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Abstract: The size of the orbits or similar vertices of a network provides important information
regarding each individual component of the network. In this paper, we investigate the entropy or
information content and the symmetry index for several classes of graphs and compare the values of
this measure with that of the symmetry index of certain graphs.
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1. Introduction

Graph entropy measures were first introduced in the study of biological and chemical
systems, with Rashevsky [1] and Mowshowitz [2–5] making the main contributions. In
particular, Mowshowitz [5] interpreted the topological information content of a graph, such
as its entropy measure. Since then, various graph entropy measures have been defined to
investigate the structural properties of graphs [6–8] as well as [9–13].

A small-world graph [14,15] is a special type of graph in which the neighbors of any
given vertex are likely to be neighbors of each other, but the probability that a vertex is
the neighbor of another one is low and most vertices can be reached from each other by a
few steps.

Adaptive networks are suitable to model the complex treatment represented by vari-
ous real-world systems as well as to carry out decentralized information processing tasks
such as drifting conditions and learning from online streaming data, see [16]. On the other
hand, signal processing on graphs extends concepts and techniques from traditional signal
processing to data indexed by generic graphs, see [17]. For example, neural networks and
graph signal processing have emerged as important actors in data-science applications
dealing with complex datasets, see [18].

This paper has two objectives. In Section 1, we investigate the automorphism group
of some classes of graphs and verify their entropies and symmetry indices. In this way,
some practical graph automorphism group decompositions are created that constitute the
whole structure of graph automorphism groups.

In Section 2, we state concepts we use tp perform our analysis. We prove that there are
several classes of graphs whose symmetry index is greater or equal than the orbit-entropy
measure, while many other classes have a greater orbit entropy.

2. Entropy Measure and Symmetry Index of Graphs

Let G = (V(G), E(G)) be a connected graph. An automorphism is a permutation
α on the set of vertices of G with the property that both α and α−1 preserve the vertex
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adjacency. In other words, for two vertices u, v ∈ V(G) a permutation α on V(G) is an
automorphism, when uv ∈ E(G) if and only if α(u)α(v) ∈ E(G), where α(u) is the image
of vertex u. The set of all automorphisms under the composition of maps forms a group
denoted by Aut(G).

For example consider the cycle graph C3 in Figure 1. The line of symmetry col-
ored by red is denoted by permutation (2, 3). Hence, the permutations correspond to
blue and green lines are respectively denoted by (1, 2) and (1, 3). A clockwise rota-
tion equal 120◦ around the middle point of C3 is denoted by (1, 2, 3) and equal 240◦

by (1, 3, 2). All of these permutations preserve the vertex adjacency and thus are auto-
morphisms. Note that a 360◦ rotation preserves the figure unchanged and we denote
this permutation by (). Hence, the automorphism group of C3 has 6 elements which is
Aut(C3) = {(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.

Figure 1. The automorphism group Aut(C3) contains six permutations.

For any vertex u ∈ V(G) an orbit of G containing u is defined as uG = O(u) = {α(u) :
α ∈ Aut(G)}. We say G is vertex-transitive if it has only one orbit. Equivalently, a graph
is vertex-transitive if for two vertices u, v ∈ V(G) there is an automorphism σ ∈ Aut(G)
such that σ(u) = v.

The orbits of the automorphism group of a graph form a partition of the vertices of
the graph. This decomposition introduces the symmetry structure of the graph, and the
orbit entropy measure obtained from the automorphism group provides an index of the
complexity of the graph relative to the symmetry structure.

Mowshowitz [2] defined the topological information content, which is a classical
graph entropy measure, as

Ia(G) = −
k

∑
i=1

|Oi|
|V| log(

|Oi|
|V| ),

where Oi (1 ≤ i ≤ k) are orbits of G under the action of automorphism group on the
set of vertices. The collection of k orbits {O1, . . . , Ok} defines a finite probability scheme
in an obvious way. This measure is addressed to the problem of measuring the relative
complexity of graphs. The idea of measuring the information content of a graph was first
presented in [1]. Mowshowitz and Dehmer [19] defined the symmetry index S(G) as

S(G) = (log n− Ia(G)) + log |Aut(G)|

=
1
n
(

k

∑
i=1
|Oi| log |Oi|) + log |Aut(G)|.

