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ABSTRACT

Software products, though always being expected to provide satisfactory function-
alities and be bug-free, somehow fail to meet the expectations of their users. Thus,
software maintenance is inevitable and critical for any software companies who want
their products or services to continue profiting. On the other hand, due to the fierce
competitiveness in the contemporary software market, as well as the ease of user
churns, monitoring and sustaining the satisfaction of the users is a critical criterion
for the long-term success of any software products within their evolution stage. To
such an end, continuously understanding and meeting the users’ needs and expec-
tations is the key, as it is more efficient and effective to allocate maintenance effort
accordingly to address the issues raised by users.

On the other hand, accompanied by the rapid development of internet tech-
nologies, the volume of user-generated content has been increasing exponentially.
Among such user-generated content, feedback from the customers, either numeric
rating, recommendation, or textual reviews, have been playing an increasingly criti-
cal role in product designs in terms of understanding customers’ needs. Especially for
software products that require constant maintenance and are continuously evolving,
understanding of users’ needs and complaints, as well as the changes in their opin-
ions through time, is of great importance. Additionally, supported by the advance
of data mining and machine learning techniques, the effort of knowledge discovery
from analyzing such data and specially understanding the behavior of the users shall
be largely reduced.

However, though many studies propose data-driven approaches for feedback anal-
ysis, the ones specifically on applying such methods supporting software mainte-
nance and evolution are limited. Many studies focus on the text mining perspective
of review analysis towards eliciting users’ opinions. Many others focus on the de-
tection and classification of feedback types, e.g., feature requests, bug reports, and
emotion expression, etc. For the purpose of enhancing the effectiveness in soft-
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ware maintenance and evolution practice, an effective approach on the software’s
perceived user experience and the monitoring of its changes during evolution is re-
quired.

To support the practice of software maintenance and evolution targeting enhanc-
ing user satisfaction, we propose a data-driven user review analysis approach. The
contribution of this research aims to answer the following research questions: RQ1.
How to analyze users’ collective expectation and perceived quality in use with data-
driven approaches by exploiting sentiment and topics? RQ2. How to monitor user
satisfaction over software updates during software evolution using reviews’ topics
and sentiments? RQ3. How to analyze users’ profiles, software types and situational
contexts as contexts of use that supports the analysis of user satisfaction? Towards
answering RQ1, the thesis proposes a data-driven approach of user perceived qual-
ity evaluation and users’ needs extraction via sentiment analysis and topic modeling
on large volume of user review data. Based on such outcome, the answer to RQ2
encompasses of 1) the approach to monitor user opinion changes through software
evolution by detecting similar topic pairs and 2) the approach to identify the prob-
lematic updates based on anomalies in review sentiment distribution. Towards the
answer to RQ3, a three-fold analysis is proposed: 1) situational contexts and ways of
interaction analysis, 2) user profile and preference analysis and 3) software type and
related features analysis. All the above approaches are validated by case studies.

This thesis contributes to the examination of applying data-driven end user re-
view analysis methods supporting software maintenance and evolution. The main
implication is to enrich the existing domain knowledge of software maintenance and
evolution in terms of taking advantage of the collective intelligence of end users. In
addition, it conveys unique contribution to the research on software evolution con-
texts in terms of various meaningful aspects and leads to a potential interdisciplinary
contribution as well. On the other hand, this thesis also contributes to software
maintenance and evolution practice even in the larger scope of the software indus-
try by proposing an effective series of approaches that address critical issues within.
It helps the developers ease their effort in release planning and other decision-making
activities.
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TIIVISTELMÄ

Ohjelmistot eivät usein vastaa käyttäjiensä odotuksia siitä huolimatta, että niiden
odotetaan tarjoavan riittävä toiminnallisuus ja olevan virheettömiä. Tästä syystä
ohjelmiston ylläpito on väistämätöntä ja tärkeää jokaiselle ohjelmistoyritykselle, joka
haluaa pitää tuotteensa tai palvelunsa kannattavana. Koska kilpailu nykyajan ohjelmis-
tomarkkinoilla on tiukkaa ja käyttäjien on helppo lopettaa tuotteen käyttö, yritys-
ten on erityisen tärkeää tarkkailla ja ylläpitää käyttäjätyytyväisyyttä pitkäaikaisen
menestyksen turvaamiseksi. Tämän saavuttamiseksi tärkeää on jatkuvasti ymmärtää
ja kohdata käyttäjien tarpeet ja odotukset, sillä on tehokkaampaa kohdentaa ylläpito
käyttäjien esittämien ongelmien perusteella.

Toisaalta internet-teknologiat ovat kehittyneet nopeasti samalla, kun käyttäjien
luoman sisällön määrä on kasvanut räjähdysmäisesti. Käyttäjien antama palaute (nu-
meerinen arvostelu, ehdotus tai tekstuaalinen arvio) on esimerkki tälläisestä käyt-
täjien luomasta sisällöstä ja sen merkitys tuotteiden kehittämisessä asiakkaiden tarpei-
den pohjalta kasvaa jatkuvasti. Käyttäjien tarpeiden ymmärtäminen on erityisen
tärkeää jatkuvaa ylläpitoa ja kehitystystä vaativissa ohjelmistoissa. Tällöin on myös
oleellista ymmärtää, miten asiakkaiden mielipiteet muuttuvat ajan kuluessa. Tämän
lisäksi datan louhimisen ja koneoppimisen kehitys vähentävät vaivaa, joka käyttäjän
tuottaman datan analysointiin ja erityisesti heidän käyttymisensä ymmärtämiseen
tarvitaan.

Vaikka useat tutkimukset ehdottavat tietokeskeistä lähestymistä palautteen arvioin-
tiin, ohjelmiston ylläpitoa ja kehitystä hyödyntäviä lähestymistapoja on vähän. Monet
menetelmät keskittyvät arvostelujen analysoinnissa tekstinlouhintaan paljastaakseen
käyttäjien mielipiteet. Useat menetelmät keskittyvät myös tunnistamaan ja luokit-
telemaan palautetyyppejä kuten ominaisuuspyyntöjä, virheilmoituksia ja tunteenil-
mauksia. Jotta ohjelmiston ylläpidosta saataisiin tehokkaampaa, tarvitaankin tehokas
lähestymistapa ohjelmiston havaitun käyttäjäkokemuksen ja sen muutosten tarkkailuun
ohjelmiston kehittyessä.
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Ehdotamme tietokeskeisen käyttäjäarviointien analyysin käyttämistä ohjelmis-
ton ylläpidon ja kehityksen tukemiseksi sekä käyttäjäkokemuksen parantamiseksi.
Tämä tutkimus pyrkii vastaamaan seuraaviin tutkimuskysymyksiin: 1) Kuinka analysoida
käyttäjien yhteisiä odotuksia ja havainnoitua laatua tunteita ja teemoja hyödyntävällä
tietokeskeisellä mallilla? 2) Kuinka voidaan tarkkailla käyttäjien tyytyväisyyttä ohjelmistopäiv-
ityksiin arvostelujen teemoja ja tunteita hyödyntäen? 3) Kuinka analysoida käyt-
täjien profiileita, ohjelmistotyyppejä ja tilannekohtaisia konteksteja niin että ne tuke-
vat aiemmin mainittuja aktiviteetteja? Vastatakseen ensimmäiseen tutkimuskysymyk-
seen väitöskirja ehdottaa tietokeskeistä lähestymistä käyttäjän kokeman laadun arvioin-
tiin ja käyttäjän tarpeiden erottamiseen soveltamalla tunneanalyysia ja aihemallinnusta
suureen määrään käyttäjien arviointeja. Toisen tutkimuskysymyksen vastaukset sisältävät
1) lähestymistapa käyttäjämielipiteiden muutoksen monitorointiin hyödyntäen ohjelmis-
ton kehitystä samanlaisia aihepareja tunnistamalla 2) lähestymistapa ongelmallisten
päivitysten tunnistamiseen käyttäjäarvioista havaittujen tunteiden jakauman poikkeamien
peruteella. Vastaus kolmanteen tutkimuskysymykseen on kolmijakoinen 1) tilan-
nekohtaiset kontekstit ja tavat vuorovaikutusanalyysiin 2) käyttäjä profiilien ja miel-
tymysten analysointi 3) ohjelmistotyyppien ja niihin liittyvien piirteiden analyysi.
Kaikki yllämainitut lähestymistavat on validoitu tapaustutkimuksilla.

Väitöskirja edistää ohjelmiston ylläpitoa ja kehitystä hyödyntävien tietokeskeis-
ten loppukäyttäjien arvioiden analyysimetodien tutkimusta. Tärkein tulos on ole-
massa olevan ohjelmiston ylläpidon ja kehityksen erityistietämyksen kasvattami-
nen käyttämällä loppukäyttäjien joukkoälyä. Lisäksi esittämällä useita merkittäviä
näkökulmia väitöskirja tuo ainutlaatuisen lisän ohjelmiston kehitykseen liittyvään
tutkimukseen ja johtolankoja mahdolliseen alojen väliseen yhteistyöhön. Toistaalta
väitöskirja edistää ohjelmiston ylläpitoa ja kehitykstä ohjelmistoalalla myös laajem-
malti sillä se esittää tehokkaan joukon lähestymistapoja, jotka tuovat sisältäpäin esiin
vakavia ongelmia. Tämä auttaa kehittäjiä vähentämään vaivaa julkaisun suunnit-
telussa ja muissa päätöksentekoa vaativissa tehtävissä.
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1 INTRODUCTION

Entering the new decade, accompanied by the ever-advancing information technol-
ogy, software products have been further penetrating across people’s daily lives.
They are more indispensable than ever, as the carriers of services, supporting peo-
ple’s work, easing their communication, encouraging their consumption, and pro-
viding them with entertainment. The global software market is gigantic with an
influence on most of the global population. Taking mobile application (app) mar-
ket as an example, in 2018 the global mobile app revenues amounted to over 365.2
billion U.S. dollars when in 2020 the number reached 581.9 with a 59.3% growth
[169]. By 2023, mobile apps are projected to generate over 9,935 billion U.S. dollars
through paid downloads and in-app advertising [166].

However, despite the rapid growth of the market, software companies are con-
stantly facing challenges in not only the competition from the rivals but also the
needs from their customers. As of 2019, over 2 million apps are available for down-
load on the Google Play store, while 1.83 million on the Apple AppStore [166].
However, the retention rate of their users is not optimistic: only 32% of the users
returned to an app 11 times and more, with a sharp decrease of 38% compared to the
previous year [167]. The situation for users return after 30 days is much worse: the
average retention rate drops to 5.7% across all app categories [168]. Therefore, how
to deliver to the users the software products that constantly satisfy them and retain
their interests is a key issue to all software companies.

Though all users expect to use software products that are perfect, it is inevitable
that they have unexpected bugs, faults, features to improve or add, or new environ-
ments to adapt to. Thus, software maintenance has long been considered a critical
stage of software life cycle [109]. It is also costly and time-consuming [86, 129, 183].
In addition, even decently implemented software systems, especially the ones that
mechanize a human or societal activity and are embedded in the real world [93],
must be continually adapted; otherwise, they become progressively less satisfactory
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[90]. Hence, software evolution being important and inevitable is well acknowl-
edged, the software process models have also evolved towards more evolutionary
and agile [7, 13, 28]. However, though software product being evolved to provide
continuous quality to users, users’ actual needs and expectations are often sidelined
or unable to reach the developers [142]. Meanwhile, in academia, various aspects of
software evolution have been studied [121, 122]. However, studies on conducting
software evolution together with the understanding of what the end users want and
the ones on monitoring such activities are still limited.

The support of end users, who provide feedback and requests, is a critical facet
of software evolution and shall influence the process [90, 94, 95]. Being the actual
consumers, the users provide a view from non technical perspectives different from
that of the developers [179]. According to the experiences of software companies, in-
volving users during software evolution and taking their feedback into account shall
support the continuous assessment of product acceptance, identify missing features
and improve software quality [142]. It is recommended that their requests are con-
tinuously considered and used to validate the improved performance, when such a
"feedback-validation" loop drives the evolution of software products [51, 179]. How-
ever, issues are also found towards effective user involvement, e.g., textual content in
the feedback with low quality evokes analysis difficulty; content analysis in large vol-
ume is effort-costly; communication between users and developers is disconnected;
tool support is limited [142]. Therefore, applying effectively designed data mining
and analysis approaches/pipelines is critical towards providing solutions obtaining
large volume of user feedback and extracting the latent key information.

Besides the continuous software evolution, assessing and validating the effective-
ness of such evolution to sustain users’ satisfaction is also critical to the user reten-
tion. Therefore, it is important to monitor changes in users’ needs constantly during
evolution, as well as the confirmation of software quality to such an expectation [19,
29, 137, 176]. According to the expectation-confirmation theory [138, 139], user
satisfaction is formed based on the expectations (i.e., needs) and the confirmation
of such expectations towards the users’ perception of performance, i.e, the software
perceived quality [124]. And the users’ continuing service (i.e., software) use is de-
termined by the satisfaction with prior use, which is a key to a loyal user base [3].
Thus, to such end, the continuous assessment of the confirmation of users’ needs and
expectations and their perceived software quality is the key to monitor the software
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evolution performance and to detect potential issues.
Hence, an effective process for software evolution shall continuously involve

users, track their needs and expectation on the software, assess their satisfaction as
well as the changes, and properly address the issues they raise. Though via tradi-
tional venues involving a large volume of users for opinions is hard, contemporary
software distribution platforms enable users to provide ratings and reviews reflect-
ing their needs, expectations, praise and needs [78]. Many studies conduct empirical
studies on the ratings of software products towards understanding the nature of such
user behavior and that of the rating mechanism itself [24, 36, 41, 59, 80, 143, 155, 160,
200]. Compared to rating feedback, textual reviews from the software users can pro-
vide much more information, including feature requests, functional errors, hidden
costs, uninteresting content, and so on [78]. Many studies also propose using a large
volume of user reviews to analyze the determinants of review helpfulness [26, 85,
126, 146], automatically assess the review quality with machine learning and topic
modeling methods [47, 72, 81, 111, 125, 159, 186], extract features [20, 57, 66, 148]
and design and implement tools supporting such automated analysis [25, 37, 45]. To
a large extent, these studies greatly address the challenges for user involvement in
supporting software evolution.

Furthermore, when using large volume of user feedback data, it is also critical to
understand and consider the differences amongst the users and the situations where
they use the software system. Therefore, besides the understanding of users’ needs,
it is also important for the developers to take into account the contextual informa-
tion via systematic analysis so that the planning for maintenance activities shall be
enhanced. Due to the adaptivity embraced by software evolution, software system
providers should understand the context information of the system being used and
the information of the users who use the systems [82]. Any such information that
can be used to characterize the situation of the person, place, or object, is considered
relevant and important to the interaction between a user and the system, including
the user and applications themselves [1]. Specifically, the context information, e.g.,
the surroundings of the users, physical or social [102], the traits of the clustered user
groups [99] and the types of software products [98, 100] is an important supporting
indicator to facilitate relevant decision making practice in the software maintenance.
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1.1 Research Goal and Questions

Though the end users’ needs and satisfaction is a critical measure and reflection of
the quality and success of software products, the studies on evaluating and moni-
toring this measure during software evolution are limited. For software evolution,
user involvement and support with feedback is critical; however, the difficulty in
involving large volume of users and effectively extracting their opinions from low-
quality feedback remain. Such a research gap can thus be mended by introducing
data-driven and NLP methods. Meanwhile, though many studies work on the NLP-
based data-driven methods on analyzing large volume of user reviews, monitoring
the changes of users’ expectation and satisfaction within software evolution is not
covered. Furthermore, though context is considered important influencing users’
perceived quality in use of the interactive software systems, data-driven methods for
context analysis are still limited.

Therefore, towards mending the research gaps mentioned above, the main goal of
this thesis is to investigate the application of data mining techniques towards facili-
tating the continuous monitoring of software evolution status in terms of the users’
changing needs and perceived software quality. The proposed series of data-driven
approaches aim to ease the effort of the developers in continuously monitoring the
status of updates fulfilling the needs of their end users. Towards achieving such goals,
the following critical aspects are taken into account within the research.

1. The quantification and evaluation of the collective perceived quality of a par-
ticular software product.

2. The identification of the merits and defects of the software regarding a partic-
ular update.

3. The identification of the problematic updates that the users do not like.

4. The tracking on the changes of the above aspects.

5. The additional information that can be extracted towards facilitating the ac-
tivities mentioned above.

Therefore, this thesis, with all the aspects of objectives mentioned above, shall
contribute to the answering the following research questions (RQ) respectively.
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• RQ1. How to analyze users’ collective expectation and perceived quality
in use with data-driven approaches by exploiting sentiment and topics?

Firstly, it is critical to explore the methods to evaluate users’ perceived qual-
ity for a particular software product and extract their collective expectations
and needs. Provided a large volume of user review text data is obtained, the
first key task is to extract users’ opinions and detect the strength of their opin-
ions on the key aspects of the software quality. An effective way of extracting
information from large volume of text data is via topic modeling when this
research shall explore and verify how topic modeling methods can be used to
facilitate the analysis of users’ needs. Meanwhile, the sentiment of the users’
feedback text can reflect the software’s perceived quality. Thus, herein, the
research shall also explore how sentiment analysis can be applied towards the
evaluation of software perceived quality.

• RQ2. How to monitor user satisfaction over software updates during
software evolution using reviews’ topics and sentiments?

Secondly, to facilitate the continuous evolution of software products, the users’
satisfaction shall be monitored closely, especially when new versions are re-
leased. Thus, with the method proposed to answer RQ1, this research shall
further explore the ways of measuring the changes of users’ expectations and
their perceived quality. An ideal way of achieving such result is finding a way
to detect the changes in users’ opinions, e.g., when the issues complained by
the users previously get solved afterwards. Provided the reviews on different
software versions are obtained, the research aims to provide a method to detect
which are the users’ needs that are changed between different versions.

• RQ3. How to analyze users’ profiles, software types and situational con-
texts as contexts of use that supports the analysis of user satisfaction?

It is also worth noting that the different contexts of use shall influence the per-
ceived quality and user expectation and needs. Therefore, this research aims to
address the question on how to use data-driven methods to analyze important
context information. Regarding users’ profiles, the research shall answer how
to classify different types of users based on their behaviors with the software.
On software types, it shall also address the issue of how to classify different
software products based on their features. Furthermore, regarding the situa-
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tional contexts, the question is how to detect the software’s "uncomfortable
designs" when being used in different contexts.

1.2 Scope and Contributions

Regarding the scope of the research, the effort of this thesis contributes to multi-
ple interconnected research areas. Firstly, the thesis proposes a practical data-driven
approach to effectively monitor software evolution in practice. It provides insights
and potential solutions on one of the key issues of software maintenance and evolu-
tion, i.e., continuously provide user-satisfied software updates by knowing in time
how good the software is, when the problems occur, what they are, and when they
are solved. Ideally, for any individual software product in its evolution phases with
sufficient volume of user reviews and the timeline of its updates, the approach shall
enable developers to evaluate and visualize the perceived quality of the software in
terms of a selected quality framework. Furthermore, it also helps them be aware
of the changes in users’ complaints and satisfaction on the software in general and
specific updates, especially the ones that evoke severe negativity. Secondly, this the-
sis also provides extended insights on how the context of use information regarding
either the software products or users can be analyzed facilitating such a solution,
where the updates shall solve users’ needs more precisely.

Moreover, the contribution of the thesis can also be seen as an interdisciplinary
study towards data mining application in the domain of game studies [118]. It cer-
tainly sheds light on the way of understanding the players’ perceived game quality
(i.e., playability) [35]. Nonetheless, such a promising extensible sub-scope is not the
focus of this thesis but an important part of the future work. To be noted, this re-
search focuses on the mass-market software (e.g., mobile apps or computer games on
online distribution platforms) instead of customer-oriented software systems. The
reason for such selection is the accessibility of the relevant data. Nonetheless, the
proposed approach is considered applicable to customer-oriented software systems
given adequate review data obtained.
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1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 presents the back-
ground of the relevant research domains, including, software evolution, user expec-
tation, and data-driven feedback analysis. In addition to the briefly introduced back-
ground of each field, the further respective introduction of the related works is also
presented, especially regarding the studies with similar contributions. Chapter 3 de-
scribes the design of the research, as well as the strategies and approaches applied in
this work. Chapter 4 presents the results of this research, including the concluded an-
swers to the above-raised research questions and the summary of each publication.
Chapter 5 revisits the results and contributions of the thesis and further discusses
the potential future works that could conduct further impact. Chapter 6 concludes
the thesis. Additionally, the selected original research publications are reprinted and
attached in their original format at the end of the summary section.
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2 BACKGROUND AND RELATED WORK

In this chapter, Section 2.1 firstly revisits and briefly introduces the background of
the software evolution research domain in general. Specially, this section explains
the fact that software evolution being continuous and requiring the support of end-
users to enhance its effectiveness and presents the related works in this area. There-
after, due to the importance of user satisfaction to the success of software evolution,
Section 2.2 introduces the theoretical foundation on the determinants of user satis-
faction. Therein, the importance of understanding such determinants, e.g., users’
expectations and the perceived quality of software products, is emphasized. Addi-
tionally, the section also proposes the collective analysis on such determinants, re-
flecting the statistical representativeness, based on a large volume of user feedback
and introduces the related works. Furthermore, Section 2.3 focuses on acknowledg-
ing the related methods proposed to support such collective feedback analysis using
statistical and data mining techniques. Lastly, Section 2.4 synthesizes the presented
related works and compares the difference between the contribution of this thesis
and theirs.

2.1 User Support for Continuous Software Evolution

Software maintenance and evolution has long been considered an indispensable part
of software life cycle and critical practice. Due to the inevitable negative effect of
software aging, effective and on-time support for software evolution is important
[122]. Emphasized by Lehman regarding the nature of software evolution, users’
support, specifically their feedback information and requests, is a critical facet and
shall influence the process [90]. On the other hand, the benefits of user involvement
in software engineering process have also been acknowledged widely [87]. However,
regarding the user involvement practice in software evolution, despite its importance
for developers on software quality improvement and missing features identification,
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the consolidation, structuring, analysis, and tracking of user feedback is still effort-
consuming [142].

