strongly fluctu-
ating load characteristics. Thus, the impact of public holidays
remains small.

Similar findings can be seen while looking at the peak
deviation and MAPE results. While for SCc and Rec, the
MAPE difference between weekdays and public holidays
amounts to only 3.75 and 5.09 percentage points, respec-
tively, the figure for public and workplace charging increases
by 97.96 and 906.63 percentage points, respectively. Once
again, the discrepancies can be explained by the impact of
public holidays on the load pattern. Analysing the weekday
results, the significant discrepancies in the MAPE and time
deviation, likewise, indicate that the characteristics of the
load profile decisively impact the accuracy of the forecast.
The highly irregular load profile for SCc results in the
poorest accuracy for both, the predicted peak load level and
the time of the peak load. WOc, on the other hand, exhibits
the steadiest pattern concerning the time of the peak load,
which is why the average time deviation is the lowest at
35 min.

6.3.2 | Overall findings

The superior performance of the 4‐ts prediction compared to
the 96‐ts forecast is attributable to two factors. Due to the
shorter forecast horizon, the preceding load values are shown
to the LSTM more frequently and assist the LSTM in mapping
the height and course of the load more precisely. Moreover, the
poor prediction results for the 96‐ts forecast might be traced
back to the strongly altered load profile of the test data, caused
by the increase of charging load throughout the year and the
winter holiday period. Therefore, the training and validation
data might have not been fully representative of the test data,
limiting the LSTM’s predictive power.

6.3.3 | Implications for aggregators and network
operators

There are two courses of action on how aggregators and
network operators can implement the LSTM to achieve opti-
mised forecasts for their respective use case. First, it is bene-
ficial to limit the load forecast to weekdays. Weekends and
public holidays are accompanied by changes in the user
behaviour that are difficult to predict and exhibit a much lower
aggregation potential and risk of bottlenecks due to the
reduced charging load. By focussing the forecast on weekdays,
a higher prediction accuracy can be obtained.

Second, the forecast should only be carried out for the
periods of a day with the highest charging load, where the
aggregation potential is the highest, and bottlenecks in the
distribution network are most likely. By shortening the forecast
period, the accuracy is improved as shown in this work. The
forecast will be further enhanced by focussing the LSTM on a
specific period of the day.
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7 | CONCLUSIONS AND FUTURE
WORK

This study proposes a novel multivariate long short‐term
memory approach for multi‐step EV charging load fore-
casting with two different prediction horizons. The perfor-
mance of the forecasting approach is evaluated and compared
between four different categories of charging sites. The results
show that the distinct characteristics of the different charging
sites influence the predictability of the charging load, but that
the evaluation is highly dependent on the chosen metric. It is
also demonstrated that with an increasing forecast horizon, the
accuracy diminishes as well. Reducing the forecast horizon
from 96 to four time steps, the MAE is more than halved in
most cases, and amounts to 4.35 kW for shopping centre,
1.53 kW for residential, 2.7 kW for public, and 1.85 kW for
workplace charging. In general, the forecasting accuracy tends
to be the best at residential and workplace charging sites. The
weakest accuracy is found at shopping centres.

The findings of this work benefit mainly two stakeholders.
Aggregators have great interest in a reliable load forecast to sell
EV flexibilities to the energy market. Network operators, in
contrast, are keen on forecasting the charging load to identify
possible bottlenecks in the distribution network. To apply the
proposed LSTM model most effectively for both use cases,
future studies should consider two aspects.

To address the outlined weaknesses of the 96‐time step
forecast, the LSTMwill be trained on data collected over a longer
time period to ensure that the training and validation data is truly
representative of the test data. With data available over several
years, the LSTM will be extended by further indicators, such as
the month, the stateful mode will be investigated again, and time
series cross validation will be performed to increase the
robustness of the model and overcome early overfitting.

Furthermore, a future research objective involves the
development of a customised LSTM, tailored to each charging
site. The forecast will be targeted to weekdays, since user
behaviour on weekends and holidays is often difficult to pre-
dict and, in many cases, as with workplace charging, the ag-
gregation potential is not sufficient enough. Additionally, the
prediction will be narrowed down to the most suitable time
periods of the day at each charging site when a sufficient
volume of EVs is available for pooling the EV flexibility and
bottlenecks caused by simultaneous charging, such as 4:00 PM
to 8:00 PM for residential charging, 8:00 AM to 12:00 PM for
public charging, or 6:00 AM to 10:00 AM for workplace
charging.
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