2.1. Relationship between Symmetry Index and Orbit Entropy

Consider a permutation σ on the set X = {x1, . . . , xn}. Then the set of all elements
that σ moves is called the support of σ. Two permutations σ and γ are disjoint if their
supports have no intersection. Consider S to be a set of generators of Aut(G), e 6∈ S and
S = S1 ∪ . . . ∪ Sm to be the partition of S, where Si cannot be decomposed into smaller
support-disjoint subsets. Therefore, we have the following.
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Theorem 1. Ref. [20] If Ai = 〈Si〉, then Aut(G) ∼= A1 ×A2 × . . .×Am.

Consider A = Aut(G). For a vertex v in V(G), Av denotes the stabilizer subgroup of
G containing all automorphisms that fix the vertex v. Similarly, for a vertex u of G, its orbit
is a set containing all α(u), where α is an automorphism of Aut(G).

Theorem 2. Ref. [21] (Orbit-stabilizer Theorem) Let A be a permutation group acting on a set
Ω and u be an arbitrary point in the set Ω. Then |A| = |Au||uA|.

Definition 1. Harary [22] defined the corona product G1 ◦ G2 of two graphs G1 and G2 as a new
graph G obtained by taking one copy of G1 (which has p1 vertices) together with p1 copies of G2
and then joining the ith vertex of G1 to all vertices in the ith copy of G2; see Figure 2.

Figure 2. G1, G2, G1 ◦ G2, and G2 ◦ G1.

Suppose A and B are two finite groups in which B acts on the set X. The wreath
product of A and B (denoted by A o B) is a group with the underline set

A o B = {( f ; h)| f : X → A is a f unction, h ∈ B}.

The group operation can be defined as ( f1; h1)( f2; h2) = (g; h1h2), where for each
element i ∈ X, we obtain

g(i) = f1(i) f2(ih1).

Wreath product is one of the most significant combinatorial buildings in the field of
permutation group theory. The next theorem shows that the automorphism group of a big
graph can be constructed from wreath product of automorphism groups of its subgraphs.

Theorem 3. Ref. [22] The automorphism group of the corona product G1 ◦ G2 of two graphs
is isomorphic to the wreath product Aut(G1) o Aut(G2) if and only if either G1 or G2 has no
isolated vertices.

Let G and H be two disjoint graphs, where V(G) = {u1, . . . , un}, and let u ∈ V(G) and
v ∈ V(H). The splice of two graphs G and H by vertices u and v, denoted by G • H(u, v), is
a new graph constructed by identifying two vertices u and v in the union of G and H [23].
Similarly, let K be a graph constructed by G and n copies of graph H and then splicing
vertex ui of G by vertex v of the ith copy of H. The following result is contained in [24–28].

Theorem 4. (Balasubramanian) Let K be as defined above. Then Aut(K) ∼= Aut(G) oAut(H).

Here, the orbit-entropy measure and the symmetry index of some classes of well-
known graphs are determined, followed by a comparison of these measures for all the
graphs. The results show that whether a measure is greater or smaller cannot be predicted
in advance, and it depends on the structure of the graph or equivalently the structure of its
automorphism group.
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Example 1. It is demonstrated that the orbit entropy of the path graph Pn is greater than its
symmetry index, whereas for the wheel graph Wn, the star graph Sn, and the complete bipartite graph
Km,n, the orbit entropy is less than the symmetry index. To do this, consider the following cases:

(a) If n is odd, then Aut(Pn) ∼= Z2 and Pn has n−1
2 orbits of size two and a singleton orbit. Hence,

S(Pn) =
2n−1

n and Ia(Pn) = log n− n−1
n . This means that if n ≥ 7, then Ia(Pn) > S(Pn).

(b) If n is even, then Aut(Pn) ∼= Z2 and G has n/2 orbits of order 2. Hence, S(G) = 2 and
Ia(G) = log n− 1.