2.1.1 Software Evolution

Software maintenance is defined as the modification of a software product after de-
livery to correct faults, to improve performance or other attributes, or to adapt
the product to a modified environment [67]. The main categories of maintenance
include corrective, adaptive, perfective and preventive, which are still commonly
adopted [71, 110]. It has been commonly acknowledged that software maintenance,
especially as a fixed final step of the software life cycle [191], is both inevitable and
costly [86]. Comparatively, though were used interchangeably with the term "main-
tenance", software evolution is seen as an alternative to describe various phenom-
ena associated with modifying existing software systems [50]. The difference between
software maintenance and software evolution is threefold: 1) Maintenance suggests
preservation and fixing, whereas evolution suggests new designs evolving from old
ones; 2) Maintenance is a set of activities conducted on the system, whereas evolu-
tion concerns whatever happens to a system over time; 3) maintenance is focusing
on engineering goal, whereas evolution is concerning a broader and more scientific
nature [50].

Specially focusing on software evolution, Lehman and collaborators are the pi-
oneers studying its fundamental difference from software maintenance. Lehman
formulated a set of observations named Laws of Evolution, focusing on E-type pro-
grams, i.e., the ones that mechanize a human or societal activity and are embed-
ded in the real world [90, 91, 92, 93, 94, 95]. To simply and informally put, an
E-type program are software that implements an application or addresses a problem
in the real world, e.g., instant messenger mobile applications for communication,
video games for interactive entertainment, and so on. Regarding E-type programs,
according to Lehman, the processes for E-type programming constitute multi-loop,
multi-level feedback systems [90]. In addition, Lehman emphasizes users’ support,
specifically their feedback information and requests, is a critical facet and shall influ-
ence the process [90]. On the other hand, such a multi-loop feedback mechanism is
also reflected in the staged model for software lifecycle, where the evolution stage is
driven by multi-rounds of changes [7]. Therein, when outlining such a model, spe-
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cially on software evolution, Bennett and Rajlich emphasize the knowledge of user
requirements is a crucial prerequisite and during the evolution applications adapted
to such ever-changing user requirements is the key [7].

2.1.2 User Support & Feedback for Software Evolution

Alongside the emphasized importance of software evolution, it shall be noted that
the end-users of a software product are the actual consumers whose interests are in its
functionality from a non-technical perspective [179]. It is recommended that their
requests towards changes are taken into account by the developers who also need
to know whether the corresponding implementation has addressed users’ needs and
has improved the performance [179]. Therefore, as time passes, when the software
product inevitably evolves, the end-users and the feedback information they provide
become part of the feedback loop driving such continuous evolution [51]. Such a
notion of user involvement, even before its connection to software evolution, has
also been long studied towards maximizing the usefulness and usability of software
products by understanding users’ needs and expectations [87]. It has become increas-
ingly important to involve end-users within the process of software development and
evolution. One critical reason is that the distance between developers and end-users
is getting larger due to the shift of the majority of users to the non-technicians and
the changes of distribution channels to online software platforms [55, 56]. There-
fore, the developers shall pay extra attention to the changing requests from the users,
especially during the post-deployment phase [84, 115].

Although the awareness regarding the importance of users’ feedback in software
evolution is raised, early studies focused on the user involvement in early stages of
the software lifecycle, the degree and approach of such involvement, and the accord-
ing effects on software acceptance [87, 185]. Specifically, regarding the factors that
hinder software evolution decisions, Ko et al.’s study shows 1) that developers prefer
to cope with the feedback from the majority of the users, and 2) the disagreement
in users’ feedback also hinder any feedback from being taken into account [84]. On
the other hand, Heiskari and Lehtola investigate the state of user involvement prac-
tice back then and find that 1) user feedback and relevant information was difficult
to access with no explicit process of understanding users, 2) it is hard to determine
the average end-user opinion, and 3) the integration of user knowledge into develop-
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ment and evolution process is needed [61]. Zimmermann et al.’s study on open
source software bug reports concurs that it is hard for developers to understand
the users’ needs with missing and mismatched information and indicates that well-
known users’ opinions, even less important ones, are more likely to be taken into
account [199].

Pagano and Bruegge conduct an empirical case study on five software companies
focusing on exploring the practice of user involvement specifically during the soft-
ware evolution stage [142]. Part of their findings confirmed the conclusion of the
previously mentioned studies. In addition, their study investigates also the multiple
aspects of the user involvement practices in software companies, including infras-
tructure, frequency, communication, motivation, analysis methods, problems, tool
support, consolidation, and assessment. Besides the findings confirming the previous
studies, Pagano and Bruegge’s study presents the following indications concerning
the understanding of user feedback: 1) users tend to choose more public channels
to publish critical feedback; 2) users frequently provide feedback which does not al-
ways reach developers; 3) user feedback supports continuous assessment of product
acceptance; 4) user feedback can improve software quality; 5) user feedback helps to
identify missing features; 6) user feedback conveys trust in the form of positive user
ratings and user experience; 7) developers prioritize feedback-oriented tasks based
on their occurrence frequency.

In addition, regarding the existing problems of user involvement practice, Pagano
and Bruegge find that 1) natural language content, low quality and contradiction in
user feedback evokes analysis difficulty; 2) content analysis, impact, and priority esti-
mation are effort-costly; 3) user-developer communication channel is disconnected;
4) tool support to structure, analyze, and track user feedback is needed, particularly
when feedback volume is high [142]. However, these uncovered problems can be
properly solved by applying data mining, machine learning, and natural language
processing (NLP) techniques and the wide adoption of online software distribution
platforms. For example, Chen et al. use Expectation Maximization for Naïve Bayes
(EMNB) [133] to extract informative feedback from the raw textual content, which
eases the feedback analysis [25]. Villarroel et al. use the DBSCAN clustering al-
gorithm [40] to prioritize the user reviews facilitating the planning of subsequent
mobile app release [184]. In addition, online software distribution platforms, such
as Apple App Store and Google Play for mobile apps, Steam for video games, and Mi-
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crosoft Store for Windows Desktop software, are providing communication chan-
nels connecting developers and users. For the large volume of user feedback data
from such platforms, many tools are proposed in academia facilitating the under-
standing of user feedback [46].

2.1.3 The Continuity of Software Evolution

On the other hand, besides the requirements of user support and feedback, an E-
type program must be continually adapted, otherwise it becomes progressively less
satisfactory with its functional content must be continually increased to maintain
user satisfaction over its lifetime [90, 91, 92]. Hence, the continuity of software
evolution is also a critical aspect. Within a larger scope, the trend towards contin-
uous software engineering has been widely reflected within the need for flexibility
and rapid adaptation in software development environment [43]. Such vast interest
across the industry has been raised since the spreading recognition of the importance
of increased frequency of key activities, from the notion of ’release early, release of-
ten’, to the concept of DevOps, to the adoption of agile methods, to the thinking
of lean [33, 43, 79, 96, 147]. The overall continuous activities in the entire software
life cycle positioned within a holistic view is proposed as the notion of Continuous*,
which encompasses the continuous activities in business strategy and planning, de-
velopment and operations [43]. Therein, continuous software evolution is anchored
as one of the key activities in the development phase.

Specially on software evolution, according to Lehman’s laws, for most of the con-
temporary software products (i.e., E-type programs), the nature of being continu-
ously adapted and improved is required to sustain satisfactory quality [90]. Accom-
panied with such nearly inevitable continuous evolution, the complexity of software
is increasing with functional content increasing as well. Though the concept "dis-
continuity" of software evolution is also brought up, meaning the required changes
to evolve are beyond the level of tolerance to change so that the architecture requires
re-engineering, the notion of continuously required improvement in software evo-
lution remains [4]. Specially, the evolution of mobile apps is fast due to the rapid
technology evolution and the online distribution service [4]. Furthermore, based
on the difference in update time span and pace of introducing new features, the evo-
lution of mobile apps can be seen as emergency-driven, feature-driven or pace-driven
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[103].
Overall, the support and feedback from end-users are critical towards the long-

lasting success of software products via continuous software evolution. Though it is
difficult for developers to efficiently and effectively involve a large number of end-
users and extracting their requirements [143], data mining and NLP techniques ap-
plied on user feedback data from online software distribution platforms shall con-
tribute to the solution. Meanwhile, it is also important to sustain the continuity of
the evolution process in order to continuously satisfy the users [90]. Thus, when
extracting user requirements from feedback, the developers should also be aware of
whether and to what extent these needs are addressed through updates.

2.2 Monitoring User’s Collective Needs

Due to the rapidly growing software market and its competitiveness, how to deliver
to the users the software products that constantly satisfy them and retain their inter-
ests is a key issue to all software companies. Therefore, a general investigation of user
satisfaction is necessary. The expectation-confirmation theory (ECT) is widely cited
towards understanding the satisfaction of customers in the marketing literature [137,
138]. ECT indicates that the customers repurchasing particular products or contin-
uing service use is determined by their satisfaction with prior use of the product or
service, which is also a key to retain such a loyal base of long-term customers [3,
138].

Figure 2.1 The Expectation-Confirmation Theory [137, 138]

The process towards customers’ repurchase intention can be described as follows
(shown in Figure 2.1): Firstly the customers form the initial expectation towards
a particular product or service before purchasing it. After using it, the customers
form the perception of the quality. When such perceived quality is assessed accord-
ing to their expectation, the extent to which the expectation is confirmed is deter-
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mined. The satisfaction is formed based on the expectation and the corresponding
confirmation, which leads to the potential repurchase intention or discontinuation
of subsequent use. Regarding software products, the identical conclusion is drawn
by Bhattacherjee [10] who also emphasizes that due to the fact that post-acceptance
satisfaction is grounded in users’ first-hand experience with the software, ignoring it
can have disastrous consequence for user continuance.

2.2.1 The Expectation

Generally, expectations are consumer-defined probabilities of the occurrence of pos-
itive and negative events if the consumer engages in some behavior [139]. It is the
wished calculation of probability of performance or the expected performance lev-
els by the customers [174]. In information system (IS) studies, Szajna and Scammell
define the expectation of IS users as "a set of beliefs held by the targeted users of an
information system associated with the eventual performance of the IS and with their
performance using the system" [176]. They also emphasize that the realism of user
expectations is potentially a factor in the success or failure of IS. Therefore, user in-
volvement in the design of an information system brings about realistic expectations
of system capabilities [48]. And it is also an important job of software project man-
agers to make sure such expectations are realistic and consistent with the promised
software deliverable [5, 176]. The unrealistic expectation is somehow one of the
critical risks of software project management when it can sabotage both the success
of products and projects [5].

Regarding the difference and connection between the terms, expectation, and re-
quirement, it is common to see them as identical, as in a broad sense, every require-
ment is also an expectation: the customer expects that the requirement will be met [187].
However, the main difference between them is that the former are objectively stated
and clearly defined, while the latter are subjective, and loosely understood [187]. Hence,
in terms of RE, user requirements is a linking concept towards "users’ needs" adopted
in both IS study and software engineering [112, 116], especially when end-user is a
critical stakeholder [134]. The traditional methods of identifying user requirements
include surveys, interviews, focus groups, scenarios and use cases, workshops, and
evaluating an existing or competitor system [116]. These methods are also adopted
in requirements elicitation of user-centered requirements engineering practice [171,
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197]. To be noted, the outcome of such elicitation is rather the raw expectation of the
users, as requirements specification is needed to transform such subjective and am-
biguous expectation into objectively described and documented requirements [116].

Thus, towards the assuring of user expectation/requirements being understood,
the involvement of end-users in RE process is critical for the quality of the require-
ments, and furthermore, the success of the software [88]. Meanwhile, it is com-
mon that such requirements elicitation traditionally has to satisfy the needs of the
majority of users [172]. However, the traditional requirements elicitation methods
fall short in involving a sufficient amount of end-users which is representative of
the majority. Hence, approaches to collect spontaneous end-user feedback are pro-
posed [162, 163]. Furthermore, adopting the idea of Wisdom of the Crowds [170],
crowd-based requirements engineering (CrowdRE) is proposed as a semi automated
RE approach for obtaining and analyzing any kind of “user feedback” from a “crowd”,
with the goal of deriving validated user requirements [53, 54]. Specially emphasized
therein, Groen et al. indicate that CrowdRE should cater to the diversity of users
despite their backgrounds and expectations [54]. Hence, eliciting and analyzing a
large volume of end-user (i.e., crowd) feedback from social media and app stores is
the key for Groen et al.’s approach; however, they fall short in providing specified
techniques supporting such an approach [54].

2.2.2 The Perceived Quality

The perceived quality is a critical factor determining the confirmation of IS users’
expectations and furthermore, their satisfaction [10, 138]. It indicates the degree to
which a person believes that using the system shall enhance his/her performance and
reflects how systems (should) behave in order to meet users’ constraints and needs
[38]. Knowing and being able to predict such perceived quality may allow an or-
ganization to adjust deployment to meet the quality expectations of its customers
[124]. Many studies have explored the factors determining the users’ perceived qual-
ity of interactive software products and the potential dimensions of the concept [38,
124]. On the other hand, considering the broader concept of perceived quality in the
domain of service marketing [52], such perception of software quality measured in
terms of the result of using the software rather than properties of the software itself
is referred to as the software product’s quality in use [8, 68]. Specially, compared to
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the internal and external quality of software, its quality in use is measured by the ex-
tent to which the software meets the needs of the user in the working environment
[8].

Regarding the measurement of product quality in general, several models are pro-
posed. For example, the early Factors-Criteria-Metrics model provides a fundamental
goal-oriented methodology for measuring software quality with a set of questions
used to measure each individual criterion [119]. Similarly, models using low-level
metrics instead of questions towards objectively measuring attributes to higher-level
characteristics are also proposed [14]. The major defect of such approaches lies in
the difficulty to obtain all metrics from "bottom-up" towards a global measure of
quality which can be achieved via surveys [189]. In Xenos and Christodoulakis’
study on the perceived software quality measurement, they propose a survey-based
perceived quality measuring method that focuses on the "satisfaction of customer re-
quirements" as software perceived quality [189]. However, the disadvantages of the
survey method include the cost in deploying the techniques, error rates, subjectiv-
ity of the answers, and human factors in surveys and measurements [189]. On the
other hand, heuristic evaluation, as another external measurement method, is also
widely adopted; however, such a method relies on the experiences of experts heavily
and can cause bias according to the changing mindsets of evaluators [132]. Machine
learning methods are also applied to evaluate software usability, e.g., for eLearning
systems in [140]; however, the method is neither verified extendable to other quality
attributes nor to other software types.

2.2.3 The Confirmation

According to the ECT, user satisfaction is determined by the extent to which his/her
expectation of the perceived quality of the software product is confirmed [10, 138].
Such activity of confirmation is important, because the mismatch between customer-
s/users’ expectations and the features provided by the software product is one of the
main reasons for the failure of many software projects [154]. In RE domain, re-
quirements traceability is the activity aiming to confirm and ensure the continued
alignment between user requirements and system evolution, where the satisfaction
of requirements is one of the major focuses [152]. Specifically, a goal-oriented RE
modeling approach is used towards the specification on what to be satisfied and con-
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firmed [31]. To such an end, Letier and van Lamsweerde’s early study introduces
a semi-formal application-specific approach specifying the partial goal satisfaction,
where propagation rules and refinement equations are used to calculate the satisfac-
tion degree [97]. Furthermore, Holbrook et al. apply TF-IDF similarity score and
textual similarity towards the automation of requirements satisfaction assessment
[62]. Port et al.’s study also uses text mining as support towards the confirmation
of software requirements in terms of traceability assurance [150]. However, these
approaches focus on the assurance and confirmation of requirements in terms of
high-level business goals in the form of specified and well-formatted requirements.
Therein, limited studies have explored the confirmation of end users’ satisfaction
towards the evaluated end-users’ perceived quality.

2.2.4 The Contexts

As software evolution embraces adaptivity when system providers need to under-
stand the context where the systems are used and the context of users for the adap-
tation as well [82]. An operational definition of context is that it is any information
that can be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an applica-
tion, including the user and applications themselves [1]. Many studies also propose
the categorization of context types which facilitates the potential context-aware de-
signs when location, identity, activity and time, social connections, etc. are the ones
mentioned by the majority [1, 157, 161]. Regarding the context of use for usability,
the main attributes of which include: 1) the user: a person who interacts directly or
indirectly with the system, 2) the task: a piece of work that the user carries out by
interacting with the system, and 3) the environment in which the system is used, i.e.,
the external factors that affect the use of the system [2, 9, 69]. On the other hand, it
is inevitable that the users’ perceived quality in use is measured by the users within
its contexts of use [68]. Thus, when assessing it as well as the confirmation of it to
the users’ expectation, care shall be taken when such assessment is generalized to an-
other context with different types of users, tasks or environments [8]. Specifically,
in order to achieve such quality in use by incorporating human-centered design ac-
tivities throughout the life cycle of interactive systems, understanding and specifying
the context of use is one of the key tasks [8, 70].
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Therein, the situational context refers to the extrinsic properties of the user and
the software that impact the initiation of interaction between the user and the soft-
ware, mostly mobile applications [102]. Specially regarding the use of mobile ap-
plications in general, situational context is an important factor that influences the
adoption of mobile applications and the according users’ behaviors [108, 181, 190].
Many previous studies have explored the multiple aspects of the situational contexts
of mobile application use, including the definition of the interaction tasks, the physi-
cal environment, the user and social environment, and the types of the application in
use [30, 74]. Though the concept of situational context is studied, the studies on tak-
ing into account such a concept within the process of software evolution are limited.
Specially, user profiles and their preferences are also important context information
supporting the potential personalized design of software products [173]. With such
context information, user satisfaction can be enhanced via a recommender system
designed for personalized services [107], as it can be seen as either new features or
enhancement within the evolution stage. Furthermore, the types of the application
are also studied as one of the key contextual factors [30, 74]. However, the ways
of analyzing the existing software types based on the provided features using data-
driven approaches are not adequately explored.

As mentioned previously, the ECT shows the simplified causal relation between end
users’ expectations and perceived quality of software and their satisfaction. It can be
seen as the main goal of software evolution to maintain the satisfaction of the major-
ity of users by confirming their changing expectations during the evolution lifecycle.
Many studies in the last three decades have investigated the critical elements of ECT,
i.e., user expectations, perceived quality, and confirmation, respectively in the do-
main of software engineering. However, studies on the continuous monitoring of
collective user satisfaction in order to improve the software evolution practice with
ECT taken into account.

2.3 User Feedback Analysis Methods

In order to enhance user involvement towards effective software evolution, it is im-
portant to obtain the users’ feedback on their acceptance of the systems. The tra-
ditional feedback channels include email, forum, and social media when such data
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is hard to be extracted and synthesized without pre-implemented API. Understand-
ing the importance of user feedback, software companies inject the feedback feature
in their online distribution platform, e.g., Google Play1, Apple AppStore2, Steam3,
PlayStation Store4, Microsoft Store5, etc. Therein, the users can submit their feed-
back regarding the target software in form of ratings (either numeric ratings or rec-
ommend/not recommend) and textual reviews [143]. The analysis of such feedback
information is critical to facilitate the evolution of software products and services
[17, 83]. Therein, many studies have provided approaches to analyze such informa-
tion in order to support the sustainability and improvement of software products.

2.3.1 Rating Analysis

In general, the ratings of software products and their popularity are certainly corre-
lated, so that the developers must carefully take into account such evaluation results
[42]. Therein, empirical studies on the rating feedback that reflects the nature of
such user behaviors or that of the rating mechanism is common in academia.

Pagano and Maalej’s empirical study on 1,126,453 reviews from 1,100 mobile ap-
plications of Apple AppStore shows that the average rating is very positive when the
apps’ ranking and the ratings are not independent of each other [143]. Regarding the
quality of the feedback, the study also finds that when the helpfulness of feedback is
assessed by the user community, such assessment tends to be either very positive or
very negative. Relevant results are also provided by Chen and Liu’s study via obser-
vation, indicating that the top-ranked paid applications are not necessarily closely
correlated with the ratings given by the users [24]. Harman et al.’s study on the
Blackberry Store also provides results on the correlations between software ratings
and other key factors: the ratings of apps are not correlated with the prices but are
strongly correlated with the numbers of downloads [59].

Ruiz et al. analyze the ratings of 242,089 app versions of 131,649 selected mobile
apps towards examining the rating system mechanism of mobile app stores [155].
Based on the statistical analysis on version ratings, they suggest that developers have

1https://play.google.com/store/apps
2https://www.apple.com/app-store/
3https://store.steampowered.com/
4https://store.playstation.com/
5https://www.microsoft.com/en-us/store/apps/windows
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no incentive to maintain or improve app ratings and gain limited benefits when ver-
sion ratings are not displayed. They also suggest that more advanced ways to gener-
ate ratings, e.g., exponentially decaying the older ratings and thus emphasizing the
recent version ratings, should be explored.

Sarro et al.’s study on 11,537 mobile apps from Blackberry and Samsung App-
Store with 1,876 features shows that apps’ rating is predictable from their claimed
features [160]. In addition, the study also shows that for all app categories, the rat-
ings are predictable for 98% of the cases regardless of the app sizes. They also validate
that the performance of such prediction is not influenced by the configuration of the
case-based prediction system when the best prediction can be achieved with only a
limited number of apps.

Finkelstein et al.’s study also confirms the correlation between mobile apps’ rat-
ings and their number of downloads, but still little evidence on that between price
and ratings [41]. The study also shows that free mobile apps are generally rated
higher and more popular than non-free apps.

Furthermore, many other studies also provides insights on the connection be-
tween the users’ ratings and the other relevant attributes of software products, as
well as reflecting other user behaviors. For example, Di Sorbo et al.’s study suggests
that users experiencing bugs tend to provide lower ratings when no such impact is
observed for users asking for new features or enhancement [36]. Zolkepli et al.’s
research suggests that users give higher ratings to mobile apps that are trending and
would prefer to pay for those with higher ratings [200]. Kim et al.’s study shows
that a mobile app’s rating is one of the key determinants in a user’s purchase deci-
sion [80]. However, despite the studies showing the importance of user ratings and
suggesting such information being taken into account, due to limited information
provided therein, studies that use only rating feedback to support software engineer-
ing practice are limited.

2.3.2 Textual Review Analysis

Compared to rating feedback, the textual reviews from the software users can pro-
vide much more information, including feature requests, functional errors, hidden
cost, uninteresting content, and so on [78]. This information is thus critically mean-
ingful to the developers or product owners’ understanding of the collective expecta-

41



tion of the users, provided such information is elicited from a large volume of review
data.