(c) If G = Sn, then Aut(G) ∼= Sn−1 and G has a singleton orbit together with an orbit of size
n− 1. Thus,

S(G) =
n− 1

n
log(n− 1) + log((n− 1)!)

and
Ia(G) = log n− n− 1

n
log(n− 1).

(d) For the wheel graph Wn, it is well known that Aut(Wn) ∼= D2(n−1), and consequently it has
a singleton orbit and an orbit of size n− 1. Hence,

S(Wn) =
2n− 1

n
log(n− 1) + 1 and Ia(Wn) = Ia(Sn).

(e) If G = Km,n, then Aut(G) ∼= Sn × Sm, and consequently G has two orbits of sizes m and
n. Thus,

S(G) =
m

n + m
log m +

n
n + m

log n + log(m!n!)

and

Ia(G) = log(m + n)− m
n + m

log(
m

n + m
)

− n
n + m

log(
n

n + m
).

This completes the proof.

Theorem 5. Let G be a graph with an automorphism group containing the identity element alone.
Then Ia(G) > S(G).

Proof. Assume that G is a graph on n vertices and Aut(G) ∼= id. Hence, G has n
orbits, giving

S(G) =
1
n

n

∑
i=1

1 log 1 + log 1 = 0

and Ia(G) = log n.

If the automorphism group of G acts transitively on V(G), then it is concluded that G
is vertex-transitive. Equivalently, a vertex-transitive graph has only one orbit. Similarly, an
edge-transitive graph can be defined.

Theorem 6. If G is vertex-transitive, then Ia(G) < S(G).

Proof. Because G has only one orbit, S(G) = log(n|Aut(G)|) and Ia(G) = − n
n log 1 = 0.

Therefore, Ia(G) < S(G).

The Cayley graph G = Cay(A, S) is a graph constructed from a group A and a subset
∅ 6= S ⊆ A, where e 6∈ S and S−1 = S. The vertex set of graph G comprises the elements
of A, and two vertices a and b are adjacent if and only if b−1a ∈ S.

Corollary 1. If G is a Cayley graph or G ∼= Cn, Kn, then the symmetry index of G is greater than
its orbit-entropy measure.
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Proof. It is well known that each Cayley graph is vertex-transitive [29], and the assertion
follows. On the other hand, it is well known that Aut(Cn) ∼= D2n, where D2n denotes the
dihedral group of order 2n with the following presentation:

D2n =
〈

x, y : xn = y2 = 1, y−1xy = x−1
〉

.

Also, Aut(Kn) ∼= Sn, which implies that both Cn and Kn are vertex-transitive, and we
are done.

Two vertices u and v of a graph G are said to be similar if there is an automorphism
α ∈ Aut(G) such that α(u) = v. Herein, all similar vertices have the same color.

Corollary 2. For the MacPherson graph G = M(s, t) as shown in Figure 3, Aut(M(s, t)) ∼=
Ss o Ss−1 o Ss−1 o . . . o Ss−1 and S(M(s, t)) > Ia(M(s, t)).

Figure 3. MacPherson graph M(4, 2).

Proof. It is obvious that G is constructed by Ks and n copies of graph Ks−1 and then
by splicing each vertex vi of Ks by vertex u of the ith copy of Ks−1. This means that
Aut(M(s, t)) ∼= Ss o Ss−1 o Ss−1 o . . . o Ss−1. In [30], it is proved that G is vertex-transitive.
Considering this fact and Theorem 6, we may conclude the assertion.

Theorem 7. If G is a regular edge-transitive graph, then Ia(G) < S(G).

Proof. Note first that if G is vertex-transitive, then Ia(G) < S(G) from Theorem 6. Thus,
we can assume that G is not vertex-transitive. Therefore, it is bipartite, and because G is
regular, two independent sets are exactly the orbits of Aut(G) on V(G). This means that
G ∼= Km,m, and by Example 1, the required result is obtained.