Based on Pagano and Bruegge’s research, the quality of textual user feedback is an
important factor challenging the involvement of users in software evolution [142].
Regarding the quality of user reviews, an early study by Cheung et al. confirms that
information usefulness has a significant impact on consumer decision of adopting
such information [26]. Their findings also admit that the accuracy of such informa-
tion quality is hard to evaluate by the users. From a different perspective, Mudambi
and Schuff’s study shows that review depth has a positive impact on the perceived
helpfulness of the reviews when the extremity of reviews helps only for search goods
rather than for experience goods, e.g., majority of software products [126]. Regard-
ing the determinants of review helpfulness, Pan and Zhang find review length and
positive reviews are directly correlated to review helpfulness [146]when Korfiatis et
al.’s findings convey similar conclusions and add review readability into such deter-
minant list [85].

Moreover, towards the assessment of user review quality, an early study of Kim
et al. proposes an automated assessment approach to use support vector machine
(SVM) to predict the helpfulness of unlabelled reviews using both numeric ratings
and semantic features of review texts [81]. Comparatively, Ghose and Ipeirotis’
study applies a Random Forest-based classifier to automatically identify reviews ex-
pected to be helpful based on reviewers’ relatedness and subjectivity as well as review
readability [47]. For a similar purpose, Moghaddam et al. use a probabilistic graph-
ical model based on Matrix Factorization and Tensor Factorization, focusing on the
latent features [125]. On the other hand, identifying spam reviews is another way of
enhancing the quality of the user review. For example, Jindal and Liu build a logis-
tic regression model using both the textual features and rating features of reviews to
identify different types of spam reviews, including untruthful reviews, brand-only
reviews, and non-reviews [72]. Comparatively, other models and approaches are
also used for the same purpose, such as linear regression model [111], heterogeneous
graph model [186], as well as semantic similarity method and LDA model [159].

Within user reviews together with the associated sentiments [57], Park et al.’s
study uses adapted LDA topic modeling method to analyze both user reviews and
mobile app descriptions in order to elicit important features of apps by bridging the
vocabulary gap between developers and users [148]. On the other hand, statistical
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analysis methods are also used to extract features from user reviews. For example,
Pagano and Maalej’s study uses the distribution of the number of topics per feedback
interpreting the main themes from user reviews [143]. In Fu et al.’ study, descrip-
tive statistical analysis is used to facilitate the interpretation of market trends as well
as the extracted aspects of mobile app quality [45]. The other approaches applied
towards feature extraction of textual user reviews include SVM used by Oh et al. ex-
tracting functional and non-functional user requests [135], Naïve Bayes and Decision
Tree classification approaches used by McIlroy et al. extracting and labeling different
user issues [120], even manual tagging used by Khalid and colleagues extracting and
summarizing user complaints [77, 78], and so on.

Tools to support automated analysis of large user review volume are also pro-
posed. Fu et al.’s study proposes an analytic tool, WisCom, which provides insights
based on mobile app user textual reviews [45]. The tool enables discovering incon-
sistencies in reviews, identifying reasons why users like or dislike a given app, and
provide an interactive view of the evolution of reviews over time, and identifying
users’ major concerns and app preferences. The results are demonstrated via the over
13 million user reviews of 171,493 Android apps in the Google Play Store. Chen et
al. propose the AR-miner framework that facilitates extraction of informative user
reviews by filtering the irrelevant, review grouping by topics, review prioritization
by review ranking scheme, and presentation of the informative review groups via vi-
sualization [25]. Di Sorbo et al.’s study introduces the Summarizer of User Review
Feedback approach to capture the users’ needs and recommend the changes needed
by the users [37]. Such analysis of user reviews provides the developers with insights
on understanding the maintenance tasks and identifying which parts to change.

To sum up, for nearly all the contemporary mass-market software products, evolu-
tion is inevitable and critical for their long-term acceptance and profitability. The
maintenance effort within the evolution phase shall be continuous in order to meet
the changing needs of the majority of end-users. However, despite being emphasized
by Lehman that the support of users’ feedback is important, the studies to support
such activities are still limited, where this thesis aims to contribute. Comparatively,
Pagano and Bruegge’s study raises the awareness of such a research gap as well as
the challenges within but does not provide solutions [142]. Subsequently towards
such solutions, Pagano and Maalej also find utilizing the convenient online distribu-
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tion platforms is useful towards user involvement but did not fit such a study in the
software evolution domain [143]. Following this thread, many studies that propose
approaches of analyzing user feedback and extracting information also fall short in
mapping their contribution to software evolution [25, 45, 57]. On the other hand,
research of software evolution focuses more on improving the software quality from
the module level and source code changes [64, 131, 198] and the evolution practices
for specific software types or particular services [18, 60, 158, 194] with very limited
attention paid to the investigation of users’ opinions. Regarding the effectiveness
of software evolution, the satisfaction of end-users is a critical metric. According to
ECT, the customers’ continuous use of the software is determined by their satisfac-
tion, which is determined by the extent to which their expectation of it is confirmed
by their perceived performance [10, 137, 138]. However, the theory, as well as the
key conceptual components, is seldom adopted in software engineering, especially
regarding software evolution, though many studies in the information system re-
search domain explore the known determinants and other relevant variables [39,
114, 165, 178].

Therefore, specification of the users’ expectations and needs, as well as that of
their perceived quality of the software product is critical. Regarding the measure of
software perceived quality, the survey and statistical approach, e.g., the one proposed
by Xenos and Christodoulakis [189], is certainly useful but yields to the limitation,
including the cost in deployment, error rates, subjectivity, and human factors. On
the other hand, regarding the extraction of users’ expectations and needs, it is im-
practical to apply traditional requirements elicitation techniques, such as interviews
or observation studies [182]. Comparatively, opinion mining from user feedback
towards both perceived quality evaluation and user expectation extraction is more
efficient and accurate. Palomba et al. propose CRISTAL approach tracing informa-
tive crowd reviews and meanwhile monitoring the extent to which developers ac-
commodate the crowd requests [144, 145]. The CRISTAL approach contributes to
the mapping and tracing of reviews and the code changes together with the measure
of users’ satisfaction towards such changes. Instead of the mapping to source code,
this research explores the use of sentiment analysis towards perceived quality mea-
surement and abnormal update detection that also supports the software evolution
practice.
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2.4 Research Gap

The research gap between this thesis and the existing work can be seen from the
following three perspectives.

1. Difficulties in involving end users and extracting their feedback in software evolu-
tion. It has long been emphasized that user support and feedback is critical to
the continuously evolving software system from a non-technical perspective,
when the studies towards finding effective ways of utilizing such information
are still limited. Though the traditional ways of involving end users in soft-
ware evolution are studied, difficulties in extracting representative opinions
remains in inviting large number of users for surveys and also in analyzing
feedback content with natural language and in low quality. Hence, the data-
driven approach proposed by this research aims to mend such gap.

2. Lack of methods in continuous monitoring evolution status via the changes in
users’ collective needs. Many existing works have proposed the NLP-based data-
driven methods on analyzing large volume of user reviews. However, those
studies have not sufficiently addressed the issues in monitoring the status of
software evaluation in terms of the changes in users’ perceived quality and sat-
isfaction. Guided by the commonly acknowledged ECT as theoretical foun-
dation, the research shall provide a way of checking the confirmation of users’
collective expectations and tracking the changes of their satisfaction through
the evolution.

3. Lack of methods in analyzing the various context information. Users’ context
information is important influencing their perceived quality in use of the inter-
active software system. Though many studies have investigated the definition
and classification of such context information, the analysis methods in data-
driven fashion are limited. This research also aims to mend the gap towards
analyze the fundamental but important context information using data-driven
and statistic methods.

Hence, this thesis aims to contribute to mending the research gaps mentioned
above focusing on effective user involvement and feedback analysis, continuous mon-
itoring evolution status based on collective user expectation confirmation, and data-
driven context analysis. Illustrated in Figure 2.2, the main focus of the research is to
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Figure 2.2 Framework of User Feedback Supported Continuous Software Evolution

explore the ways of evaluating the end users’ perceived quality and extracting their
expectations (i.e., the yellow box of ECT-diagram on the right) from their feedback
(i.e., the yellow-arrow analysis activity). Furthermore, such evaluation and extracted
knowledge shall be continuously applied within the evolution process where end
users’ satisfaction is tracked by continuously verifying the confirmation of their col-
lective expectation (i.e., the loop). Thirdly, the thesis also contributes to the un-
derstanding of some important aspects of the context of software evolution using
data-driven approaches (i.e., dotted yellow box in the middle).
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3 RESEARCH DESIGN

The chapter presents the overall planning and structure of this thesis work as well as
the brief introduction of the adopted research methods, the collected data, and the
utilized analysis techniques. Specifically, Section 3.1 describes the structure of the
research in terms of the mapping of publications towards the potential answers to
the previously proposed research questions. Section 3.2 introduces case study as the
main research method adopted across the publications. Section 3.3 briefly introduces
the research data collected and used in the case studies, as well as the data mining,
opinion mining and machine learning techniques that are adopted to analyze such
collected data.

3.1 Research Structure

The main goal of the the research is to propose a data-driven approach that contin-
uously extracts the needs and expectation of the majority of software end users and
monitors their satisfaction through the software evolution phase with unique con-
text information taken into account. Therefore, such an approach shall provide the
features mentioned above including: 1) specification of perceived quality, 2) speci-
fication of needs and expectation, 3) confirmation analysis, and 4) context analysis.
Such a four-fold research structure in then shown in Figure 3.1.

In Figure 3.1, the green round-cornered boxes depict the activities in the approach
process, where the according techniques and/or methods adopted (marked as blue
letters) are listed within as bullet-points. The gray rectangles are the inputs and/or
outputs of the activities. The publications (marked in green letters) are the final
outputs of the four specified critical contributions mentioned above and are also
mapped accordingly. Furthermore, the contributions of the publications answering
each of the previously proposed research questions are also shown in the figure. To
be noted, the activity marked in gray indicates that the activity situational context
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Figure 3.1 The Research Framework Overview

crawling, due to the limitation of techniques and privacy issues, has not yet been
covered in this thesis and shall be discussed as future work.

3.2 Case Study as Research Method

Within the publications, case study is the research method that has been applied in
the majority. Case study research method is defined as "an empirical inquiry that
investigates a contemporary phenomenon within its real-life context; when the bound-
aries between phenomenon and context are not clearly evident; and in which multiple
sources of evidence are used" [192]. It closely examines the data within a specific con-
text by selecting a limited number of individuals as subjects, which, in its essence,
explores and investigates real-life phenomena through detailed contextual analysis
of a limited number of events or conditions, and their relationships [193]. Though
commonly used in psychology, sociology, political science and etc, case studies are
also commonly applied in software engineering domain. The reason is that software
engineering is largely to investigate how the proposed approaches are conducted by
stakeholders under different conditions when case study offers an approach that does
not need a strict boundary between such conditions and the objectives [156].

According to Runeson and Höst’s study on the research purpose types, case study
as research method can be classified into four types [156], including: Exploratory, De-
scriptive, Explanatory, and Improving. Based on the research questions proposed, it is
reasonable to adopt the explanatory case studies as the method towards the verifica-
tion of proposed data-driven approaches. As the answer to each research question (or
sub-questions) is a data mining and analysis pipeline, the usefulness of such a pipeline
shall be verified in the cases where it is applied with real-world datasets. Regarding
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each proposed research question, the research is designed similarly. For example, to
answer RQ1, the proposed data-driven method shall contain a set of steps for the
extraction of users’ collective expectation and a set of steps for the evaluation of the
perceived quality in use. Hence, to verify such outcomes, the case study shall be de-
signed with the proposed method applied on an example software product (or several
software products) with its reviews collected. The case study shall follow exactly the
steps proposed in the method with the outcome being the summarized users’ expec-
tation and needs (i.e., topics) as well as the quantified perceived quality in use (i.e.,
sentiment).

3.3 Data and Analysis Techniques

This subsection shall introduce briefly the data used in the publications and the
methods of data gathering. It also provides an overview on the adopted analysis
techniques.

3.3.1 Data Gathering

The main data used in this thesis is software end user textual reviews, which are ob-
tained from online distribution platforms, including Google Play and Steam. Com-
pared to the other review data sources, choosing these two platforms both provide
API to ease the data retrieval efforts. Additionally, even targeting the ease of use
for the official API of these platforms, useful open-source solutions are provided by
adopting external web crawling tools, e.g., Node.js and Scrapy [73, 149]. On the
other hand, these two platforms provide user reviews in different forms. For mo-
bile applications on Google Play, the users tend to provide quick and short reviews;
for video games on Steam, the players prefer longer text reviews with more details
on the pros and cons. Specially, seen as hedonic information systems [180], digital
games share certain common grounds with utilitarian software products, when the
user reviews shall similarly reflects their opinions on the quality.

Specifically, the data used in the publications for case studies, as well as the retriev-
ing methods and sources, are listed in Table 3.1. To be noted, Publication I proposes
the reference model of situational context and user-app interaction analysis, where
the data-driven approach and the case study are not used.
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Publication Volume Type Source Retrieving Method

II 153128 Text Review Google Play Google Play API

III 1148032 Text Review Google Play Google Play API

IV 60267 User Profile Steam BeautifulSoup

V 3793125 Text Review Google Play Google Play API

VI 23034 Game (with Tags) Steam Steam API & Scrapy

VII 99993 Text Review Steam Steam API & Scrapy

Table 3.1 Data Information for each Publication

3.3.2 Analysis Techniques

In order to answer the previously defined research questions, particular analysis tech-
niques are applied across the publications. For example, sentiment analysis is applied
in order to detect the user opinions from their reviews; topic modeling is used to
specify the significant topics among the reviews that reflect users’ needs; binary clas-
sification and multi-labeled classification are used to classify the user reviews based
on pre-defined aspects. Hereby, each data analysis technique that has been applied
in the publications is introduced as follows.

Sentiment Analysis with VADER.
(Publication: II, III, V, VII; Research Question: RQ1, RQ2)
In general, sentiment analysis is to detect the polarity (e.g. a positive or negative

opinion) within the given text, regardless the length of it. The aim is to measure the
attitude, sentiments, evaluations, attitudes, and emotions of a speaker/writer based
on the computational treatment of subjectivity in a text [113].

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and
rule-based sentiment analysis tool that is specifically attuned to sentiments expressed
in social media [65]. VADER uses a combination of A sentiment lexicon is a list of
lexical features (e.g., words) which are generally labeled according to their semantic
orientation as either positive or negative. VADER not only tells about the Positivity
and Negativity score but also tells us about how positive or negative a sentiment is.

The lexicon for sentiment analysis is a list of words used in English language, each
of which is assigned with a sentiment value in terms of its sentiment valence (inten-
sity) and polarity (positive/negative). Therefore, as each text can be seen as a list of
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words, a lexicon is selected to determine the sentiment score of each word. Further-
more, a rational value within a range is assigned to a word. For example, if the word
“okay” has a positive valence value of 0.9, the word “good” must have a higher pos-
itive value, e.g., 1.9, and the word “great” has even higher value, e.g., 3.1. Further-
more, the lexicon set shall include commonly-adopted social media terms, such as
Western-style emoticons (e.g., :-)), sentiment-related acronyms and initialisms (e.g.,
LOL, WTF), and commonly used slang with sentiment value (e.g., nah, meh).

With the well-established lexicon, and a selected set of proper grammatical and
syntactical heuristics, the overall sentiment score of text can be determined. The
grammatical and syntactical heuristics are seen as the cues to change the sentiment
of word sets. Therein, punctuation, capitalization, degree modifier, and contrastive
conjunctions are all taken into account. For example, the sentiment of “The book is
EXTREMELY AWESOME!!!” is stronger than “The book is extremely awesome”,
which is stronger than “The book is very good.”.

Topic Modeling with LDA.
(Publication: II, III, V, VII; Research Question: RQ1, RQ2)
Topic modeling is a commonly adopted unsupervised method to classify docu-

ments in order to detect the latent set of topics. It is for automatically summarizing
a large volume of text archives where the outcome can be used to facilitate the under-
standing of such texts. Therein, Latent Dirichlet Allocation (LDA) is a commonly
adopted standard tool in topic modeling [11].

LDA is a generative probabilistic model of a corpus. The basic idea is that doc-
uments are represented as random mixtures over latent topics, where each topic is
characterized by a distribution over words [11]. The following assumptions are com-
monly considered as the pre-conditions when building an LDA topic model:

• Every piece of text is seen as a collection of words (i.e., “bag of words”) when
the order and the grammatical role of these words are irrelevant in terms of
the topic model.

• Stopwords, e.g., “are”, “but”, “the”, etc. can be eliminated during preprocess-
ing due to the fact that very limited useful information is carried therein re-
garding the topics.

• Words that are commonly used in majority of the texts (e.g., 80% 90%) are
also irrelevant to the topics. They can be eliminated as well.
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• The number of topic, i.e., k, is pre-defined.

• When assigning any particular word to a topic, the assumption is all the previ-
ous topic assignments are correct. Therefore, in this way, iteratively updating
the assignment of from word to word using the model shall then create the
documents.

In general, based on the known “word-document” belonging relations, LDA aims
to calculate how likely each word belongs to a particular topic. Therefore, the core
process of building the LDA topic model is as follows:

1. Randomly assign each word in the documents to one of k topics.

2. Go through each word w in each document d , and calculate:

• The proportion of words in document d that are assigned to topic t .

• The proportion of assignments to topic t over all documents that come
from this word w.

3. Update the probability for the word w belonging to topic t , as P (t |d )×P (w|t ).

On the other hand, in order to find the best topic number, the topic coherence
that represents the quality of the topic models is commonly applied. Topic coher-
ence measures the degree of semantic similarity between high scoring words in the
topic. A high coherence score for a topic model indicates the detected topics are more
interpretable. Thus, by finding the highest topic coherence score, the most fitting
topic number can be determined. For example, in Publication VII, c_v coherence
measure is used to detect the best fitting topic number. It is based on a sliding win-
dow, one-set segmentation of the top words and an indirect confirmation measure
that uses normalized pointwise mutual information (NPMI) and the cosine similar-
ity [175]. Normally, the model that has the highest c_v value before flattening out
or a major drop shall be selected in order to prevent the model from over-fitting.

Topic Similarity Analysis.
(Publication: II, III; Research Question: RQ2)
As each topic is represented as a set of keywords, the similarity of two topics

shall be denoted by the common keywords of these topics. Hence, an easy way
for calculating the similarity between any two topics (e.g., ti and t j ) is by using the
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Jaccard similarity. It reflects the percentage of the common keywords of the two
sets in the whole keywords set of the two: J (ti , t j ) =

|ti∩t j |
|ti∪t j | . However, by using the

Jaccard Similarity, we consider two given topics are similar only when they contain
a particular number of common keywords, regardless of the probability of them.
The meaning of each topic shall be more likely reflected by the high-probability
keywords of the topic. Furthermore, the subset of only low-probability keywords
may reflect different meanings.

Hence, when comparing the similarity of two given topics, the probability of the
common keywords shall be taken into account. Considering that Jaccard coefficient
is the normalized inner product [177], two potential similarity measure methods
are adopted: the Kumar-Hassebrook (KH) similarity [89] and the Jaccard Extended
(JE) Similarity. Provided between topic ti and t j , the c common keywords are de-
noted as [kwi j ,1, kwi j ,2, ...kwi j ,c], with the according probability list in ti and t j is
[pi ,1, pi ,2, ... pi ,c] and [pj ,1, pj ,2, ... pj ,c]. The similarity of the two given topics by the
two similarity calculation methods are described respectively as follows.

• Kumar-Hassebrook (KH) similarity:

KH (ti , t j ) =

∑c
x=1 pi ,x · pj ,x∑k

x=1 p2
i ,x +
∑k

x=1 p2
j ,x −
∑c

x=1 pi ,x · pj ,x

(3.1)

• Jaccard Extended (JE) Similarity:

J E(ti , t j ) =
∑c

x=1
pi ,x+pj ,x

2∑c
x=1

pi ,x+pj ,x
2 +
∑k

x=c+1 pi ,x +
∑k

x=c+1 pj ,x

(3.2)

The probability for each keyword of any topic belongs to (0,1). Hence, for this
formula, when ti and t j contain more common keywords, the numerator increases
monotonically, and the denominator decreases monotonically. Therefore, KH (ti , t j )
and J E(ti , t j ) both increase when ti and t j have more keywords in common. In ad-
dition, when the probability of the common keywords increases,

∑c
x=1 pi ,x · pj ,x

and
∑c

x=1
pi ,x+pj ,x

2 increase as well. Because the denominator is greater than the nu-
merator, and both are greater than 0, both KH (ti , t j ) and J E(ti , t j ) increases when
the probabilities of the common keywords of ti and t j increase. Hence, either KH
or JE similarity can be used to calculate the similarity of given topics by taking into
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account both the number of common keywords and the probabilities of such key-
words.

Naive Bayes Classification.
(Publication: II, III, VII; Research Question: RQ1, RQ2)
Naive Bayes (NB) classifier is a easy-to-use model that’s commonly applied to-

wards typical classification problems, such as, herein the classification of textual re-
views. The foundation of the classifier being Bayes’ Theorem works towards the
computation of the conditional probability as follows,

P (A|B) = P (B |A)× P (A)
P (B)

where,

• P (A|B): the probability of event A occurring when event B has occurred.

• P (B |A): the probability of event B occurring when event A has occurred.

• P (A): the probability of event A occurring

• P (B): the probability of event B occurring.

When applying Bayes’ theorem, the “naive" assumption lies where features are
independent of each other with no correlation in between. When regarding the text
as data, the independence assumption lies between the individual words in each piece
of text. Thus, the Bayes’ theorem for multi-feature variables can be described as,
given class variable y and dependent feature vector [x1, x2, ..., xn],

P (y|x1, x2, ..., xn) =
P (x1, x2, ..., xn |y)× P (y)

P (x1, x2, ..., xn)

Therefore, with the “naive" assumption taken into account,

P (xi |y, x1, x2, ..., xi−1, xi+1, ..., xn) = p(xi |y)
For all i ,

P (y|x1, x2, ..., xn) =
∏n

i=1 P (xi |y)× P (y)
P (x1, x2, ..., xn)

Due to the fact that P (x1, x2, ..., xn) can be calculated when the texts entered as
training data is determined, the classification shall follow,
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P (y|x1, x2, ..., xn)∝
n∏

i=1

P (xi |y)× P (y)

ŷ = argmax
y

n∏
i=1

P (xi |y)× P (y)

To be noted, the different naive Bayes classifiers differ mainly by the assumptions
they make regarding the distribution of P (xi |y). For example, for Gaussian Naive
Bayes classification, such likelihood of the features is assumed as follows.