Theorem 8. Let G be a graph of order n 6= 3, with n− 2 singleton orbits and an orbit of order two.
Then Ia(G) ≥ S(G), and for n = 3, we have S(G) > Ia(G). In addition, if G has n− 3 singleton
orbits and an orbit of order three, then Ia(G) ≥ S(G)(n ≥ 8).

Proof. Suppose that n = 3 and G has an orbit of size two. Then G ∼= P3 and thus S(G) >
Ia(G). If n > 3, then Aut(G) ∼= Z2 and so S(G) = n+2

n , and Ia(G) = log n− 2
n . If n = 4, then

Ia(G) = S(G) = 3
2 . If n ≥ 5, then S(G) = n+2

n ≤ 7
5 and Ia(G) = log n− 2

n ≥
8
5 . This gives

Ia(G) > S(G), and the assertion follows. If G has n− 3 singleton orbits and an orbit of order
three, then Aut(G) ∼= S3 or Aut(G) ∼= Z3. If Aut(G) ∼= S3, then S(G) = (n+3

n ) log(3) and
Ia(G) = log n− 3

n log 3. One can see that for n ≥ 8, S(G) ≤ log 9 and thus Ia(G) > S(G).
If Aut(G) ∼= S3, then S(G) = 1 + n+3

n log 3 and Ia(G) = log n− 3
n log 3. Thus we have

Ia(G) ≥ S(G) for n ≥ 11.
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Theorem 9. Consider G to be a graph of order n, with n− k singleton orbits and an orbit of order k.
Consider the size of the automorphism group to be less than or equal to n

n√k2k
. Then S(G) ≤ Ia(G).

Proof. The following arise by definition:

S(G) = log(|Aut(G)|) + k
n
= log(|(Aut(G)|k

k
n ),

Ia(G) = log n +
k
n

log k = log(
n

n√k2k
).

Therefore, if |Aut(G)| ≤ n
n√k2k

, then S(G) ≤ Ia(G).

Theorem 10. Assume that G is a graph on n vertices and that the orbits of A = Aut(G) are
of equal size. Thus for n ≥ s, we have S(G) ≤ Ia(G), where v is an arbitrary vertex in V(G)

and s = |A|3
|Av |2

.

Proof. Suppose that G has k orbits. Then S(G) = log(m|A|) and Ia(G) = log( n
m ) = log k,

where m is the orbit size. Thus, S(G) ≤ Ia(G) if and only if m|Aut(G)| ≤ k if and only if

n ≥ |A|3
|Av |2

= s. For a given automorphism σ of graph G, the fix point of σ is defined by
f ix(σ) = {v ∈ V(G) : σ(v) = v}.

Theorem 11. Let G be a graph on n vertices and A = Aut(G). If ∑
σ∈Aut(G)

| f ix(σ)| <

na log(|A|)
log n

, then S(G) > Ia(G).

Proof. Suppose that O1, . . . , Or are all orbits of A. Because |Oi| ≥ 1, we obtain |Oi |
n log |Oi |

n ≥
1
n log 1

n , thus −
r

∑
i=1

|Oi|
n

log
|Oi|

n
≤ r

n
log n. Hence, Ia(G) ≤ r

n log(n). From the Burnside

Lemma [21], the number of orbits is r = 1
|A| ∑

σ∈A
| f ix(σ)|. This yields

Ia(G) ≤ 1
n|A| ∑

œ∈A
|fix(œ)| log(n). Now if ∑

σ∈A
| f ix(σ)| < na log(|A|)

log n
, then log(|A|) >

log(n)
n|A| ∑

σ∈A
| f ix(σ)|. Thus, log(|A|) > Ia(G) and so

1
n ∑

σ∈A
|Oi| log(|Oi|) + log(|A|) > Ia(G) +

1
n ∑

σ∈A
|Oi| log |Oi|.

This leads to S(G) > Ia(G).

Theorem 12. Suppose that G1
∼= Kn + {u} and G2 ∼= Kn + {e}; see Figure 4. Then Ia(G1) < S(G1)

and Ia(G2) < S(G2).