P (xi | y) = 1�
2πσ2

y

exp

�
− (xi −μy )

2

2σ2
y

�

Exploratory Factor Analysis.
(Publication: IV; Research Question: RQ3)
Exploratory factor analysis (EFA) [58] is used to detect the latent variables shar-

ing common variances within the user profile data [6]. These factors that are detected
with EFA are the hypothetical constructs to represent variables, which cannot be
directly measured [21]. The method discovers the number of factors and the combi-
nations of measurable variables that influence each individual factor [34]. EFA can
reduce the complexity of the data and simplify the observations with smaller set of
latent factors as well as the relations between variables. Meanwhile, parallel analysis
(PA) [63] is to detect the proper number of factors. In PA, the Monte Carlo simula-
tion technique is employed to simulate random samples consisting of uncorrelated
variables that parallel the number of samples and variables in the observed data [63].
From each such simulation, eigenvalues of the correlation matrix of the simulated
data are extracted, and the eigenvalues are averaged across several simulations [63].
The eigenvalues extracted from the correlation matrix of the observed data, ordered
by magnitude, are then compared to the average simulated eigenvalues, also ordered
by magnitude. The decision criteria is that the factors with observed eigenvalues
higher than the corresponding simulated eigenvalues are considered significant. To
simplify interpretation of the factor analysis result, the varimax rotation technique
[75] is normally employed to maximize the variance of the each factor loading.

Social Network Analysis.
(Publication: VI; Research Question: RQ3)
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Two classic centrality measures: closeness centrality and betweenness centrality
[44], are commonly applied to the network of software labels to analyze the impor-
tant software characteristics. In addition, PageRank, a popular algorithm measuring
the importance of website pages [16], is also adopted herein to measure the impor-
tance of label vertices, compared with the results of the centrality measures. On the
other hand, Louvain method for community detection, a method to extract com-
munities from large networks [12], is used to obtain the latent communities of the
software label network.

Closeness and Betweenness Centrality.
Closeness centrality of a network is to measure the steps of information to travel

from one vertex to the others [136]. For a network with V vertices set, the closeness
centrality of any vertex i in the network, CC (i ), is calculated as

CC (i ) =
1∑

j∈V DG(i , j )
(3.3)

where dG(i , j ) is geodesic distance (i.e., the shortest path) between i and another
vertex j ∈V .

Betweenness centrality, on the other hand, measures the shortest paths through
a particular vertex. It is the “brokering positions between others that provides op-
portunity to intercept or influence their communication" [15]. The betweenness
centrality of vertex i , CB (i ), is calculated as

CB (i ) =
∑
j ,h �=i

ghi j

gh j
(3.4)

where ghi j is the number of geodesic paths between another two vertices h, j ∈V
through vertex i .

PageRank. PageRank assigns universal ranks to web pages based on a weight-
propagation algorithm, which is the core of Google search engine [16]. In general,
for PageRank, if the sum of the backlink ranks for a page is high, it is ranked high.
For a page w with k links, the PageRank value of w is computed as

P R(w) =
1− d

N
+ d

k∑
i=1

P R(wi )
C (wi )

(3.5)

where,
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• d ∈ (0,1) is the probability of the user goes to random page instead of going
to one of the links within.

• C (w) is the number of links going out of w

• N is the total number of pages.

Network Modularity and Community Detection A group of vertices of a net-
work that have denser connections amongst one another than those with the other
vertices form a network community [49, 151]. Thus, community detection is nec-
essary for the identification of such communities of a particular network so that the
structure of it can be revealed. Meanwhile, the modularity of a network is a measure
indicating the strength of division of a network into communities [130]. To simply
put, networks with higher modularity are stronger connected within the vertices
within.

The modularity Q of a network with the set of vertices V and the set of edges E
can be computed as

Q =
m∑

k=1

[
lk

|E | − (
dk

2|E | )
2] (3.6)

where,

• m is the community number

• lk is the number of edges between any two vertices from the k-th community

• dk is the sum of degree of all those vertices

Louvain community detection method is commonly used herein for the struc-
ture extraction of a large weighted network with optimized modularity value [12].
Each vertex is assigned to a community when Q is maximized. ΔQ indicating the
increased value of Q when moving vertex i to community C , which is calculated as

ΔQ =
∑

C +kC
i

2n
− (
∑	C+ki

2n
)2− [
∑

C

2n
− (
∑	C
2n
)2− ki

2n
] (3.7)

where,

• ki is the sum of weighted edges incident to i

• kC
i is the sum of the edges from i to vertices in community C
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•
∑

C is sum of the weighted edges in C

•
∑	C is the sum of the edges incident to vertices in C .

• n is the sum of the weights of all the edges of the network.

The method is to detect the optimized community structure of a network by
moving vertices from one community to another in order to detect the significantly
improvedΔQ [32].
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4 RESULTS

This chapter describes in details the results of the research. Section 4.1 presents the
approach of evaluating the perceived quality of software product based on sentiment
analysis of the user reviews. Section 4.2 introduces the approach of using topic mod-
eling on user reviews to specify the expectations and needs of the end users. These
two sections are the results drawn from Publication VII, which shall answer RQ1.
Section 4.3 presents the enrichment of the quantified perceived quality evaluation
approach proposed in Section 4.1 by providing a mechanism to detect the abnormal
updates within the evolution process.This is the results drawn from Publication V.
Section 4.4 presents the approach of monitoring end users’ expectation and needs
that are not confirmed and the changes of through the software evaluation timeline.
These results are drawn from Publication II and III, which shall answer RQ2. Fur-
thermore, Section 4.5 summarizes the approaches on contexts analysis that supports
the above methods, including: 1) situational context analysis, 2) user types and pref-
erences analysis, and 3) software genres and characteristics analysis. These results are
drawn respectively from Publication I, IV and VI, which collectively answer RQ3.
Additionally, Section 4.6 summarizes each selected publication.

4.1 Perceived Quality Analysis

The approach of perceived quality analysis starts with collecting end user reviews
from online platforms (e.g., Google Play, Steam, etc.) via either API or web crawling.
Then the obtained raw review data shall be preprocessed into structured form. The
second step is to filter out the “non-informative” reviews via a pre-trained classifier.
With the obtained informative reviews dataset, the third step is to classify the data
into different perspectives according to a selected framework. The selected frame-
work can be either generic, e.g., ISO/IEC 25010 [71], or more specific towards par-
ticular software category, e.g., playability framework for video games [141]. With
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each review instance categorized into a specific perspective, the fourth step is to quan-
tify the evaluation result of each perspective. Subsequently, the fifth step is to visu-
alize such a result and present an intuitive summary.

Step 1. Preprocessing. The preprocessing step encompasses the following key
activities. First, each review item is divided from the dataset into sentence-level re-
view instances (e.g., with NLTK), due to the fact that each review with multiple sen-
tences can contain multiple topics and various sentiments. Based on the obtained
sentence-level review dataset, the second step is to build the bigram and trigram
models to identify the phrases within the data (e.g., with Gensim). Subsequently,
for each review sentence, a series of text processing activities are conducted, includ-
ing transforming text into lowercase, removing non-alpha-numeric symbols, screen-
ing stop-words, eliminating extra white spaces, and lemmatization (e.g, with NLTK
WordNetLemmatizer). Note that the processing is only applied to the text when
topic modeling is required. For sentiment analysis, such activities are not only un-
necessary but also counter-productive. The details of the process are explained as
follows.

Step 2. Filtering. Herein, the filtering step is to classify the dataset of sentence-
level review instances into informative and non-informative. It aims to identify the
review sentences that contain description regarding the software perceived quality
and screen out those not relevant. To efficiently identify and filter the non-informative
review sentences, a pre-trained text classifier shall be applied hereby, e.g., the Naive
Bayes (NB) classifier or the Expectation Maximization for Naive Bayes (EMNB)
[133]. These algorithms are recommended due to the requirements of less effort
in training data preparation and the satisfactory performance.

Step 3. Classification. This step aims to classify the obtained informative review
sentences into perspectives according to the selected software quality framework.
Targeting such classification objectives, when the classes are determined by the ex-
isting framework, a supervised learning algorithm is more suitable. To be noted, due
to the common situation where a particular review sentence contains information re-
garding multiple perspectives, a multi-label classification algorithm, e.g., kNN clas-
sification method adapted for multi-label classification (MLkNN) [195], can be used
instead of the traditional NB. To determine which method is better fit for the specific
dataset, testing on classification accuracy is recommended.

Step 4. Quantification. With the classified three sets of informative review
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sentences, this step is to evaluate each of the perceived quality perspectives by quan-
tifying the overall opinions extracted from the according set of review sentences.
Herein, the average sentiment score of the informative review sentences is used to
represent the users’ collective evaluation towards the perceived quality of the target
software product.

Step 5. Visualization. The output of the quantification of end users’ opinions
regarding each perceived quality perspective can be visualized with a radar diagram.
For example, a triangular radar chart can be used to display the quantification results
based on a 3-perspective framework.

To validate the proposed perceived quality analysis approach, Publication VII
conducts a case study analyzing the perceived playability (i.e., video game quality
[141]) of a particular video game product, No Man’s Sky1. The reason of choosing
this case is due to the fact that this game had suffered from a disaster first release
and have been constantly maintained and updated by the developers. Therefore,
such a "ground true" can be used as validation to the case study outcomes. For this
case study, 99993 English reviews from 2016-08-12 to 2020-06-07 are collected with
519,195 review sentences obtained via tokenization. Using the trained EMNB classi-
fier (F1-score: 0.85), 273476 informative review sentences are obtained. Paavilainen’s
playability framework [141] is adopted as the pre-defined class set, where function-
ality, gameplay, and usability are the three perspectives for the classification. Using
MLkNN (accuracy: 0.769), the 273476 informative review sentences are classified
into {Functionality: 43110, Gameplay: 205474, Usability: 30176}. Furthermore,
using the VADER sentiment analysis approach [65], the average sentiment scores
for the sentences classified to each perspective are: {Functionality: 0.025, Gameplay:
0.111, Usability: 0.039} which indicates the mediocre level of overall quality, which
can be validated by the Steam overall review of "Mixed". The according visualization
of the previously quantified results is shown in Figure 4.1.

1https://www.nomanssky.com/
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Figure 4.1 Visualization of the Case Study.

The results show that the proposed approach can effectively analyze and evaluate
the perceived quality of a particular software product based on the reviews of its end
users. Such evaluation can also be visualized.

4.2 Expectation and Needs Analysis

The initial steps of the approach for expectation and needs analysis, i.e., preprocess-
ing, filtering and classification steps, are identical to the previous perceived quality
analysis, due to the fact that informative and classified review sentences sets is the
input. The unique steps for the approach are as follows.

Step 1. Divide by Sentiment. The obtained informative review sentences for
each perspective (after the classification step) are divided into two subsets, i.e., pos-
itive and negative, based on their sentiment. To be noted, sentences with neutral
sentiment shall be ignored.

Step 2. Determine topic numbers. For each subset of sentences, the most suit-
able topic number shall be determined using a proper method. For example, Publi-
cation VII adopts the c_v coherence measure, which is based on a sliding window,
one-set segmentation of the top words and an indirect confirmation measure that
uses normalized pointwise mutual information (NPMI) and the cosine similarity
[175].

Step 3. Extract Topics. Based on the previously determined topic numbers, the
topics are extracted from each subset of review sentences that are previously classi-
fied. The interpretation of these topics shall reflect the expectation and needs of the
end users in terms of the particular perspective.
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The case study conducted in Publication VII also validates the proposed user ex-
pectation and needs analysis approach using the review data from No Man’s Sky.
The 273476 informative review sentences are classified into the three perspectives
with each perspective further classified by the positive and negative sentiment. Fur-
thermore, for each subset of text, the proper topic number is determined using c_v
coherence measure. Based on the determined topic numbers, for each subset of re-
view sentences, the topics are extracted and interpreted as Table 4.1.

Topic (Positive Functionality) Top Keywords

+ Load Screen and Crashing “game”,“play”,“crash”,“time”,“screen”,“start”,“hour”,“go”,“load”,“get”

+ Performance and bugs fixed via update “issue”,“game”,“performance”,“fix”,“people”,“update”,“would”,“bug”,“problem”,“patch”

+ Running game fine with settings “run”,“game”,“setting”,“graphic”,“work”,“get”,“fps”,“pc”,“fine”,“high”

Topic (Negative Functionality) Top Keywords

− Poor Performance, Bugs, Crash, Need Fix “game”,“issue”,“problem”,“performance”,“fix”,“people”,“crash”,“bad”,“poor”,“bug”

− Lag, Stutter, fps drop, even with low settings “run”,“setting”,“low”,“game”,“stutter”,“drop”,“pc”,“graphic”,“lag”,“fps”

− Crash at Start screen, try hours “crash”,“game”,“play”,“time”,“screen”,“get”,“start”,“can”,“try”,“hour”

Topic (Positive Gameplay) Top Keywords

+ Explore, survival, different planet systems “planet”,“find”,“new”,“explore”,“system”,“beautiful”,“different”,“look”,“survival”,“thing”

+ Crafting, ship-flying, resource and inventory “space”,“ship”,“get”,“resource”,“fly”,“well”,“craft”,“upgrade”,“inventory”,“learn”

+ Fun exploration gameplay “game”,“exploration”,“fun”,“play”,“get”,“hour”,“gameplay”,“good”,“enjoy”,“lot”

+ Need story to make better “game”,“want”,“make”,“need”,“would”,“give”,“bit”,“people”,“story”,“work”

Topic (Negative Gameplay) Top Keywords

− Repetitive, boring gameplay “game”,“get”,“hour”,“feel”,“repetitive”,“start”,“bore”,“boring”,“gameplay”,“people”

− Lack of inventory upgrade “ship”,“resource”,“make”,“need”,“inventory”,“find”,“upgrade”,“lack”,“craft”,“much”

− Fly, explore, combat “planet”,“space”,“see”,“look”,“explore”,“combat”,“find”,“fly”,“kill”,“ship”

Topic (Positive Usability) Top Keywords

+ Control feels with controller, fly ship “control”,“use”,“ship”,“take”,“feel”,“get”,“controller”,“fly”,“space”,“flight”

+ Beautiful graphics “game”,“graphic”,“play”,“change”,“setting”,“beautiful”,“look”,“run”,“work”,“good”

+Music&sound, hold and click button “hold”,“button”,“music”,“menu”,“screen”,“system”,“inventory”,“click”,“sound”,“second”

Topic (Negative Usability) Top Keywords

− Graphic settings poor, restart “graphic”,“game”,“setting”,“change”,“run”,“bad”,“start”,“poor”,“get”,“restart”

− Fly control with mouse annoying “control”,“mouse”,“ship”,“fly”,“game”,“use”,“get”,“annoying”,“make”,“press”

− Terrible texture and sound “terrible”,“look”,“texture”,“game”,“sound”,“pop”,“point”,“require”,“complaint”,“way”

− Horrible flight control, cluncky inventory “control”,“flight”,“feel”,“people”,“horrible”,“system”,“inventory”,“lack”,“clunky”,“fov”

− Option, click and hold button, bad/awful PC port “game”,“pc”,“option”,“button”,“hold”,“port”,“menu”,“awful”,“bad”,“click”

Table 4.1 Extracted Topics for Each Review Set

Then the extracted complaints and praises from the six sub sets of reviews are
compared with the expert opinions extracted from the critic reviews of Metacritic2

that provide explicit pros and cons. It shows that a great majority of the pros and

2https://www.metacritic.com/game/pc/no-mans-sky
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cons across all three perspectives mentioned by the media experts are also reflected
by the topics extracted from the reviews. Therefore, this case study also validates the
effectiveness of the expectation and needs analysis approach.

4.3 Abnormal Update Detection

The goal of this step of approach is to detect the time span that contains an abnormal
amount of negativity reflected by the user reviews. It is reasonable to presume that
the changes in the users’ collective opinions and those of the topics of the reviews are
correlated. In addition, the software update that most likely causes such negativity
as well as the changes in topics and sentiments can also be identified by the similari-
ties between the update description texts and the according reviews. This approach
contains three steps: 1) detect the distribution of the reviews sentiment changes, 2)
identify the abnormal sentiment changes, and 3) identify the abnormal update that
is connected to the previously identified anomaly.

Step 1. Detect Sentiment Change Distribution. Herein, the sentiment change
can be defined as the increase or decrease of the average sentiment score of the review
texts compared to the former time period. It is also possible to define it as the increase
or decrease rate of negative review numbers. In this way, the strength of sentiment
can be ignored. Ideally, such sentiment change data shall fit a distribution model
where majority of the values are close to 0 with the rest evenly distributed on both
sides. The Kolmogorov–Smirnov test (K-S test) [117] is applied to detect the distribu-
tion of the data. Among 87 different distribution models3, the sentiment change data
of five mobile apps in one year fits Generalized Normal Distribution (Version 1. Ex-
ponential Power Distribution) [127]with a p value of 0.968 (μ= 0.0002, α= 0.0227,
β= 1.0444).

Step 2. Identify Abnormal Sentiment Changes. Based on the distribution
model detected that fits the sentiment change data, the abnormal sentiment changes
can be identified by the 3− σ rules. For example, with the exponential power dis-
tribution model, 1,000,000 samples are simulated having such distribution with the
above-obtained parameters. The calculated number of samples lying in the band
around the mean with ±3σ width is 986,424, indicating 98.6% values shall be con-
sidered normal. Thus, any values that are placed out of the 98.6% confidence inter-

3https://docs.scipy.org/doc/scipy/reference/stats.html
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vals are considered "abnormal". According to Chebyshev’s inequality [22], no more
than 1/k2 of the distribution’s values can be more than k standard deviations away
from the mean. Thus, when 1− 1/k2 = 0.986, the values that are around k = 8
standard deviations away from the mean are abnormal.

Step 3. Identify Problematic Updates.
To detect the connections between reviews with abnormal negativity and the de-

scriptions of the updates, Word2Vec model [123] is applied. The similarity between
the update descriptions and the reviews can be measured by the similarities of those
words from both parties with high TF-IDF [153]. It is likely to identify the nearest
update causing the anomaly in review sentiment changes.

Figure 4.2 The Identified Abnormal Days of Whatsapp as an Example

A case study is conducted in Publication V to verify the approach using the user
reviews of five instant messenger mobile apps from Android platform, namely Imo,
Hangouts, Messenger, Skype and Whatsapp. For each app, the reviews from 2016-09-01
to 2017-08-31 are collected with 2676488 review sentences. With the 1840 daily sen-
timent change values, the best fitting distribution model detected is the Exponential
Power Distribution (EPD). Taking Whatsapp as an example, the six abnormal days
can be verified by the obvious rise in negative sentiment and fall of positive senti-
ment, as well as the sudden changes in top frequent words (shown in Figure 4.2). the
abnormal days identified can be mapped to major updates by comparing the simi-
larity between the negative review content of the identified abnormal days and the
description text of the major updates. Still taking Whatsapp as an example, Figure
4.3 shows the similarity of the negative reviews of each identified abnormal day and
the descriptions of the 9 major updates. Therein, the nearest previous update of each
abnormal day is marked red. Show in the figure, for the identified abnormal days
of Whatsapp: 2017-02-21, 2017-02-23, 2017-02-24 and 2017-05-03, the similarities of
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Figure 4.3 Similarity between Update Description and Negative Reviews of Abnormal Days for What-

sapp

the negative reviews and the descriptions of their nearest previous updates are signif-
icantly high.

4.4 Software Evolution Monitoring

In this thesis, the core of the software evolution monitoring is to keep track on
whether each of the software updates addresses the users’ expectations and com-
plaints previously. Therefore, it is compulsory to firstly understand, for each partic-
ular update, the topic changes before and after it. Ideally, given a particular software
update ui , any review r ∈ Ri provided after the release time of ui and before that of
ui+1 is seen as the ones regarding only ui . Thus, given T +i and T −i as the topic set for
the positive and negative reviews of Ri , by comparing the similarities and changes
between T +i−1, T −i−1, T +i , and T −i , the following hypotheses are proposed and can be
verified.

• H1. The topic similarities between T +i−1 and T +i reflect the merits regarding
the software in general.

• H2. The topic similarities between T +i−1 and T −i reflect the uncomfortable
changes in the update ui .
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• H3. The topic similarities between T −i−1 and T +i reflect the improvement in
the update ui .

• H4. The topic similarities between T −i−1 and T −i reflect the remaining issues
regarding the software.

In order to identify the matching topics between two review topic sets Ta and Tb ,
the aim is to identify all the topic pairs (tai , tb j ), tai ∈ Ta and tb j ∈ Tb , that have
the high similarity. To calculate the similarity value between topics, either JE or KH
similarity is used, where a threshold to determine the matching topics is also needed
(e.g., Publication II set the the threshold as the original Jaccard similarity value).

Furthermore, to extend such analysis regarding a particular update to the soft-
ware evolution timeline, we shall be able to observe the changes of users’ expectation
and needs within such a longer period of time. Therefore, given a set of updates U=
{u1, u2, ... un}with the according review sets R+1 , R−1 , R+2 , R−2 , ... R+n , R−n , finding the
topic similarity correlations throughout T +1 , T −1 , T +2 , T −2 , ... T +n , T −n shall reflect
the evolving user opinions concerning various aspects of the app within a particular
period of time. Therefore, provided a set of topic {t1, t2, ... ti ... tn |ti ∈ Ti}, where
each ti is similar to ti+1 (1 ≤ i < n), then such topic set is defined as a similar topic
chain. Three additional hypotheses are proposed and verified as follows.

Figure 4.4 Hypotheses on Software Evolution Monitoring Mechanism (adapted from Publication II and

III)

• H5. The similar topic chains through T +i , T +i+1, ... T +n reflect the merits and
users’ praise regarding a sequence of software’s updates ui , ui+1, ... un .

• H6. The similar topic chains through T −i , T −i+1, ... T −n reflect the issues and
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users’ complaints regarding a sequence of software’s updates ui , ui+1, ... un .

• H7. The similar topic chains containing topics from both T +i , T +i+1, ... T +n
and T −i , T −i+1, ... T −n reflect the changing user opinions (positive to negative,
or negative to positive) regarding particular aspects of the software.