Proof. Clearly, G1 has n vertices of degree n− 1 and a vertex of degree two. This leads to
Aut(G1) ∼= Sn−2 ×Z2. Hence G1 has three orbits of sizes one, two, and n− 2, respectively,
which means that

S(G1) =
n + 3
n + 1

+
n− 2
n + 1

log(n− 2) + log((n− 2)!),

Ia(G1) = log(n + 1)− n− 2
n + 1

log(n− 2)− 2
n + 1

.
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Figure 4. Two graphs Kn + u and Kn + e for n = 7.

Meanwhile, G2 has n− 1 vertices of degree n− 1, a vertex of degree n, and a vertex of
degree one. This together with the fact that Aut(G2) ∼= Sn−1 leads us to assume that G2
has three orbits of sizes one, one, and n− 1, respectively, and therefore

S(G2) =
n− 1
n + 1

log(n− 1) + log((n− 1)!),

Ia(G2) = log(n + 1)− n− 1
n + 1

log(n− 1).

This completes the proof.

A caterpillar tree is a tree in which all the vertices are within distance one of a central
path. In other words, the caterpillar tree C(n1, n2, . . . , nr) consists of a path with r vertices
in which ni pendent edges are attached to the ith vertex of Pr; see Figure 5.

Figure 5. Caterpillar graph C(2, 1, 0, 3, 1, 4).

Theorem 13. Let G = C(n1, n2, . . . , nr) be a caterpillar tree, where n1 6= nr. Then Ia(G) < S(G).

Proof. The graph G has
r

∑
i=1

ni + r = n vertices, and from Theorem 1 we have that Aut(G) ∼=

Sn1 × Sn2 × . . .× Snr . This leads to the conclusion that G has 2r orbits, and thus

S(G) =
1
n

r

∑
i=1

ni log(ni) + log(n1! . . . nr!)

and

Ia(G) = log n−
r

∑
i=1

ni

n
log ni.

Hence, Ia(G) < S(G).

Theorem 14. If T is a tree with two orbits, then Ia(G) < S(G).

Proof. Let T be a tree with two orbits. It is well known that T ∼= Sn or T ∼= Bn,n [22];
see Figure 6. If T ∼= Bn,n, then Aut(G) ∼= Sn × Sn × Z2, and thus S(G) = 2 log(n!) +
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n
n+1 log(n) + 2. Meanwhile, Ia(G) = log(n + 1)− n

n+1 log(n). Hence, Ia(Bn,n) < S(Bn,n). If
T ∼= Sn, then from Example 1 we obtain Ia(Sn) < S(Sn).

Figure 6. Graph Bm,n for m = 3 and n = 7.

Theorem 15. If T is a tree with three orbits, then Ia(G) < S(G).

Proof. It is well known that each tree has either a central vertex or a central edge [31]. First,
suppose that T has a central vertex. The central vertex gives rise to a singleton orbit, and
the leaf vertices are in the second orbit. If the leaf vertices give rise to at least two orbits,
then T has at least four orbits, which is a contradiction. Hence, the leaf vertices necessarily
lie in the same orbit. The other vertices are in the same orbit, therefore they all have the
same degree. On the other hand, the leaf vertices are adjacent to the central vertex because
there are only three orbits. This leads us to investigate T ∼= Tn,r; see Figure 7. Clearly, T has
1 + n + nr vertices, and Theorem 4 gives Aut(T) ∼= Sn o Sr, where the sizes of the orbits of
T are one, n, and nr, respectively. This means that

S(T) =
n(1 + r)

n(1 + r) + 1
log n +

nr
n(1 + r) + 1

log r

+ log(n!r!n),

Ia(T) = log(n(1 + r) + 1)− n(1 + r)
n(1 + r) + 1

log n

− nr
n(1 + r) + 1

log r.

Figure 7. Tree Tn,r for n = 3 and r = 2.

Assume that T has a central edge. By a similar argument, it can be proved that
T is isomorphic with graph DTn,n, as shown in Figure 8. Theorem 4 gives Aut(T) ∼=
(S2 o Sn) o Sr, and thus T has three orbits of sizes two, 2n, and 2nr, respectively. Therefore,
we have that

S(T) = 2 log(n(1 + r) + 1)− 2n(1 + r)
n(1 + r) + 1

log n

− 2nr
n(1 + r) + 1

log r + 2,

Ia(T) = log(n(1 + r) + 1)− n(1 + r)
n(1 + r) + 1

log n

− nr
n(1 + r) + 1

log r.
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This completes the proof.

Figure 8. The tree DT3,5 in Theorem 15 for n = 3 and r = 5. It has a central edge. Vertices in an orbit
have the same color.

2.2. Orbit Entropy and Symmetry Index of Dendrimers

A dendrimer is a molecular graph associated with a dendrimer molecule. In this
section, we determine the entropy or information content of some dendrimers. In the case
of organic molecules, the lower the information content (or the greater the symmetry), the
fewer the possibilities for different interactions with other molecules. If all the atoms are in
the same equivalence classes, then it makes no difference which one interacts with an atom
of another molecule.

Theorem 16. For the dendrimer Gn shown in Figure 9, we obtain S(Gn) > Ia(Gn).

Proof. The fact that

|V(Gn)| = 6 + 4
n+1

∑
i=2

2i = 6 + 4(2n+2 − 4) = 2n+4 − 10

can be verified from Figures 9 and 10. It is not difficult to prove that Aut(Gn) ∼= Aut(Gn−1) o
Z2. Using induction on n yields Aut(Gn) ∼= Z2 : (Z2 ×Z2 × . . .×Z2︸ ︷︷ ︸

(2n+1−2)−times

), where “ : ” denotes

the semi-direct product [22]. It is clear that Gn has three orbits of size two and four orbits
of size 2m, 2 ≤ m ≤ n + 1. Hence, the symmetry index and the orbit-entropy measure of
dendrimer Gn are given by

S(Gn) = log(2n+2 − 4) +

6 +
n+1

∑
m=2

m2m+2

2n+4 − 10
,

Ia(Gn) = −( 6
2n+4 − 10

log(
2

2n+4 − 10
)

+
n+1

∑
m=2

2m+2

2n+4 − 10
log(

2m

2n+4 − 10
))

= log(2n+4 − 10)−
6 +

n+1

∑
m=2

m2m+2

2n+4 − 10
.
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Figure 9. Dendrimer G1 in Theorem 16. Vertices in an orbit have the same color.

Figure 10. Dendrimer G2.

Here, we study the orbit-entropy measure and the symmetry index of another class of
dendrimers, namely Hn, shown in Figure 11. For a given vertex v ∈ V(G), suppose that
NG(v) = {u ∈ V(G); uv ∈ V(G)} and X is a subset of vertices of graph G. By 〈X〉, we mean
the induced subgraph of G with vertex set X, and two vertices in X are adjacent if and only
if they are adjacent in G. The central vertex t has degree three and NG(w) = {x0, y0, z0}.
There are three branches rooted at vertices x0, y0, and z0. For two vertices u, v ∈ V(G),
the distance between them is the length of the shortest path connecting them, denoted by
d(u, v). By the ith level of Hn, we mean the set of vertices at distance i from the central
vertex w.

Figure 11. DendrimerH4.
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Theorem 17. For the dendrimer graphHn, we have S(Hn) > Ia(Hn).

Proof. It is obvious that |V(Hn)| = 4 + 3
n−1

∑
i=1

2i = 3(2n)− 2. Similarly, Aut(H1) ∼= S3, and

if n ≥ 2, then we have Aut(Hn) ∼= Aut(Hn−1) o Z2 from the structure ofHn. Now, using
induction on n shows that Aut(Hn) ∼= S3 : (Z2 ×Z2 × . . .×Z2︸ ︷︷ ︸

3(2n−1−1)−times

).