Figure 4.4 shows the above proposed hypotheses in terms of the reflecting of
changes in users’ opinions via topic comparison amongst different review sets. To
validate the hypothesis, case studies in Publication II and III use the end user reviews
of Skype4 on Google Play from 1.9.2016 to 31.8.2017 and those of Whatsapp5 between
2016-09-13 and 2017-08-31. Respectively, 153128 and 1148032 reviews are collected.

The major update version-1.6.2017 of Skype from Google Play is selected, due to
the fact that this update provides significant changes in the UI design and new user
experiences. Therein, the similar topic pairs between the according T +i−1, T −i−1, T +i ,
and T −i are obtained with the KH similarity values. The similar topic pairs identified
are shown in Table 4.2.

these detected similar topics across the review sets can be verified by the short
notes of Skype developers regarding their updates. Specifically, the above topics can
be associated with the following original developers claims:

• General performance and reliability improvements (Version 2017.08.15, Ver-
sion 2017.08.29: phone calls, video calls and messaging quality)

• Improved sign in - sign back into your account more easily (Version 2017.08.15:
"log in" features, user account related functions)

• New controls added to help users manage vibration and LED notification
alerts. (Version 2017.07.05: notification),

• Improvements to PSTN call stability (Version 2017.07.05: connection)

• Messaging improvements – Add content to chats via the + button and enjoy
more room for your messages. (Version 2017.08.02: messaging)

• The ability to add or remove contacts from your profile (Version 2017.08.01)

• Activity indicators - see who’s currently active in your Chats list (Version
2017.08.02: contacts and statuses).

4https://play.google.com/store/apps/details?id=com.skype.raider
5https://www.whatsapp.com/

68



The Merits in General (Positive Before Update - Positive after Update)

Topic Pair Interpretation Common Keywords

(t+(i−1)8, t+i5) calling feature works [’call’, ’phone’, ’sound’, ’work’]

(t+(i−1)6, t+i6) chat in group with video and calls [’call’, ’chat’, ’friend’, ’group’, ’hear’, ’make’, ’people’, ’person’, ’phone’, ’see’, ’video’]

(t+(i−1)1, t+i7) connect with family and friends [’application’, ’communicate’, ’connect’, ’family’, ’friend’, ’get’, ’help’, ’touch’, ’way’]

(t+(i−1)7, t+i9) add features and bugs fixed [’add’, ’bug’, ’everything’, ’fix’, ’hope’, ’issue’, ’make’, ’need’, ’please’]

(t+(i−1)6, t+i5) the video and sound quality [’call’, ’make’, ’phone’, ’quality’, ’video’, ’voice’]

The Uncomfortable Changes (Positive Before Update - Negative after Update)

Topic Pair Interpretation Common Keywords

(t+(i−1)6, t−i10) interface, connection, and calling quality [’call’, ’connect’, ’hear’, ’make’, ’person’, ’phone’, ’quality’, ’video’, ’voice’]

(t+(i−1)5, t−i6) accounts, login, sign up, passwords [’account’, ’go’, ’keep’, ’let’, ’log’, ’password’, ’sign’, ’try’, ’win’]

(t+(i−1)7, t−i8) bugs fixes [’fix’, ’please’, ’problem’, ’thing’]

(t+(i−1)8, t−i10) call connection drops, sounds [’call’, ’connection’, ’drop’, ’phone’, ’sound’, ’work’]

The Improvement (Negative Before Update - Positive after Update)

Topic Pair Interpretation Common Keywords

(t−(i−1)7, t+i3) update in general [’get’, ’update’, ’win’, ’work’]

(t−(i−1)10, t+i8) message notification [’message’, ’notification’, ’open’, ’see’, ’send’, ’show’, ’take’]

(t−(i−1)3, t+i6) calling [’call’, ’get’, ’hear’, ’make’, ’people’, ’person’, ’phone’, ’see’, ’talk’, ’time’, ’video’]

((t−(i−1)3, t+i5) video and sound quality [’call’, ’make’, ’phone’, ’quality’, ’sound’, ’time’, ’video’, ’voice’]

The Remaining Issues (Negative Before Update - Negative after Update)

Topic Pair Interpretation Common Keywords

(t−(i−1)3, t−i10) update in general [’call’, ’connect’, ’drop’, ’hear’, ’make’, ’person’, ’phone’, ’quality’, ’sound’, ’time’, ’video’, ’voice’]

(t−(i−1)10, t−i3) send and get messages with notifications [’get’, ’message’, ’notification’, ’open’, ’see’, ’send’, ’show’, ’take’, ’time’]

(t−(i−1)6, t−i8) crashing [’crash’, ’fix’, ’give’, ’keep’, ’please’, ’problem’, ’star’, ’think’, ’time’]

(t−(i−1)7, t−i6) login with Microsoft account [’let’, ’login’, ’microsoft’, ’time’, ’try’, ’turn’, ’update’, ’win’]

(t−(i−1)8, t−i6) sign up with accounts [’account’, ’keep’, ’make’, ’sign’]

(t−(i−1)8, t−i9) sync contacts and status update [’add’, ’contact’, ’list’, ’sync’]

Table 4.2 Similar Topics Identified among Reviews Before and After the Update

For Whatsapp, seven major updates are identified which divide the review dataset
into seven subsets (i.e., R1, R2 ... R7), each of which contains the reviews regarding
one particular major update (i.e., u1, u2 ... u7). Furthermore, each review subset
is also divided based on sentiment analysis and NB classifier. Figure 4.5 shows an
example of the identified similar topic chains.

Herein, positive topics are illustrated as blue circle while negative topic as red
square. For example, t+1,7 is denoted as a blue circle marked "7" in column "T1"
when t−2,10 is denoted as a red square marked "10" in column "T2".

The changes in the changes in users’ opinions can be validated by the information
from the update history of Whatsapp. For example, the "video call" feature added
in Update 3 (Version 16.12.1), the "status" feature in update 4 (Version 17.3.14), and
the "multiple contact cards" feature in update 5 (Version 17.4.18) all show that the
developers noticed the constant negative opinions of users (i.e., the negative topic
chain). Similarly, after Update 5, the complaints regarding contact and chat list can
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Figure 4.5 Part of the Similar Topic Chains for Updates of Whatsapp

be observed until Update 6 where such complaint is not significant any more. The
update history shows in Update 6 (Version 17.5.17) the developers added the "pin
chat" feature to address the issue.

4.5 Context Analysis

The approaches of context analysis aims to facilitates the software evolution practices
by providing additional useful information facilitating in-depth understanding of the
environment, users and genres of the target software products. The context analysis
approaches encompasses of three parts: 1) the analysis of situational contexts and
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ways of interaction, 2) the analysis of user profiles towards preferences, and 3) the
analysis of software types.

4.5.1 Situational Context and Ways of Interaction Analysis

The situational context refers to the extrinsic properties of the user and the app that
impact the initiation of a user-app interaction. It encompasses of three aspects:

• Temporal Context: The user’s sense of external time pressure of the user
caused by the conflict or the accordance of his/her goal and the software’s
demands.

• Spatial Context: The user’s current movement indicating the physical avail-
ability for the software usage.

• Social Context: The social norms that constrain the user from or encourage
the user into the interaction with the software.

According to the three perspectives of situational context mentioned above, val-
ues are assigned to each perspective, combining which leads to a unique context sce-
nario description (shown in Table 4.3). Based on the given situational context model,
the situational context of user can be described by the combination of the three per-
spectives (i.e., 12 situational contexts).

Perspective Value

Temporal Intensive, Allocative

Spatial Visiting, Traveling, Wondering

Social Constraining, Encouraging

Table 4.3 Values of Situational Context Perspectives

On the other hand, the user-app interaction describes the various behavior pat-
terns by which the users utilize a particular mobile app. Four ways of interaction,
i.e., intermittent, interrupting, accompanying, and ignoring are proposed, based on
the obtrusiveness and persistence nature of the features provided by the apps, as well
as the way they fit in the process of the way of the user’s original activity. By under-
standing the nature of the different situational contexts, a potentially proper map-
ping of each situational context with the ideal ways of interaction can be proposed.
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The aim of situational contexts and ways of interaction analysis is to detect the
potential conflicts between the ideal ways of interaction for the primary situational
contexts of the target mobile app and the expected ways of interaction designed for
the features of it. When such conflicts occur, it is likely hard for the users to enjoy the
software perceived quality, which results in user churns. Therefore, to detect such
conflicts, a series of steps are proposed, including: 1) Identify the primary situational
contexts, 2) Specify the expected ways of interaction for each feature, 3) Compare the
previous outcomes and identify the conflicts, and 4) Adjust the conflicting features
towards mobility requirements.

4.5.2 User Type and Preference Analysis

The collective data of users’ behaviors on the target software product or software
products in general is useful asset to analyze the existing users’ types and their pref-
erences. Ideally, by acquiring such information shall enable the developers to bet-
ter understand the user base and to update the software accordingly. Herein, ex-
ploratory factor analysis (EFA) is adopted within the proposed approach with the
steps specified as follows.

Step 1. Collect data. The developers shall collect a statistically representative
amount of data on the users’ behaviors towards software features.

Step 2. Verify sample adequacy. Both Bartlett’s Test of Sphericity [164] and
Kaiser-Meyer-Olkin (KMO) Test [76] can be applied to verify the adequacy of the
selected sample and furthermore the usefulness of applying factor analysis.

Step 3. Determine the number of factors. As a common pre-step of EFA, the
number of factors shall be determined by parallel analysis (PA).

Step 4. Detect and interpret factors. With adequate samples of user behavior
data, factors are detected and interpreted based on loadings that reflect the features
belonging to each factor.

Publication IV applies the proposed method to a special case where users’ online
community behaviors are taken into account as features with the target to under-
stand the different user types in terms of online video game community service fea-
tures. Based on the result of EFA on the behavior data with 19 features of 60267
users, eight factors are determined and identified based on the factor loadings. Fur-
thermore, based on the result of EFA, each of the eight factors can be interpreted
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towards one of the unique preference attributes of the users in terms of online video
game community service, shown in Table 4.4.

Factor Type Related Features

1 Elite Level, Badge, Friends, Profile Customization

2 Achiever Games, Achievement, Perfect Games

3 Provider Guides, Artworks

4 Completer Showcases, Game Completion Rate

5 Improver Workshop Items, Reviews

6 Trader Item Owned, Trades Made, Market Transaction

7 Belonger Groups, Profile Customization

8 Nostalgist Screenshots, Videos

Table 4.4 Detected User Types and Related Features/Preferences

Such outcome demonstrates the validity of the approach using EFA to analyze
the user groups of utilitarian software products provided such data is accessible.

4.5.3 Software Type Analysis

Although similarly the analysis of software types can also be conducted via EFA on
software feature data, e.g., the game tags for video games [98], herein a social network
analysis based approach is proposed with the aim to detect the hidden communities
that connect the pre-defined software features and cluster such commonly processed
features into most likely software types. By doing so, the developers shall have a
clearer impression on the dominant types of software as well as what features each
type encompasses of. The approach contains the following steps.

Step 1. Collect and format data. The first step is to collect all the software
product data that contain explicit feature information. Therein, each single software
can contain multiple features. To be noted, the terms used to describe features shall
be well unified, so that no more than one feature is pointing to the same meaning.

Step 2. Build network of software features. When the original software feature
data is ready, each connection between two particular software features are weighted
by the number of software products that contain both features.

Step 3. Detect common features. The aim is to identify the software features
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that are contained by nearly all the software products, e.g., icon, minimize, etc. The
purpose is to obtain more effective community detection results in the later step.
Herein, weighted degree, betweenness, closeness, and PageRank can all be used.

Step 4. Detect communities. After eliminating the common features, Louvain
method is used to detect the best fitting communities where the modularity score is
the highest.

Publication VI applies the approach to a special case where 23034 computer games
data from Steam are collected with each attached with a set of tags that describe the
features of the game. With such a dataset, a network with 326 vertices and 3035 edges
is built. Therein, five tags, i.e., "Indie", "Action", "Adventure", "Singleplayer" and
"Casual", rank the highest in all centrality measures and clearly commonly connect
to majority of the other tags. Compared with the Top 15 tags by every metric, these
five game tags have significantly higher value than the rest ten regardless.

These five tags are then removed from the network together with the edges on
them and the 15 vertices are detected only connecting to these five tags. The Louvain
method is applied on the remaining network with 306 vertices and 1813 edges with
the highest modularity score of Q = 0.414 with four communities (shown in Figure
4.6) detected.

Therefore, based on the four communities detected, it is reasonable to verdict
that computer games on Steam platform can be clustered into four types based on
their features. By summarizing the tags/features with highest centrality (in this case,
closeness is used as the measure), the four types of computer games can be summa-
rized as follows, shown in Table 4.5.

To be noted, other centrality measures, such as, betweenness and PageRank, can
also be used to determine the representing features of the types. In Publication VI,
the results are to a large extent similar when different centrality measures are applied.
Importantly, with such analysis on the software types together with the key features
of each type, the developers shall have a better understanding and dynamic tracking
of the existing software domain by latent categories.

To sum up, the three independent approaches of context analysis provide unique
perspectives of understanding the contexts of software evolution, where developers
can enrich their knowledge sources for decision making. To be noted, as marked in
Figure 3.1, the methods for extracting formatted situational context data from user
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Figure 4.6 The Detected Communities of Tags

reviews and the data-driven ways of analyzing situational contexts have not yet been
explored. In addition, similar issue exists for the software features data for utilitarian
software products instead of those for computer games, as well as software users
behavior data instead of game players data. These shall be further discussed in the
following chapter.

4.6 Summary of Publications

Publication I proposes a user-app interaction model for interpreting the situational
context and ways of interaction for the use of mobile apps. The aim of the study
is to provide a way of understanding the mobility of mobile apps in terms of the
coordination of its primary situational contexts and the ideal ways of interaction.
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Strategy&Simulation Puzzle&Arcade RPG Shooter

Strategy 2D RPG Atmospheric

Simulation Great Soundtrack Story Rich Sci-fi

Multiplayer Puzzle Fantasy Exploration

Open World Funny Choices First-Person

Early Access Comedy Text-based Space

Survival Relaxing Dark Fantasy Dystopian

Political Classic Kickstarter Third Person

Medieval Masterpiece Action RPG Hacking

Historical Family Friendly Mythology Underwater

Realistic Reply Value Crime Futuristic

Table 4.5 Computer Game Types Defined by High-Centrality Tags

The key of the proposed analysis approach is to detect the conflicts between the de-
signed software features and the primary situational contexts where these features
are commonly used. This paper performs as one perspective of the software evo-
lution context analysis method toolkit. It facilitates such analysis towards specially
the satisfaction of mobile app users by providing guidance in understanding their
needs in terms of mobility, considering the mobility as the unique trait of mobile
apps compared to software products in general.

Publication II proposes an analysis method to elicit user opinions regarding a partic-
ular software update by detecting the similar topics before and after this update. For
any particular software update, regarding the collective users, their feedback shall
change based on the update regardless of its positive or negative contribution to the
overall quality of the software. The proposed approach herein focuses on four review
subsets, i.e., the positive and negative reviews before and after the particular update.
Thus, the changes of the users’ collective needs and expectation shall be detected via
the extracted topics of these review subsets from topic modeling and the similarity
across these extracted topic sets. Such results shall provide intuitive knowledge on
the consistent merits of the software, the unsolved issues, the uncomfortable changes
and the improvement with this particular update. This paper contributes specifically
to the software evolution monitoring approach by providing a key solution.
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Publication III, as the extension for Publication II, aims to propose an approach of
monitoring the software evolution timeline in terms of the changes of the detected
users’ needs and expectation through a series of software updates. The proposed
approach shall enable the developers to identify the long-lasting issues of the mo-
bile app by detecting the consistent user complaints, the newly emerging issues at a
particular software update that results in users’ collective negative feedback, and the
resolved problems via the disappearance of collective negative user feedback. With
this approach, users’ needs and expectation are continuously monitored within the
whole software evolution stage with potential issues being detected and addressed in
time. The contribution of this paper is the core of the software evolution monitor-
ing approach framework.

Publication IV provides a statistical analysis approach towards detecting the latent
user types together with the preferred behaviors of each type of users. The approach
adopts the exploratory factor analysis on the large dataset of the users’ behaviors on
a particular software product or service. Though the case in this paper is focusing
on the understanding of the community behaviors of computer game players, the
contribution can be extensively seen as the analysis of the online user behaviors to-
wards online community services. Therefore, by understanding the potential user
types and the according preferences and behaviors, the developers can therefore take
action during software evolution targeting the popular or profitable user behaviors
towards enhanced perceived quality and user satisfaction. This paper also performs
as one key perspective of the software evolution context analysis method toolkit.

Publication V aims to provide a statistical approach to identify the problematic soft-
ware update by detecting the abnormal sentiment changes, i.e., a sudden increase of
negative opinions, in the collective user reviews. The approach adapts the statistical
anomaly detection of distribution where abnormal update is identified by the simi-
larity of the top frequent keywords of reviews on abnormal day and the ones of one
of its former updates. This approach facilitates the developers in terms of software
evolution monitoring by provide an effective solution to identify the significantly
problematic updates that require attention. Such a problematic update, if not be-
ing detected quickly and tackled properly, can cause damaging negativity in users’
opinions and increasing user churn.
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Publication VI proposes an approach of using social network analysis techniques,
e.g., centrality analysis and community detection, to analyze the latent software
types based on software features. Though in the publication, the approach is demon-
strated by the application on computer game genre analysis based on game tags data,
the approach itself can be applied extensively with utilitarian software data. With
the contribution of this paper, the developers shall be able to obtain the overview of
the existing software product market by various software types. It can also facilitate
them by providing a horizontal comparison between their product and the ones in
the same category for potential enlightenment. This paper also performs as one key
perspective of the software evolution context analysis method toolkit.

Publication VII provides an approach of the evaluating, quantifying and visualizing
the perceived quality of a particular software product based on the sentiment analy-
sis of its end user reviews. It also provides a data-driven solution to detect the specific
merits and defects of the software in terms of a pre-defined quality framework using
Bayes classification and LDA topic modeling. Though the publication verifies the
proposed approach via the case study of analyzing the playability (perceived quality
of games) of a particular computer game (hedonic software product for entertain-
ment purpose), the approach shall be conduct effectively provided having the user
review data on utilitarian software. The contribution of this paper serves as the core
of this research by providing key solutions to both perceived quality analysis and
collective user needs and expectation analysis. By combining this approach to the
ones proposed in Publication II and III, the approaches can be synthesized towards a
review data driven approach to continuous monitor the software evolution in terms
of the confirmation of user expectation and needs by the perceived software quality.

78



5 DISCUSSION

In this chapter, the results of the research are discussed where each previously pro-
posed research question shall be accordingly answered. Further in Section 5.2, the
contribution of the research is summarized. In Section 5.3, the discussion shall cover
the limitation and future works.

5.1 Answering Research Questions

RQ1. How to analyze users’ collective expectation and perceived quality in use
with data-driven approaches by exploiting sentiment and topics?

Towards answering RQ1, this research focuses on using sentiment analysis and topic
modeling techniques to evaluate the perceived quality of a software product and to
extract the users’ collective expectations and needs to it based on a large volume of
user reviews. The purpose of this approach is to effectively support the meaningful
maintenance and update during the software evolution stage by understanding the
end users’ needs and sustaining their satisfaction, as, knowingly, the user satisfaction
is formed based on the expectation and the confirmation of such expectation towards
the users’ perception of performance.

To evaluate the overall perceived quality of a software product based on user re-
views, the proposed approach first identifies the informative reviews using a pre-
trained Bayes classifier after preprocessing the raw reviews. The second step is to
classify the obtained informative reviews into pre-defined aspects based on a selected
quality framework using multi-label text classification techniques. Then, for each
quality aspect, the average sentiment is calculated based on the classified reviews
which reflect the perceived quality of the aspects. Finally, the perceived quality of
the product can be visualized into a radar diagram with the quantified evaluation for
each aspect visible.
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On the other hand, the collective expectation and needs of the end-users can be
extracted via topic modeling, which is also proposed in the approach. With the pre-
viously filtered and classified informative reviews, positive and negative reviews are
separated into subsets using sentiment analysis. For each review subset, topics are
then extracted that reflect the collective needs and complaints in terms of each qual-
ity aspect from the end-users.

RQ2. How to monitor user satisfaction over software updates during software
evolution using reviews’ topics and sentiments?

To answer RQ2, this research presents a two-fold data-driven approach 1) to observe
the trends and identify the changes in the collective feedback of the users, and 2)
to detect the problematic update which severely evokes the users’ negativity. The
approach can use the output of the method for RQ1 as input, that is, the positive
and negative topic sets extracted at the selected time periods, e.g., between major
updates, and the series of quantified perceived quality through software evolution.
The key mechanism for the proposed approach is, according to the ECT, to verify the
confirmation of the detected user expectations via the comparison between the topics
before and after the updates. For any two adjacent time periods divided by major
updates, the latent hypothesis is that the changes in users’ opinions between the two
review sets reflect the perceived quality of the particular update and that particular
version of the software. Therefore, ideally, by tracking such changes through the
timelines of the updates in the software evolution stage, the developers shall be able
to monitor the users’ satisfaction over the software with the specific changes in their
needs.

Specifically, to monitor user satisfaction during the software evolution stage, the
proposed approach indicates the users’ constant positive opinions on particular fea-
tures (i.e., topics) can be reflected by the positive similar topic chains through the
updates. On the contrary, the unsolved issues can then be reflected by the negative
ones. In addition, the similar topics between positive and negative topics shall reflect
the changes of users’ opinions on the specific feature, indicating either a positive en-
hancement or a fail attempt. On the other hand, the approach also enables to detect
the abnormal decreases in quantified perceived quality through software evolution
timeline using statistical analysis, using statistical anomaly detection of distribution.
Furthermore, the identified abnormal days are then mapped to a causing former up-
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date by comparing the similarity between the top frequent keywords of the reviews
on that day and the description of the update.

RQ3. How to analyze users’ profiles, software types and situational contexts as
the contexts of use that support the above activities?

The answer to RQ3 is three-fold, including solutions to the following perspectives:
1) situational contexts and ways of interaction analysis towards mobility conflict
detection, 2) user types and preference analysis based on software behavior data, and
3) software type and related features analysis based on software feature data.

To analyze the situational contexts of software products, especially mobile apps,
the research firstly introduces the concept of ways of interaction. The hypothesis
lies where for each specific software feature the users shall interact with it in one or
multiple ideal ways in order to achieve their satisfaction. Therefore, the approach
aims to introduce the notion that such conflicts in the expected ways of interaction
for the primary software situational contexts and the ideal ways of interaction for
software features should be identified and addressed.

On the other hand, the user types and preference analysis approach focuses on
understanding the latent software user types and the according preferences of each
type of user. Given an adequate amount of user behavior data, using EFA, the ap-
proach shall enable the developers to gain such context information of their users
and insights on how to conduct proper maintenance strategy accordingly.

Furthermore, the software type analysis approach uses centrality measure and
community detection from social network analysis to detect the latent software types
within the market with the data of software feature data. The approach shall facilitate
the understanding of the software ecology; when knowing the type of a particular
software product, the developers shall easily gain insights on the commonly adopted
features within the category and the potential features to be added.

5.2 Research Contribution

The contribution of this research towards answering the research questions regarding
mending the research gaps.

81



RQ Research Gap Contribution

RQ1 Difficulty in involving end
users and extracting their feed-
back

This research contributes to provide a
data-driven approach to extract the users’
collective opinions, i.e., their needs and
expectations, on large volume of user re-
views. In addition, the approach also pro-
vides quantified evaluation of users’ col-
lective perceived quality of the software
using sentiment analysis. In this way, ef-
fective user involvement and opinion ex-
traction can be achieved. Furthermore, a
statistical approach on identifying the ab-
normal update is also proposed facilitating
specially on the extraction of users’ urgent
needs. This contribution is published in
Publication VII and V.

RQ2 Lack of methods in continu-
ous monitoring evolution sta-
tus via the changes in users’ col-
lective needs

This research also contributes to the mon-
itoring of software evolution status via
tracking the status of users’ collective ex-
pectation throughout software releases.
Based on the detection of similar topic
pairs in different sentiment group before
and after each release, the changes within
software evolution process can be detected
in terms of the changes in users’ collec-
tive satisfaction. This contribution is pub-
lished in Publication II and III.

RQ3 Lack of methods in analyzing
various context information

This research also contributes to the data-
driven analysis of important context of
use information of software products,
which supports the analysis of users’ ex-
pectation and satisfaction. The context in-
formation herein include the situational
contexts of software use, user profiles and
preferences, and software types. This con-
tribution is published in Publication I, IV
and VI.

Table 5.1 Summary of Research Contribution 82



Furthermore, the implication of this research, in terms of both academia and
industry, can be seen as follows.

Contribution to the Academia

From the academic perspective, this thesis work contributes to the examination of
applying data-driven end-user review analysis methods supporting software mainte-
nance and evolution. The main implication is to enrich the existing domain knowl-
edge of software maintenance and evolution in terms of taking advantage of the col-
lective intelligence of the end-users. Though, as mentioned in the background and
related work, many studies have proposed data-driven approaches using similar tech-
niques using user reviews, seldom do they focus on solving specific problems regard-
ing software maintenance and evolution, especially the continuous nature of it. In
addition, the thesis conveys a unique contribution to the research on software evo-
lution contexts, including 1) the situational contexts, 2) user types and preferences,
and 3) software types and related features. These shall not only enrich the existing
domain knowledge of software maintenance and evolution largely but also can lead
to potential interdisciplinary contribution with other domains.

Contribution to the Industry

This thesis also contributes to the software maintenance and evolution practice even
in the larger scope of the software industry by proposing an effective series of ap-
proaches that address the critical issues within. Currently, though software mainte-
nance and evolution is recognized as important to the sustainability of nearly any
software product, the practical solutions to help the developers in terms of effective-
ness and continuity are limited. Together with the rapidly growing maturity in data
mining, machine learning, and NLP techniques, effectively and continuously under-
standing the needs and expectations of a large number of end users is thus possible.
In addition, the thesis also provides approaches to understand the latent context in-
formation of software evolution, i.e., situations, user types and preferences, software
types, and related features. The main benefit of this practice is that developers can
easily obtain additional information guiding their maintenance strategy, release plan-
ning, and other related decision-making.
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5.3 Limitation & Future Work

Despite the contribution of the thesis, it does fall short in various aspects which can
be enhanced in future studies. Firstly, the application of the proposed approaches
to a utilitarian software product is yet to be verified, as the case studies conducted
in Publication IV, VI, and VII use the data of computer games and the game players.
Though none of the approaches adopts the hedonic characteristics of video games as
influential factors, it still can be more convincing provided such cases use the data
across genres. Meanwhile, to be emphasized, the reason for the above-mentioned
choices is due to the lack of accessibility to a large volume of software user review
data.

Secondly, as shown in Figure 3.1, neither has the approach of classifying infor-
mative situational contexts from user reviews yet been studied, nor the sources or
ways of crawling situational contexts data is provided. One of the critical reasons is
that it is not a common practice for the end-users to report their context informa-
tion in the reviews. Due to the necessity of user privacy protection, collecting user
contexts is to a certain extent illegal or unethical. In addition, it is also difficult to
collect such data without affecting the users’ experience. Though such information
can be collected by particular companies, due to the above reasons such information
cannot be shared publicly. More importantly, the connection and application of the
proposed context analysis approaches to the software evolution monitoring is yet to
be explored. Though the approach enables to detect the latent context information
on user types and preferences as well as software types and related features, it has not
yet been suggested how to categorize a particular software product to a certain type
nor how to identify a certain type of users from a large user pool. These aspects are
important to the practicality of the research and shall be conducted in future work.

Thirdly, the proposed approach uses update time as the separator of reviews to
subsets, which might evoke issues. It is likely the users can send reviews after a par-
ticular release when still using the old version. However, though the precise percent-
age of such incidents cannot be estimated, the effectiveness of the proposed approach
shall not deteriorate. Nonetheless, it is still recommended that an additional mecha-
nism is added to label the target software version when the users are giving reviews.
On the other hand, besides the limitation mentioned above, the following future
work shall be conducted to enrich the according domain knowledge and to expand
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the implication of this research.
First of all, the direct supplement to the existing framework is to investigate the

ways of utilizing the context information in the monitoring and planning for soft-
ware evolution. Ideally, the users’ profile and behavior data shall be mapped to the
data of their preferences to software types and the relevant features, which is similar
to the synthesis of the review-based user profile building and review-based product
profile building [23]. In this way, the reviews, which are only classified by the infor-
mativeness currently, can be further weighted based on the key relevant behaviors
of the reviewers and the importance of the software features being targeted, which
shall lead to more audience-sensitive outcomes. More specifically, to achieve such
results, identifying the type of each individual end-user and the type of the target
software product requires further investigation as well. For the user profile data, a
potentially practical data-driven way towards such a solution is to use principal com-
ponent analysis [188] to reduce the data dimension according to the user types and
assign each user into the closest type.

Secondly, serve as part of the trend towards the application of AI in software en-
gineering, this research shall be continued towards the broader contribution therein.
With the benefits in automation, using AI-based techniques shall have a positive in-
fluence on the software development, testing, and other decision-making activities
[128]. Together with AI techniques, the collective intelligence of the crowd is the
source of information that can be used to support the key software development
activities as well [196].

Furthermore, the contribution of this study can also explore the potential bound-
ary of interdisciplinary studies towards the application of computational methods
on game studies in the near future. The unique advantage of data science research
methods, compared to the traditional, is the capability of extracting latent knowl-
edge from the existing phenomena via mining from statistically massive data. Such
findings shall largely enrich a particular knowledge domain with either the verifica-
tion of existing knowledge or the detection of the new. Taking the trending domain
of computational social science [27] as an example, the combination of data science
and traditional social science has contributed greatly to the detecting of many so-
cial patterns and issues, as well as the novel understanding of social phenomena. As
a multidisciplinary field of study and learning with games and related phenomena
as its subject matter, game studies can certainly gain support from such novel data-
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driven methods towards new findings in the study of games, the study of players, and
the study of the contexts of the previous two [118]. Moreover, millions of players on
game platforms, e.g., Steam, have been continuously producing a massive volume of
data measured in TB, which can be conveniently accessed via API. These data could
be invaluable sources supporting such research.
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6 CONCLUSION

Software maintenance and evolution is a critical and long-lasting stage of any com-
mercial software product, where, due to the contemporary competitive market, end
users’ needs and expectations must be carefully monitored and handled. Maintaining
the satisfaction of the software user base is one of the keys to the long-term success
of any software product. To such an end, accompanied with the rapid growth in
user review data and the advance in data science technologies, such computational
methods with a large volume of data provides effective solutions to evaluate users’
satisfaction and detect their needs. Therefore, the core contribution of this thesis is
to explore the data-driven ways of continuously assessing users’ satisfaction, extract-
ing their needs, and monitoring the status of changes therein during the software
evolution process.

Specifically, the thesis contributes to three aspects of the main research theme,
that is, to apply a data-driven approach on continuous monitoring of the software
evolution status via exploring the changes in end-user satisfaction and needs. Firstly,
the research tackles the analysis of users’ collective expectation and perceived quality
in use with data-driven approaches by exploiting sentiment and topics. With sen-
timent analysis and Bayes classification on identified informative user reviews, the
overall perceived quality of the users can be quantified and visualized in terms of a
pre-defined framework. Furthermore, the needs and complaints about the users can
be extracted via topic modeling on each of the aspects. Secondly, the research pro-
vides an approach of assessing the changes in the collective users’ perceived quality
and needs via the identification of similar topic pairs in positive and negative review
sets before and after software updates and that of distribution anomaly in review
sentiment. Via the application of the approach through the multiple updates in the
evolution stage, the changes of opinions in the user base can be efficiently monitored
with even abnormally negative changes detected in time. In addition, the third as-
pect of the thesis contribution explores the potential context information that can
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be utilized to support the above activities. The context information includes soft-
ware situational contexts and ways of interaction, user profiles and preferences on
software features, and software types and related features. Though the practical im-
pact of applying such context information is yet to be further investigated, weighted
evaluation with the personalized solution can be expected.
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Abstract—Contemporary mobile applications (apps) value mobil-
ity as a key characteristic that allows users to access services
or features ubiquitously. In order to achieve decent mobility,
apps shall provide features that are suitable to use under a
wide range of contexts. In this paper, we analyze the situational
contexts, towards which the mobile apps shall comply with in
terms of mobility. By analyzing the contexts and the ways of
interaction between users and apps, we propose and illustrate
a mobile requirements analysis process model to identify the
conflicts between users’ ideal ways of interaction and the way
the feature is designed to provide. The identified conflicts help to
elicit requirements for the enhancement of the apps’ mobility.
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I. INTRODUCTION
The emergence of iOS and Android OS has been changing

the mobile industry and people’s daily lives, and been pro-
viding new trends in the academic research [1]. Changes in
distribution process and mobile software market mechanism
lead to better customer accessability towards mobile apps
and inevitable competition [2]. The ranking mechanism also
intensifies the competition, demanding mobile apps satisfying
users’ diversified demands, which shall be reached in varying
situations, compared to desktop software. It thus requires
companies to take into account the capability of the mobile
applications to provide satisfactory user experience regardless
the changing environment [3].

Mobility is one of the most significant and unique features
for mobile apps, refering to the ability to access services
ubiquitously through wireless networks and various mobile
devices [4][5]. The vision of mobility is to be able to work
“anytime, anywhere” [6]. However, with limited support of
systems towards mobility, the capability of being comfort-
ably used at “anytime, anywhere” of mobile apps is seldom
achieved. Thus, achieving mobility shall result in the enhanced
competitiveness of mobile apps in terms of user satisfaction.

Contexts, which refers to the information that characterizes
the situation of an entity, has a great impact on usability and
user experience of mobile apps [7]–[10]. Mobility, as a key
aspect of usability of mobile apps, is also affected largely by
their context [11], which also influences the way, by which
a user interacts with an mobile app [12]. By specifying the
ways, in which user and app interact, we analyze their relation
towards different contexts. The elicited mobility requirements
shall thus reflect suitable interaction ways between users and
apps in differen contexts.

Many studies analyze the phenomena of use situations
concerning mobile commerce [4][13] and other types of mobile
apps [14]. But studies on mobility requirements analysis are
very limited. A goal-oriented framework for modeling and
analyzing requirements for varying contexts was proposed
based on the goal model to reason variants [15]. But it fails
to address how to identify the varying contexts and derive

requirements regarding the way of interaction. Several other
studies [16][17] address challenges and methods of require-
ments analysis for mobile systems and pervasive services,
but lack a concrete proposal on taking varying contexts into
account for requirements analysis.

In this study, we focus on the analysis of context of use of
mobile apps and the possible ways of interaction between users
and an app, and further study the way of analyzing mobility
requirements. The paper tries to tackle the following questions.

RQ1 What are the contexts that affect the interaction
between user and mobile apps?

RQ2 What are the ways in which a user interacts with
mobile apps, and what are their relations with
different contexts?

RQ3 How to take into account contexts and ways of
interaction when analyzing apps mobility require-
ments?

The purpose of this research is to enhance the mobility
of mobile apps by taking into account the varying contexts
in requirement analysis. To answer RQ1, we summarize the
definition of mobility and main perspectives of mobile app
contexts by reviewing the literature on the concept of mobility
and context in Section 2. We also tackle RQ2 by analyzing
the relation between the way users interact with mobile apps
and different contexts via user-app interaction reference model
in Section 3 and 4. In Section 5, we propose our approach to
analyzing mobility requirements with a case study for further
illustrating and discussing in Section 6, which altogether
answers RQ3. Section 7 concludes with implications for future
research.

II. MOBILE APPS AND THEIR MOBILITY REQUIREMENTS
Mobile devices and applications has enabled new freedom

and flexibility on the way people communicate, work, and
entertain by providing services beyond the constraints of
fixed locations and devices. Compared to the old style of
using manufacturer provided mobile software, contemporary
mobile apps have lower distribution costs and can be more
easily accessed by customers via the change in distribution
process and mobile software market mechanism [2]. The
mechanism stimulates the development of mobile application
markets and results in fierce competition with even software
on personal computers challenged. Prior to the investigation of
the circumstances, under which users would prefer to mobile
applications rather than desktop software, the unique mobility
characteristics of mobile applications differentiated from those
of desktop software shall be understood.

A. Mobility
Mobility was understood as the human’s independency

from geographic constraints or the ability and/or quality to
ensure the given entity can move or be moved [18]. Mobility
primarily facilitates a mobile device to operate properly when



its location changes. This provides a generic view of how
mobility is supposed to be acquired by users when they
use mobile apps, and forms a general goal in mobile app
development. According to [5], the key feature of mobile
technology is the capability of using services on the move,
with wireless network and various devices, which provides
the literal meaning of mobility. Other similar terms, such as
nomadicity, which indicates a system’s capability of providing
services to the nomad as he moves from place to place in a
transparent and convenient form [6], also reflexes the concept
of mobility.

Consequently, mobility is an attribute of both human beings
and the computational devices they interact [11]. The mobility
of mobile devices refers to the ability to access services ubiq-
uitously, or “anytime, anywhere” through wireless networks
and various mobile devices [4][6] and for mobile apps as
well. As a critical feature of mobile apps usability, mobility
has considerable impact on the interaction between users and
mobile devices and apps [19]. Thus, compared to mobility of
human beings, mobile app mobility is seen as the usefulness
and ease of use provided by the app towards user satisfaction
in “anytime, anywhere”.

There are three types of mobility in terms of modality [20],
i.e., travelling, visiting and wondering. The mobility towards
the usability of mobile apps is hence seen in these three
perspectives as well, that is, to provide services when users
are traveling, visiting, and wondering. Similar categorization
is also given by [21], which describes the motion of mobile
app users into none motion, constant motion and varying mo-
tion. Besides the categorization of mobility regarding spatial
movement, time and context changes also contribute to the
mobility attribute provided by mobile apps [18]. In this study,
we see all the factors that influence the mobility of the mobile
app from outside the app itself as its context.

From the context of use perspective, mobility implies that
the app shall provide context-aware features and/or services.
Following the definition of the concept of context, i.e., the
information that can be used to characterize the situation of an
entity [7][8], where an entity can be a place, person, physical
or computational object, we define context-aware features as
the use of context to provide task-relevant information and/or
features, which a user feels easy to use. The situation can
be characterized in perspectives, such as location, surrounding
changing objects, and people, and can define where you are,
who you are with, and what resources are nearby [22][23].
These perspectives can be further refined into users, tasks,
equipment (i.e., hardware, software and materials), location,
physical environment, temporal context, social environment,
technical and information context, etc. and have been inten-
sively addressed and adapted in surveys and research on the
context in mobile computing and the impact on the overall
design of the product [8][10][17][24]–[28] .

B. Mobility Requirements Analysis
We consider mobility as an intrinsic attribute of mobile

applications. It refers to the capability of providing receptive
and pleasant services acquired by users in spite of the changes
in environments. Such an attribute can be refined into different
types of requirements contributing to users’ satisfaction. The
requirements include functional requirements complementing
the main features of an application and supporting users to

fulfill their goals, interface requirements facilitating the inter-
action between users and the application, as well as constraints
on the application.

In addition to analyzing the core features of an application,
mobility requirements analysis shall emphasize ease of use
in the dynamic environment of use, and focus on analyzing
the diversity of context of use and ways of interaction
between users and the app. Accordingly, we adapt the generic
requirements syntax of Mavin et al.’s EARS model [29]
for mobility requirements, emphasizing the context and the
interaction with users, as shown below.

In <situational contexts>,<optional preconditions>
<optional trigger> the <mobile app name> shall <app
response> in <ways of interaction>.

The syntax marked in grey is what was specified in the
EARS model [29]. It can be further specialized into different
types of requirements following temporal logic defined be-
tween the precondition, the trigger, the app response, etc. [29].
In addition, the components marked in black are situational
contexts and ways of interaction, which highlights the mobility
attributes a mobile app shall reflect and the requirements
analysis shall take into account. The situational context en-
compasses a wide range of elements, such as the location
and surroundings, the social context, the user’s movement,
the temporal context, etc. Combining value of these elements
forms a variety of scenarios of using a mobile app. Changes
of the scenarios continuously reframe a user’s interaction
with a mobile app. Obviously not all scenarios are desired
and friendly. The requirements analyst shall be aware of
the suitable ways of interaction is adopted towards typical
scenarios, which secures users’ satisfaction and receptiveness
largely.

III. A USER-APP INTERACTION REFERENCE MODEL

Interaction between a user and a mobile app occurs after
the user opens the app and before he or she closes it [30]. We
call it a user-app interaction. According to the definition of
context given by [7][8], the context of a user-app interaction
is referred to as the information to characterize the situation
of the two entities, i.e., the user and the app. The context is
further depicted in Figure 1.

Figure 1. User-App Interaction Reference Model.



The context shall ideally contain all possible situations
that affect the user-app interaction. Similar to the contexts
categories described in previous studies [17][22]–[24], the
ideal context shall contain multiple perspectives including
user profile, operating system, hardware system and network,
physical context, temporal context, task context, and social
context. As shown in Figure 1, we divide the wide range of
context into intrinsic and extrinsic ones. The intrinsic context
refers to the inner attributes of entities that influence, or occa-
sionally determine the occurrence of a user-app interaction. For
example, the features provided by mobile apps and demands
for operating them intrinsically determine their usefulness
when users’ goals and their characteristics determine whether
to use. The extrinsic context refers to the external factors
that influence a user’s decision of his or her engagement in
a user-app interaction. The extrinsic contexts, defined also
as situational contexts, include device context, environmental
context, spatial context, temporal context and social context.
The device context (e.g. system, network, hardware, etc.) and
the environmental context (e.g. light, noise, wind, temperature,
etc.) have been often studied in requirements engineering
for self-adaptive software systems [31]. However, the other
extrinsic contexts, such as spatial, temporal, and social contexts
are rarely discussed in requirements analysis process. Hereby,
we focus on these situational contexts to investigate their
relations with the mobility attribute of a mobile app.

A. Intrinsic Contexts
Many researchers have addressed and verified that a user’s

demographic properties, such as age, gender, education, in-
come, etc. are relevant factors affecting a user’s attitudes and
preference to the use of an app [17][28][32]–[34]. Besides the
demographic properties, individual users with various interests
and attitudes toward the mobile value form other important
perspectives influencing a user’s engagement in an app activity.
Users’ adoption to mobile services has been analyzed from the
perspectives of a user’s characteristics, major value, attitude,
and major interests. [28]. Concerning a user-app interaction,
the user’s goals refer to the objectives of the user at the critical
moment when the interaction occurs. For an instance, the goal
of a student working on an exam is to pass the exam. It is
not only related to mobile applications but also has a wider
range than the term described in goal-oriented requirements
engineering [35]. Thus the characteristics and goals of the user
form the intrinsic and determinant context to the initiation of
a user-app interaction [36].

On the other hand, a user-app interaction occurs when a
user determines to perform a task associated with a mobile
app with a particular purpose, i.e., fulfilling a user’s goal. The
features of a mobile app contain capabilities that enables users
to fulfill their goals by accomplishing the tasks. The user is
prone to intrinsically start an interaction with the app when the
provided features comply with his or her intention to achieve
his or her goal. The demands are defined as the workload
that a user is obliged to engage in order to accomplish the
task as the demands, which contain six subscales, i.e., mental
demand, physical demand, temporal demand, frustration, effort
and performance [37]. They define the subjective experience
of users on using the app and are affected by the intrinsic
contexts of a user-app interaction as well.

B. Situational Context Model
The situational context refers to the extrinsic properties of

the user and the app that impact the initiation of a user-app
interaction. As mentioned above, we only focus on the tem-
poral, spatial and social perspectives to discuss the situational
context in this study.

1) Temporal Context: Temporality, as one of the dimen-
sions of the mobility concept originally [18], has been influ-
enced by the mobile technology inherently in terms of human
interaction. The multiple perspectives of temporality, such as
structural and interpretive, monochronicity and polychronicity
and so on have been studied previously [18][38]. Compared
to the previous frameworks, we argue that the temporality in
terms of a user-app interaction is determined by the user’s
sense of time and the persistence of the app to accomplish
one operation session, and define temporal context in this
paper as the sense of external time pressure of the user caused
by the confliction or the accordance of user’s goal and app’s
demands. Thus, two values of intensive and allocative are used
to describe temporal context. Intensive refers to the situation
when the user is in urgent need of achieving his or her goal
and has limited spare time of interacting with the app (e.g.
the user is busy in working on assignments with approaching
deadline). Allocative, on the other hand, indicates that the user
has no urgent goal to achieve and is temporally available (e.g.
the user is staying at home idle).