Hence, Hn has n + 1 orbits as follows. O1 is a singleton set containing the central
vertex w. For i ≥ 2, the ith orbit contains all vertices at distance i from the central vertex.
Hence, the vertices of the kth level of this graph are the vertices of the form a = xw, a = yw,
or a = zw of length k, where w ∈ {0, 1}k−1. Therefore, we have that

S(Hn) = log(32(2n − 2)) +
1

3(2n)− 2

n−1

∑
i=0

3(2i) log 3(2i),

Ia(Hn) = −(
n−1

∑
i=0

3(2i)

3(2n)− 2
log(

3(2i)

3(2n)− 2)
)

+
1

3(2n)− 2
log(

1
3(2n)− 2

))

= log(3(2n)− 2)

− 1
3(2n)− 2

n−1

∑
i=0

3(2i) log(3(2i)).

Consider the lattice graph L(m, n) that is the Cartesian product of two graphs Pn and
Pm, see Figure 12. Thus, we have the following.

Theorem 18. Let G = L(m, n). If n = m, then we have S(G) < Ia(G) for n ≥ 21. If n 6= m,
then we have S(G) < Ia(G) for (m + 1)(n + 1) ≥ 64.

Proof. • Consider m = n. Thus, G has (n + 1)2 vertices and Aut(G) ∼= D8, and the
following two cases hold.

(a) If n is odd, then G has n+1
2 orbits of size four and n2−1

8 orbits of size eight.
Thus, S(G) = 6n+4

n+1 and Ia(G) = 2 log(n + 1) − 3n+1
n+1 . For n ≥ 21, we obtain

log(n + 1) > 9n+7
2(n+1) , thus S(G) < Ia(G).

(b) If n is even, then G has n orbits of size four, n(n−2)
8 orbits of size eight, and a

singleton orbit. Hence, S(G) = 6n2+8n+3
(n+1)2 and Ia(G) = 2 log(n + 1)− 3n2+2n

(n+1)2 . For

n ≥ 20, log(n + 1) > 9n2+10n+3
2(n+1)2 , and thus S(G) < Ia(G).

• Consider m 6= n. Thus, Aut(G) = Z2 ×Z2, and the following four cases hold.

(a) If m and n are odd, then G has (m+1)(n+1)
4 orbits of size four. Thus, S(G) = 4

and Ia(G) = log((m + 1)(n + 1))− 2. Therefore, if (m + 1)(n + 1) ≥ 64, then
S(G) ≤ Ia(G).

(b) If m is even and n is odd, then G has m(n+1)
4 orbits of size four and n+1

2 orbits
of size two. Thus, S(G) = 4m+3

m+1 and Ia(G) = log((m + 1)(n + 1)) − 2m+1
m+1 .

Therefore, if (m + 1)(n + 1) ≥ 64, then S(G) < Ia(G).
(c) If m is odd and n is even, then G has n(m+1)

4 orbits of size four and m+1
2 orbits

of size two. Thus, S(G) = 4n+3
n+1 and Ia(G) = log((m + 1)(n + 1))− 2n+1

n+1 . For
(m + 1)(n + 1) ≥ 64, we obtain S(G) < Ia(G).
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(d) If m and n are both even, then G has nm
4 orbits of size four, n+m

2 orbits of size two,
and one singleton orbit. Thus, S(G) = 4mn+3m+3n+2

(m+1)(n+1) and

Ia(G) = log((m + 1)(n + 1))− mn + m + n
(m + 1)(n + 1)

.

Therefore, if (m + 1)(n + 1) ≥ 32, then S(G) < Ia(G).

Figure 12. Graph L(4, 4).

3. Summary and Conclusions

Quantitative measures of graph complexity, defined in terms of Shannon entropy, are
often based on vertex partitions [2,7]. For instance, partitions of the vertices of a graph
are related to symmetry structure if they are based on vertex orbit cardinalities. In this
paper, we investigated the orbit entropy [2] and the symmetry index [19] for several classes
of graphs. We compared the values of these measures based on inequalities. As a result,
we found several classes of graphs whose symmetry index was greater or equal to the
orbit-entropy measure, while many other classes had a greater orbit entropy.

We also obtained useful and novel measures based on automorphism group decom-
positions. These measures should be compared with other existing graph complexity
measures, which is left as future work.
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