2) Spatial Context: The spatial perspective of mobility
indicates the geographic movement of the user when engaged
in the interaction with the mobile app [18]. In this study,
the spatial context refers to the current movement of the user
further indicating the physical availability for the app usage.
we adopt the mobile modality types given by [20] categorizing
the spatial context, including visiting, traveling and wandering.
Visiting context indicate that the user is in a physically
stationary status(e.g. sitting in a meeting). Traveling context
refers to the situation when the user is in a transportation tool
(e.g. a car or train). Wandering, on the other hand, refers to
the situation when the user is physically moving from place to
place (e.g. walking or running). However, the categorization
given by [20] did not specify the difference between driving
a transportation tool or sitting in one in terms of traveling
perspective. In addition, exercise related scenarios of walking
or running is not taken into account either. In this study, these
distinctions shall be reflected by the combination with other
contexts.

3) Social Context: The social context is interpreted by
[8][10][17][24]–[28][39] as the influence of other persons’
presence and the interpersonal interaction between the user and
others. In this study, we interpret the social context of a user-
app interaction as the social norms that constrain user from
or encourage user into the interaction [40], which contains
similar meaning towards the functional place concept in [39].
We define the scale of social context from constraining to
encouraging the use of apps based on the social norms. For
example, a conference presentation is socially constraining
when idleness at home is socially encouraging.

According to the three perspectives of situational context
mentioned above, values are assigned to each perspective,
combining which leads to a unique context scenario description
(shown in Table I).

Ideally, based on the given situational context model, the
situational context of user can be described by the combination



TABLE I. VALUES OF SITUATIONAL CONTEXT PERSPECTIVES.

Perspective Value
Temporal Intensive, Allocative
Spatial Visiting, Traveling, Wondering
Social Constraining, Encouraging

of the three perspectives. The 12 situational contexts include
Intensive-Visiting-Constraining (IVC), Allocative-Visiting-
Constraining (AVC), Intensive-Visiting-Encourage (IVE),
Allocative-Visiting-Encourage (AVE), Intensive-Traveling-
Constraining (ITC), Allocative-Traveling-Constraining (ATC),
Intensive-Traveling-Encouraging (ITE), Allocative-Traveling-
Encouraging (ATE), Intensive-Wondering-Constraining
(IWC), Allocative-Wondering-Constraining (AWC), Intensive-
Wondering-Encouraging (IWE), and Allocative-Wondering-
Encouraging (AWE). For each combination of values from
different perspectives, we provide a typical situational context
scenario, shown in Table II.

TABLE II. TYPICAL SCENARIOS FOR EACH SITUATIONAL CONTEXT.

Situational Context Typical Scenario
IVC In a conference giving presentation
AVC In a lecture listening
IVE In a cafe working on assignments with close deadline
AVE At home idle
ITC In a car driving with time limit
ATC In a car driving and sight seeing
ITE In a train when it is about to arrive at the destination
ATE In a train idle
IWC Running in a race
AWC Wondering in a cocktail party as a host
IWE Running to catch a bus
AWE Walking in a park relaxing

In practice, the scenarios that used for describing situa-
tional contexts might vary based on the collective understand-
ing of the contexts from the team. For example, the scenario
“In a conference giving presentation” and “in a contract
signing meeting negotiating” can both be used describing the
situational context of IVC.

IV. WAYS OF USER-APP INTERACTIONS
The concept of mobility is not only just a matter of people

traveling, but also the interaction people perform, that is, the
way in which they interact with each other [18]. The mobility
is thus reflected in the way in which users interact with the
apps. It occurs when an app sends out a notification to the user
who responds it and ends when the user finishes using the app
and closes it. However, users in different situational contexts,
who have different goals and characteristics, will expect to
interact with different features of the app differently but
comfortably. In order to find the match between the designed
and expected ways of interaction, we adapt the dimensions
of interaction modality [41][42] discussing the situational
characteristics of mobile apps including their obtrusiveness and
persistence.

An obtrusive interaction imposes obligation to notice or
react [18], which indicates that the interaction is evoked
by notifying the user to start it without the user’s internal
motivation to do so. For example, an obtrusive interaction
is initiated when the user stops original reading activity and
responds to the new message notification from WeChat. On
the contrary, an unobtrusive interaction is initiated with the
user’s internal motivation. For example, the user encounters
an unfamiliar term while reading and decides to look it up in
Eudic without receiving notification. On the other hand, the

persistence dimension specifies the duration of an interaction,
which is largely depending on the time length a user spends
on completing an interaction task. An ephemeral interaction
requires a short time to achieve user’s goal (e.g. replying a
message, looking up a word). A persistent interaction oppo-
sitely takes a long period to accomplish (e.g. playing Subway
Surfers, listening to Spotify).

With the two dimensions combined, a user-app inter-
action can thus be described as obtrusive-persistent (OP),
unobtrusive-persistent (UP), obtrusive-ephemeral (OE), or
unobtrusive-ephemeral (UE). By analyzing the relation be-
tween different types of user-app interactions and the way they
fit in the process of the way of the user’s original activity,
we conclude four ways of interaction, including intermittent,
interrupting, accompanying, and ignoring.

An intermittent way of interaction refers to the interlaced
engagement in both the user’s original task and the user’s
interaction towards the mobile app, with the whole process
of several short interactions, which are neither consistent nor
interfering the proceeding of the original task. For example,
when watching TV, the user starts the interaction with WeChat.
Within the whole process, the user inconsistently responds
messages but his or her task of watching TV remains pro-
ceeding. An intermittent way of interaction often consists of
a number of ephemeral interactions, which are also mostly
obtrusive.

An interrupting way of interaction requires the user to
convert full concentration on the interaction and cease the
original activity. For example, to start playing Subway Surfers,
the user has to stop the original task, such as reading books
or watching TV. It can be interpreted as the original task is
interrupted by this user-app interaction. An interrupting way
of interaction is mostly persistent.

An accompanying way of interaction refers to the paral-
leling engagement in both user’s original task and the user-
app interaction tasks. Comparing to the interrupting or the
intermittent way of interaction, the accompanying one will
not attract the user’s full attention, as the user does not stop
the continuous progress of the original task. For example,
when running on a treadmill, the user starts watching films
from Netflix. The activity of running is, instead of interrupted,
paralleling with the user-app interaction. The interaction can
be ephemeral or persistent, depending on the amount of
engagement an app requires from the user.

An ignoring way of interaction indicates that the interaction
with the mobile app is ignored by the user in order to maintain
the proceeding of his or her original task. For example, when
taking an examination at school, the user will ignore any types
of interaction with the mobile apps.

The relation between different types of user-app interac-
tions and the according ways of interaction is summarized in
Figure 2. In Figure 2, the narrow arrows underneath represent
the user’s original task, and the thick ones represent the
user-app interactions. Lighter gray arrows are the interactions
ignored and not executed. In addition, the length of the
arrows indicates the timeline of proceeding with the task or
interaction.

By analyzing the different ways of user-app interactions,
we are enabled to analyze the expected way of interactions
towards each mobile app feature. And towards mobility, ex-
pected ways of interaction shall comply with the previously



Figure 2. Ways of User-App Interactions

defined situational contexts. Combining this analysis, we shall
be able to detect how an app feature is expected to perform in
different situational contexts. For requirements analysts, each
feature and the refined requirements could be analyzed and
mapped into the situational contexts assigned with expected
ways of user-app interactions. For example, Table III shows
the expected ideal ways of interaction towards given situational
context .

TABLE III. IDEAL WAY OF INTERACTION FOR EACH SITUATIONAL
CONTEXT.

S.C. Typical Scenario Ideal Ways
IVC In a conference giving presentation Accompanying
AVC In a lecture listening Intermittent
IVE In a caf working on assignments with close deadline Intermittent,

Accompanying
AVE At home idle Interrupting

Intermittent
Accompanying

ITC In a car driving with time limit Accompanying
ATC In a car driving and sight seeing Accompanying,

Intermittent
ITE In a train when it is about to arrive at the destination Accompanying,

Intermittent
ATE In a train idle Interrupting,

Intermittent
Accompanying

IWC Running in a race Accompanying
AWC Wondering in a cocktail party as a host Intermittent
IWE Running to catch a bus Accompanying
AWE Walking in a park relaxing Accompanying,

Intermittent

Table III indicates that in a specific situational context one
mobile app feature shall enable users to interact comfortably
in the ideal ways of interaction. Taking the situational context
scenario of IVC as an example, the ideal way is the accom-
panying way of interaction. Thus, a mobile app feature which
offers such a way of interaction is more likely to be used in this
circumstance. For example, the slide presentation feature of
Prezi can provide accompanying way of interaction in the IVC
context scenario of “In a conference giving presentation”. The
typical scenario of situational contexts can be also different.
For example, IVC context can also be represented in the
scenario of “In a university exam with time limit” or “In a
chess competition with time limit for each move”. When a
certain feature fails to initiate the ideal ways of interaction, it
shall be adjusted at requirement specification level towards the
ideal ways. Therefore, a process of identifying such features
and specifying the according strategy of mobility enhancing
adjustment is required.

V. MOBILITY REQUIREMENTS ANALYSIS PROCESS

The mobility requirements analysis process contains a
sequence of pre-defined steps, by following which require-
ments analysts can specify existing user requirements towards
enhanced mobility. The aim of mobility requirements analysis
is to provide specified requirements that enable users to use the
given features in a satisfied way in the possible situational con-
texts. As defined previously, a user’s satisfaction for a specific
feature is achieved by using this feature in different situational
contexts via ideal ways of interactions. Thus the proposed
mobility requirements analysis process is to refine existing app
features by taking into account the given situational contexts
and the according ways of interactions. The process of mobility
requirements analysis is described as Figure 3.

Figure 3. Mobility Requirements Analysis Process.

The analysis process consists of four key steps, as ex-
plained below.

Step 1. Identify the Primary Situational Contexts
Mobile apps are meant to satisfy users’ needs in all possible

situational contexts in an ideal way. However, mobile apps
have distinct visions and features, and cannot comply with
every situational context to meet users’ needs. It thus requires
the requirements analysts to identify the primary situational
contexts by prioritization. The outcome of this activity is a
list of prioritized situational contexts, or a number of primary
situational contexts.

Step 2. Specify the Expected Way of Interaction for Each
Feature

For each feature of the mobile app, requirements analysts
shall be able to specify an expected way of interaction, which
is expected by users. It means that users will use this feature
most comfortably via that way of interaction. The outcome of
this activity is a list of features together with expected ways
of interaction respectively.

Step 3. Compare the Previous Two Outcomes and Identify
the Conflicts

By comparing the outcomes of the previous steps with
Table III, we can find the features, of which the expected
way of interaction, conflicts with the ideal ones of the primary
situational contexts. These conflicts shall be adjusted in the
next step to enhance the app’s mobility attribute.

Step 4. Adjust Conflicting Feature towards Mobility Re-
quirements

We diminish the conflicts by changing the requirements
related to the feature or adding new ones.

VI. CASE STUDY

By following the steps of mobility requirements analysis
process, we are able to identify the features of a mobile
app that may contain conflicts against the ideal ways of



interaction in specified primary situational contexts, and also to
analyze and adjust the according features towards eliminating
the conflicts, hence enhancing their mobility. In this section,
we apply our proposed approach to analyzing three mobile
apps, WeChat[43], Gmail[44], and AlienBlue[45]. WeChat is
a messaging and calling app. It allows users to communicate
with friends for free text (SMS/MMS), voice & video calls,
moments, photo sharing, and games. Gmail (IOS) is the
official mobile app for iPhone and iPad. It supports real-time
notifications of new mails, multiple accounts, and mail search
across the entire inbox. AlienBlue is the official app for Reddit,
an online bulletin system. It enables users to browse threads
from Reddit, post new threads and reply on others’ threads
with other features, such as liking or disliking, subscribing,
image uploading, and so on.

The three mobile apps share the essential feature of user
communication but contain differences in details. For example,
WeChat enables users to receive, send, and share multimedia
messages instantly. Gmail contains no voice messaging feature
and takes longer time on individual operation session, such
as browsing and replying emails. On the other hand, the
communication between users on AlienBlue is fulfilled by
posting, reading and replying threads in Reddit. Thus, in the
study, we focus on the communication feature of the three apps
to analyze their mobility attributes and requirements.

Step 1. Identify the Primary Situational Context
Firstly, the primary situational contexts shall be identified

amongst the previously defined 12 situational contexts, as well
as the scope of the analysis. Instead of prioritizing the 12
situational contexts precisely, for these cases, we categorize
situational contexts into three prioritization level, including,
primary, secondary and ignorable. Primary situational contexts
indicates that most users tend to use this feature in these
situational contexts. Secondary contexts are those situational
contexts in which the user has the equal possibility of using
the app or not. And ignorable contexts are those in which
users nearly never use the feature. In terms of the “user
communication” feature of the three cases, the according
categorization of situational context is shown as Table IV.

TABLE IV. PRIMARY SITUATIONAL CONTEXTS.

WeChat Gmail AlienBlue
Primary AVE, ATE, AWE AVE, ATE AVE, ATE
Secondary AVC, IVE, ITE, ITE, AWE AWE

AWC
Ignorable IVC, ITC, ATC, IVC, AVC, IVE, IVC, AVC, IVE,

IWC, IWE ITC, ATC, AWC, ITC, ATC, ITE,
IWC, IWE IWC, AWC, IWE,

Taking WeChat as an example, it enables users instant
communication. Thus, the actions of reading and replying
messages is to a large extent encouraged in the situation
without social constraints (e.g. driving for safety reason) or
time limit towards other objectives (e.g. deadlines). The social
encourging and time allocative contexts are also the primary
contexts for the other two apps. But different from them,
instant communication feature of WeChat is also encouraged
in ‘wondering’ contexts. Besides, even with certain social
constraints and time limits, users tend to use WeChat more
than the other two, which is why more secondary situational
contexts are identified for WeChat.

Step 2. Specify the Expected Ways of Interaction
The expected way of interaction for the feature shall

be determined by the way in which most of the users use

the feature, which can be identified and analyzed by using
different requirements elicitation techniques, or asserted by
requirements analysts based on the use pattern of other similar
products. For example, the expected way of interaction for
WeChat communication is intermittent, as users only allocate
short time for instant communication without original activity
fully interrupted. Comparatively, Gmail and AlienBlue require
more concentration and time from users for reading and reply-
ing emails, which results in an interrupting way of interaction.

Step 3. Compare the Previous Two Outcomes and Identify
the Conflicts

Comparing the pre-defined ideal ways of interaction for
the primary situational contexts and the expected way of
interaction for the feature, we find no conflicts for all apps in
their primary situational contexts (shown in Table V). When no
conflicts are found for all primary situational contexts, we can
indicate that this existing feature provides adequate mobility
support.

TABLE V. COMPARISON OF IDEAL AND EXPECTED WAYS OF
INTERACTION

Primary Ideal WeChat Gmail AlienBlue
Interrupting,

AVE Intermittent, Intermittent Interrupting Interrupting
Accompanying
Interrupting,

ATE Intermittent, Intermittent Interrupting Interrupting
Accompanying
Intermittent,

AWE Accompanying Intermittent Interrupting Interrupting

However, conflicts are found in the secondary context of
AWE for Gmail and AlienBlue. Compared with the primary
contexts, we find that users in “wondering” context are more
likely to start interaction with WeChat rather than Gmail and
AlienBlue based on their expected ways of interaction. Thus,
to enhance the mobility of them, conflicts for this secondary
situational context shall be addressed with additional mobility
requirements as in practise the secondary situational contexts
might be also of high priorities.

Step 4. Adjust Conflicting Feature towards Mobility Re-
quirements

Once the conflicts were detected, the according feature
or function shall be adjusted in order to improve the overall
mobility of the app. According to the conflicting situational
context (i.e., AWE), the mobility requirement to adjust is as
follows.

In a situational context of “Allocative-Wandering-
Encouraging”, the Gmail/AlienBlue app shall provide user
text-based communication functionality in the intermittent way
of interaction.

The mobility requirements provide the goal for require-
ments analysts indicating which specific situational contexts
and by which ways of interaction the target feature shall be
adjusted. The adjustment can be applied by adding or editing
the existing requirements related to this function. Taking
AlienBlue as an example, part of functions related to text-
based communication in thread discussion is summarized in
Table VI.

When adjusting the functions, we shall take into account
the conflicting situational context. The perspective that plays
a critical part of the conflict is firstly focused. For example,
concerning the specific situational context of “Allocative-



TABLE VI. ALIENBLUE’S FUNCTIONS

App Name Functions
AlienBlue AFR1.The app allows the user to view through the whole thread;

AFR2.The app allows the user to reply on a specific comment;
AFR3.The app allows the user to send replies with images and emojis;
AFR4.The app allows the user to like or dislike other comments;
AFR5.The app allows the user to receive comments notifications;

Wandering-Encouraging”, social encouraging and time alloca-
tive contexts do not hinder user’s interaction with the thread
receiving and replying feature of AlienBlue. Thus, within the
range of this very feature, we change the existing function with
more specified function variations. As follows, based on the
given functions, we provide examples on how to change the
existing function or add new functions that comply with the
“Wandering” situational context.

Taken as examples, AFR1 and 2 are two of the essential
function of the AlienBlue app, which must not be removed.
However, as a persistent and non-obtrusive functions, based
on Figure 2, these functions are prone to be ignored in most
situational contexts, especially for the “Wandering” context.
One way to change them is to shorten the operating session.

Thus, the AFR1 and AFR2 can be changed into:
AFR1.1 The app shall allow the user to view exclusively

his or her own comments and the ones he or she
comments on with unrelated comments folded;

AFR1.2 The app shall allow the user to view unrelated
comments by unfolding them;

AFR1.3 The app shall allow the user to quickly control the
display of the thread interface by hand gestures;

AFR1.4 The app shall allow the user to view comments
concerning him or her on the lock screen;

AFR2.1 The app shall allow the user to reply with prede-
fined quick responses;

AFR2.2 The app shall allow the user to save unfinished
comments automatically and to continue compos-
ing;

AFR2.3 The app shall allow the user to respond to the
received comments on the lock screen;

Compared to the originial requirements, the specified re-
quirements largely reduced the browsing time by directly en-
abling the user to focus on the relevant comments. Meanwhile,
the specified requirements also enhance the obtrusiveness of
the notification, which allows the user to better respond to the
notification. In this way, based on the existing functions, these
functions are adjusted in order to eliminate the conflicts be-
tween ideal way of interaction in a certain primary situational
context and the expected way of interaction of this feature. By
repetitively doing so with all the features of the mobile app,
the mobility of the target mobile app is supported as users are
enabled to interaction with the features in the expected way of
interaction.

In this case study, we adopt existing mobile apps as ex-
amples to demonstrate how the mobility requirements analysis
process can be applied. It is easy to identify the features that
require mobility enhancement and the corresponding change
proposal for well-known apps. In practise, it is hard to predict
and fully specify all situational contexts and assure that the
target app attract users to use in their expected way. The
proposed approach and process provides a way of analyzing
situational contexts, in which the app is put to use and eliciting
requirements that enhance its mobility. This study contributes

in filling the gap in the studies on applying the understanding
of context into mobile app requirements analysis. Furthermore,
the user-app interaction reference model and the situational
context analysis provides an extensible framework of studying
the context of a user-app interaction where more perspectives
can be added to enrich the scenario set of situational contexts.
This approach also enables developers to choose the suitable
set of context scenarios and prioritization, as well the ideal
ways of interactions, based on the vision and scope of their
target mobile apps.

VII. CONCLUSION
In this paper, we explore the concept of mobility as the

characteristic of mobile apps, which satisfies users’ need to use
them under changing contexts. By analyzing the perspectives
of mobility, we define situational contexts as the key extrinsic
factors that influence users’ satisfaction in user-app interac-
tions. Compared to the other context factors, such as device
context and environmental context, the situational contexts are
more tangible towards the understanding of how users and
apps interact, and also the factors shall be taken into account
when mobile development team aims to enhance the mobility
of their mobile products.

Furthermore, based on the specification of typical situa-
tional context scenarios, we further analyze connection be-
tween these situational contexts and the ideal ways of user-app
interactions. Hence, seeking the conflicts between ideal ways
of interaction and the current ones is the method to detect the
key mobility-lacking features of a mobile app. On the basis
of the analysis, we propose the mobility requirements analysis
process, which helps to adjust features and the according re-
quirements towards the ideal ways of interaction. Accordingly,
the overall mobility of the mobile app improves.

The future work of this study will focus on the other
extrinsic contexts and their influences on user-app interactions,
which shall be utilized as the replenishment for the existing
reference model. The user characteristics and goals, as well
as their connection towards the mobile application feature and
demands, shall also be reviewed and analyzed in the mobile
app domain. In addition, the connection between the improve-
ment of mobility and user satisfaction to mobile apps shall
be also studied as the validation of our mobility requirements
analysis method in our future studies.
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Abstract—The contemporary online mobile application (app)
market enables users to review the apps they use. These reviews
are important assets reflecting the users needs and complaints
regarding the particular apps, covering multiple aspects of the
mobile apps quality. By investigating the content of such reviews,
the app developers can acquire useful information guiding the
future maintenance and evolution work. Furthermore, together
with the updates of an app, the users reviews deliver particular
complaints and praises regarding the particular updates. Despite
that previous studies on opinion mining in mobile app reviews
have provided various approaches in eliciting such critical in-
formation, limited studies focus on eliciting the user opinions
regarding a particular mobile app update, or the impact the
update imposes. Hence, this study proposes a systematic analysis
method to elicit user opinions regarding a particular mobile app
update by detecting the similar topics before and after this update,
and validates this method via an experiment on an existing mobile
app.

Keywords–Mobile app; review; sentiment analysis; topic model-
ing; topic similarity

I. INTRODUCTION

The increasing number of smart phone users has led to
a continuous increase in the number of mobile apps and
their overall usage. Users browse and download apps via
different digital distribution platforms (e.g., Apple app store,
and Google Play). These platforms also provide an important
channel enabling the users to provide feedback to the app. The
ratings and comments given by the users at a particular time
reflect their opinions regarding the overall app and the specific
version of that app. While the app developers, continuously
or sporadically, update their apps, the retrieved user reviews
reflect not only their overall opinion changes throughout the
evolution time but also their specific complaints and praises re-
garding the specific app version [1]. Such specific complaints,
regarding various aspects [2], shall enable the developers to be
aware of the issues and tackle them accordingly.

Existing studies have proposed different approaches to
identifying change requests from user reviews for mobile app
maintenance. With various opinion mining techniques, such
as Natural Language Processing (NLP), Sentiment Analysis
(SA) and supervised learning, many studies have been con-
ducted regarding the classification of reviews towards different
issue perspectives [3] [4]. Other perspectives, such as user
preferences, app evaluation, user satisfaction, relation between
download and rating, feature extraction, review prioritization
and so on, have also been widely studied [5]–[9]. However,
limited studies focus on the use of such methods in opinion
mining on particular updates of a mobile app and the impact
on the app’s updates in the following releases, despite the

importance of such information. It is unclear how users’
attitude towards a particular issue changes when new updates
are released and how the reviews have impacts on app’s
maintenance and evolution.

In this paper, we investigate the correlation between users’
positive and negative reviews before and after an app’s release.
We consider two dimensions: time and sentiment. Specifically,
we divide user reviews based on major updates, and distinguish
them between those precede and follow the particular updates.
Each group of reviews are further divided into positive and
negative ones using sentiment analysis. We devise an approach
to measuring the similarity of each group of reviews. The
measurement reveals the similarity and changes between dif-
ferent groups of reviews and helps to gain insight into how
to detect users’ opinion changes regarding a particular update.
Furthermore, detecting the users’ update-specific opinions shall
also help the developers be aware of the users opinion on a
particular release and guides them proactively to address the
most important issues early.

The remainder of this paper is organized as follows. Section
II introduces the method with details. Section III presents a
case study using this method. Section IV introduces the related
works when Section V concludes the paper.

II. METHOD DESCRIPTION

In this section, we introduce our method with the main goal
to detect the correlation between the content of app reviews
before and after the app updates done by the app company
through the app maintenance lifecycle. Such correlation shall
show the degree in which the users comments are reflected
in the sequence of updates and such updates are accepted
by the users. The factors that influence and reflect such
correlation include the main topics of the reviews between each
two updates, the sentiment of those reviews, and the topics
similarities before and after each update. Next, we illustrate
how to detect the correlation via investigating these factors.
Accordingly, Subsection A introduces the overall procedure
of the method and brings forth the hypotheses it aims to
verify. Subsection B and C introduce respectively how to
analyze the sentiment and topics of user reviews. Subsection D
introduces how to calculate the similarity between topics, when
Subsection E presents how to identify the matching similar
topics between review sets.

A. Preliminaries
Let R be a collection of user reviews for a particular mobile

app A, covering a particular time period. Therein, each review
ri ∈ R is associated with a particular time point, at which



the review ri is published. Let also U be the set of updates
released by the app developers within the time period with
each update ui is released at a particular time point as well.
Therefore, we consider each review ri, which is published after
the release time of update ui and before that of the next update
ui+1, as a review regarding the update ui. Hence, for the n
updates {ui|i ∈ N, k ≤ i < k + n} where k ≥ 1 and n > 0
for the app A within a time period, the review set R can be
divided into n + 1 subset where each Ri ⊆ R is the set of
reviews commenting on the according ui. R0 is the review set
correlated with the last update before u1 or the first version
of A if u1 is the first update of A. For each review rj ∈
Ri, a sentiment score shall be calculated and assigned to rj ,
whose the sentiment is either positive or negative. In this
way, by identifying the sentiment of each individual review
in Ri, we can divide Ri positive review set R+

i and negative
review set R+

i , where R+
i ∪R−i = Ri and R+

i ∩R−i = ∅ with
an acceptable accuracy.

We further investigate the main topics for each of the pos-
itive and negative review sentence sets. We assign T+

i and T−i
as the topic set for the positive and negative reviews. Therefore,
we investigate the merits and issues of a particular update ui

by comparing the similarities and changes between T+
i−1, T−i−1,

T+
i , and T−i . Specifically, the following hypotheses shall be

verified.

• H1. The topic similarities between T+
i−1 and T+

i reflect
the merits regarding the app A in general.

• H2. The topic similarities between T+
i−1 and T−i reflect

the uncomfortable changes in the update ui.
• H3. The topic similarities between T−i−1 and T+

i reflect
the improvement in the update ui.

• H4. The topic similarities between T−i−1 and T−i reflect
the remaining issues regarding the app A.

Figure 1. Relationship between hypotheses and updates.

Thus, the results obtained from these hypotheses for up-
dating ui provide the following information: 1) the merits and
issues for the app A in general, 2) the merit and issues specific
to the update ui, and 3) the improvements and drawbacks of ui

compared with ui−1. The merits and issues for app A and those
for each ui ∈ U shall be recorded as the evolution status of app
A throughout period T , which can be used as the reference to

guide planning the following updates. Figure 1 visually depicts
the focus of our hypotheses for updating ui.

B. Sentiment Classification
The aim of sentiment classification in this method is to

classify each review set Ri into two subsets, i.e., R+
i and R−i .

Herein, R+
i denotes the set of positive reviews from Ri, and

R−i denotes the set of negative reviews. Therefore, each rj in
Ri shall be determined whether it is positive or negative.

To do so, we assign a sentiment score to each review
by exploiting a robust tool for sentiment strength detection
on social web data [10]. As each rj can be seen as a list
of words Wj , we first select a lexicon that will determine
the sentiment score of each word wz in Wj . The lexicon for
sentiment analysis is a list of words used in English language,
each of which is assigned with a sentiment value in terms of its
sentiment valence (intensity) and polarity (positive/negative).
To determine the sentiment of words, we assign a rational value
within a range to a word. For example, if the word “okay” has
a positive valence value of 0.9, the word “good” must have
a higher positive value, e.g., 1.9, and the word “great” has
even higher value, e.g., 3.1. Furthermore, the lexicon set shall
include social media terms, such as Western-style emoticons
(e.g., :-)), sentiment-related acronyms and initialisms (e.g.,
LOL, WTF), and commonly used slang with sentiment value
(e.g., nah, meh).

Figure 2. Algorithm for Sentiment Classification

With the well-established lexicon, and a selected set of
proper grammatical and syntactical heuristics, we shall then
be able to determine the overall sentiment score of a review.
Namely, the sentiment score of a review rj is equal to Sj ,
where Sj ∈ (−1, 1). The grammatical and syntactical heuris-
tics are seen as the cues to change the sentiment of word sets.
Therein, punctuation, capitalization, degree modifier, and con-
trastive conjunctions are all taken into account. For example,
the sentiment of “The book is EXTREMELY AWESOME!!!”
is stronger than “The book is extremely awesome”, which is



stronger than “The book is very good.”. With both the lexicon
value for each word of the review, and the calculation based on
the grammatical and syntactical heuristics, we can then assign
unique sentiment values to each review. That is, each review
rj is classified into positive, neutral or negative, as following:

rj is

{ positive, if 0 < Sj < 1,
neutral, if Sj = 0,
negative, if − 1 < Sj < 0.

Overall, each review set Ri is divided into R+
i , R0

i , and
R−i , denoting the positive, neutral and negative review sets. To
further investigate the information in R0

i , after experimentally
observing that typically includes a big number of reviews,
we classify it into positive and negative using the Naive
Bayes Classifier with the training data from R+

i and R−i . This
way, R0

i is classified into R0+
i and R0−

i , which in turn, are
added to R+

i and R−i , respectively. The reason to perform
supervised classification after sentiment analysis instead of
directly applying classification is twofold. Firstly, manually
creating training data is time-consuming and less accurate than
using existing sentiment analysis methods. Secondly, training
the sentiment classified reviews will provide domain specific
and reliable results. The process is described in Figure 2.

C. Topic Analysis

After dividing the review sets Ri and Ri−1, i.e., the review
sets related to update ui, into R+

i , R−i , R+
i−1 and R−i−1 based

on the sentiment classification method, we elicit the main
topics from each of the classified review sets by exploiting
the Latent Dirichlet Allocation (LDA) method [11]. First, we
consider each review sentence rj in a particular set of reviews
as a list of words Wj , where the sequence of the words is
not recorded. The number of topics in this review set is set
as t. Presumably, there is a distribution for the probability of
a particular word appears in a particular topic, when there is
also one for that of a particular review in a topic. We build
the set of Review − Topic, where each word of each review
is assigned with a topic out of the t topics. As preparation, we
define Review−topic−numbers, Topic−words−numbers,
and Topic− numbers denoting the number of occurrence of
each topic in each review, the number of occurrence of each
word in each topic, and the number of words in each topic,
respectively. For example, Review− topic− numbers(rj , k)
denotes the number of occurrences of topic k in review rj .
Then, we randomly assign each word wz of each review rj
with a topic tk. Accordingly, the Review− topic−numbers,
Topic − words − numbers, and Topic − numbers will
be updated as the referencing weight of the distribution the
words for each topic. Then iteratively, for each word, we
assign a new topic based on such weight of distribution
and adjust the weight with the Review − topic − numbers,
Topic − words − numbers, and Topic − numbers for the
next iteration. After a given number of iteration, t topics will
be determined by the Topic − words − numbers, which is
the number of occurrences of the words in each topic. Each
tk is then denoted by the most common keywords used in this
topic. Then, the set of topics T are returned as result. For the
review sets R+

i , R−i , R+
i−1 and R−i−1, we will have the topics

sets T+
i , T−i , T+

i−1 and T−i−1 accordingly.

D. Calculating Topics Similarities
Based on the topic sets T+

i , T−i , T+
i−1 and T−i−1 elicited

from the review sets R+
i , R−i , R+

i−1 and R−i−1, we further
analyze the similarities between the individual topics between
each pair of the topic sets. As the result from the previous
topic analysis, each topic set T encompasses k topics, each of
which is represented by the list of the most possible appearing
keywords. Thus, each topic set T with k topics each of which
is represented by w keywords, can be denoted as:

T =

[
kw1,1 kw1,2 ... kw1,w

... ... ... ...
kwk,1 kwk,2 ... kwk,w

]

with each ti ∈ T can be denoted as [kwi,1, kwi,2, ...kwi,k]. To
compare the similarity between two topic sets, each consisting
of t topics, we compare all pairs of topics. Due to the fact that
each topic is represented as a set of keywords, the similarity
of two topics shall be denoted by the common keywords of
these topics. Hence, an easy way for calculating the similarity
between any two topics ti and tj is by using the Jaccard
similarity. This similarity function reflects the percentage of
the common keywords of the two sets in the whole keywords
set of the two: J(ti, tj) =

|ti∩tj |
|ti∪tj | .

However, by using the Jaccard Similarity, we consider two
given topics are similar only when they contain a particular
number of common keywords, regardless of the probability
of them. The meaning of each topic ti ∈ T , denoted as
[kwi,1, kwi,2, ...kwi,k], shall be more likely reflected by the
high-probability keywords of ti. Furthermore, the subset of
only low-probability keywords may reflect different meanings.
For example, a topic is denoted as {’update’: 0.143, ’problem’:
0.096, ’fix’: 0.064, ’install’: 0.03, ’uninstall’: 0.029, ’open’:
0.027, ’stop’: 0.025, ’plea’: 0.025, ’get’: 0.022, ’reinstall’:
0.019, ’bug’: 0.019, ’start’: 0.019, ’need’: 0.014, ’applica-
tion’: 0.014, ’issue’: 0.011, ’battery’: 0.011, ’help’: 0.01,
’face’: 0.009, ’frustrate’: 0.009, ’day’: 0.008}. From the high-
probability keywords of this topic, we can summarize that the
topic is regarding the problems of updating, which requires
being fixed. However, the low-probability keywords hardly
reflect the topic, e.g., a keyword subset, {’reinstall’, ’bug’,
’start’, ’need’, ’application’, ’issue’, ’battery’}, reflects a very
different issue regarding bugs and batteries.

Hence, when comparing the similarity of two given top-
ics, the probability of the common keywords shall be taken
into account. Considering that Jaccard coefficient is the nor-
malized inner product [12], we herein adopt the similarity
measure method incorporating also the inner product, the
Kumar-Hassebrook (KH) similarity [13]. Provided between
topic ti and tj , the c common keywords are denoted as
[kwij,1, kwij,2, ...kwij,c], with the according probability list
in ti and tj is [pi,1, pi,2, ...pi,c] and [pj,1, pj,2, ...pj,c]. The
similarity of the two given topics are calculated as follows.

KH(ti, tj) =

∑c
x=1 pi,x · pj,x∑k

x=1 p
2
i,x +

∑k
x=1 p

2
j,x −∑c

x=1 pi,x · pj,x
The probability for each keyword of any topic belongs

to (0,1). Hence, for this formula, when ti and tj contain
more common keywords, the numerator increases monotoni-
cally, and the denominator decreases monotonically. Therefore,
KH(ti, tj) increases when ti and tj have more keywords in



common. In addition, when the probability of the common
keywords increases,

∑c
x=1 pi,x · pj,x increases. Because the

denominator is greater than the numerator, and both are greater
than 0, KH(ti, tj) increases when the probabilities of the
common keywords of ti and tj increase.

In this way, for two given topics ti and tj , when each
keyword of these two topics is assigned the average value of
the probability value set, then KH(ti, tj) = J(ti, tj). Consid-
ering the monotonical increasing of the KH Similarity formula,
it means that for ti and tj , when KH(ti, tj) <J(ti, tj),
the common keywords of these two topics hardly reflect the
meaning of them. For example, two topics, denoted as the
following set of keywords with the according probability of
each keywords, are listed in Table I.

TABLE I. EXAMPLE TOPICS WITH KEYWORDS AND PROBABILITY

Topic 1 {’problem’: 0.145, ’fix’: 0.081, ’download’: 0.051, ’please’:
0.032, ’use’: 0.025, ’reason’: 0.021, ’service’: 0.02, ’user’:
0.015, ’issue’: 0.015, ’data’: 0.014}

Topic 2 {’version’: 0.197, ’please’: 0.121, ’go’: 0.069, ’use’: 0.043,
’option’: 0.036, ’one’: 0.028, ’lot’: 0.027, ’revert’: 0.021,
’way’: 0.018, ’download’: 0.018}

The Jaccard Similarity of these two topic is 0.176 when
the KH Similarity is 0.064. We can observe that the common
keywords, {’download’, ’please’, ’use’}, are of low probability
in Topic 1 and keywords {’please’, ’use’} in Topic 2, while
neither topic is reflected by the common keywords. Topic 1
can be seen regarding the requests of fixing problems/bugs
when Topic 2 is more related to keyword ’version’ instead of
’download’. Thus, these two given topics cannot be considered
as similar despite the high Jaccard Similarity.

E. Identifying Matching Topics

After computing similarities between pairs of review topics
with KH similarity, we shall identify which are the matching
topics when cross-comparing the topics of the topics sets T+

i ,
T−i , T+

i−1 and T−i−1. Hence, to identify the matching topics
between two review topic sets Ta and Tb, the aim is to identify
all the topic pairs (tai, tbj), tai ∈ Ta and tbj ∈ Tb, that have
the high similarity. Starting from the pair of topics with highest
similarity values,

We firstly use the Jaccard Similarity value of two particular
topics as the threshold for their KH similarity. According to the
formula of KH similarity given previous, we set the probability
of each keyword in each topic equal to the average. Then

KH(tai, tbj) =

∑c
x=1 p

2∑k
x=1 p

2 +
∑k

x=1 p
2 −∑c

x=1 p
2

=
c

k + k − c
= J(tai, tbj)

Therefore, we select the topic pairs, whose KH similarity
value greater than their Jaccard similarity value, as similar
topics. Furthermore, from the topic pairs with the highest
KH similarity value, we select the top n pairs of topics
to investigate the changes and similarities of users opinion
regarding the app.

Figure 3. Algorithm for Matching Topic Identification

The aim of the algorithm (shown in Figure 3) is to select
the similar topic pairs with the highest similarity value. When
a particular topic pair is selected, the other pairs, which either
of these two selected topics is also pairing with and have also
high similarity, will be considered as references to interpret
the users opinions. Each particular topic generated by the LDA
model contains a number of perspectives that can be interpreted
by the keywords. Thus, it is possible that one particular topic
have the similar similarity value to multiple topics, when they
are similar regarding different perspectives which represented
by their different common keywords.

TABLE II. EXAMPLE TOPICS WITH KEYWORDS AND PROBABILITY

Topic 1 {’time’: 0.12, ’friend’: 0.091, ’talk’: 0.081, ’way’: 0.069,
’see’: 0.048, ’people’: 0.045, ’communication’: 0.038,
’want’: 0.03, ’face’: 0.023, ’world’: 0.02 }

Topic 2 {’friend’: 0.111, ’bring’: 0.07, ’connect’: 0.068, ’talk’: 0.06,
’keep’: 0.059, ’family’: 0.054, ’application’: 0.037, ’way’:
0.021, ’touch’: 0.017, ’contact’: 0.016 }

Topic 3 {’see’: 0.077, ’use’: 0.056, ’people’: 0.046, ’want’: 0.044,
’contact’: 0.034, ’thing’: 0.031, ’year’: 0.027, ’find’: 0.023,
’know’: 0.023, ’number’: 0.019 }

For example, in Table II Topic 1 has the same Jaccard sim-
ilarity value to both Topic 2 and 3. The two pairs of common
keywords are {’friend’, ’talk’, ’way’} and {’people’, ’see’,
’want’}. Their KH similarity values are different but both high
(0.276 and 0.137). From Topic 1, we could summarize that it
is regarding using the app enabling people to communicate
with friends any time they want and can see their faces as
well. Despite it is considered similar to both Topic 2 and 3,
Topic 2 focuses on the perspective of enabling communication
between families and friends, when Topic 3 focus more on
the perspective of contacting people with phone numbers and
seeing them. Thus, by identifying both similar topic pairs, we
shall have more thorough understanding of the users’ opinions
regarding the app.

III. CASE STUDY

A. Preprocessing
Before starting the experiment with the proposed method,

preprocessing on the raw review data is required. The whole



preprocessing work can be divided into three individual steps
as follows.
Filtering non-English reviews. The raw review data may
contain a number of review items that are not written in
English, which needs to be filtered out. Also, similar to social
media text, user reviews usually contain many commonly
used slurs that are not regular English vocabularies. Our
goal is to not filter out these words, as they likely contain
sentiment related information, without which shall influence
our experiment results. Overall, we screen out the non-English
review sentences using Langdetect [14], a convenient language
detecting package for Python language. Compared with PyEn-
chant [15], another language detecting package, Langdetect
enables determining the language of text on sentence level. It
shall remain the review data containing such English slurs.
Focusing on sentence-level granularity. Due to the fact that
each user review can contain more than one sentence, a multi-
sentence review can contain multiple meanings, one for each
sentence. Thus, we divide each review from a review set Ri

into individual sentences. Hereafter, we use rj to denote a
review sentence in Ri. We use the sentence tokenizer feature
from the NLTK [16] python package, with a further checking
on the legitimacy of the sentences.
Filtering stop-words and lemmatization. In addition, the
collected English review sentences are also transformed into
lower cases, screened with stop-words, and lemmatized before
topic modeling. In order to obtain more meaningful topic
modeling results, we add the words that connect to only
general information but have significant appearing rate in the
reviews to the list of stop words. For example, the name
of the app and the word app are of neither help towards
topic modeling nor towards sentiment analysis. In addition,
considering the fact that the sentiment of each review item is
identified, we eliminate all adjectives from the obtained tokens
and select only nouns and verbs as tokens via the pos tag
function of NLTK.
Sentiment Classification with VADER. To perform sentiment
analysis on the collected app reviews, we select the Valence
Aware Dictionary for sEntiment Reasoning (VADER) approach
[10]. Compared with other sentiment analysis tools, VADER
has a number of advantages regarding this study. Firstly, the
classification accuracy of VADER on sentiment towards posi-
tive, negative and neutral classes is even higher than individual
human raters in social media domain. In addition, its overall
classification accuracies on product reviews from Amazon,
movie reviews, and editorials from NYTimes also outperform
other sentiment analysis approaches, such as SenticNet [17],
SentiWordNet [18], Affective Norms for English Words [19],
and Word-Sense Disambiguation [20], and run closely with
the accuracy of individual human. On the other hand, VADER
approach is integrated in the NLTK package, which can be
easily imported and performed using Python.

B. Dataset
Our study relies on real data. In particular, we focus on

reviews submitted for 1-year period of Skype on the Android
platform. We collected 153,128 user reviews submitted from
1.9.2016 to 31.8.2017. The reviews are tokenized into 234,064
individual sentences. After filtering the non-English review
sentences, the number is reduced to 174,559.

We investigate the merits and issues concerning the major
update of Skype released on Android platform on 1.6.2017

(ui = version-1.6.2017). Within this period from 1.9.2016 to
31.8.2017, 76 updates were released. On average, the app has
been updated nearly every five days. By observing the content
of each update from the given information of Google Play,
we find that some consecutive updates contain exact same
content based on their descriptions. Therefore, we consider
the first update of a set of updates which contain same
descriptions as a major update, when the rest of the update set
as minor update. Amongst the major updates of Skype during
this period, the update ui provide significant changes in UI
design and user experiences. By classifying all selected review
sentences into positive and negative using sentiment analysis
and supervised classification with Naive Bayes Classifier, the
number of review sentences in each segment is listed in Table
III. Accordingly, the review sets R+

i−1, R−i−1, R+
i , and R−i ,

for this study, consists of 65580, 29970, 36703, and 42306
reviews.

TABLE III. POSITIVE AND NEGATIVE REVIEWS AROUND A
PARTICULAR APP UPDATE

Positive reviews Negative reviews Total
Before 1.6.2017 65,580 29,970 95,550
After 1.6.2017 36,703 42,306 79,009

Total 102,283 72,276 174,559

Overall, the total number of positive reviews around the
particular update is bigger than the number of negative reviews.
Meanwhile, the monthly review number increased sharply after
this particular major update. Opposite to the situation before
the update, we observe that after the update more negative
reviews are given by the users than the positive ones, meaning
that many users are not satisfied with this particular update or
the app overall.

TABLE IV. NUMBER OF REVIEWS PER TOPIC

t+
(i−1)1

t+
(i−1)2

t+
(i−1)3

t+
(i−1)4

t+
(i−1)5

13627 3104 3168 6283 4725
t−
(i−1)1

t−
(i−1)2

t−
(i−1)3

t−
(i−1)4

t−
(i−1)5

8692 6016 4122 6105 9738

t+i1 t+i2 t+i3 t+i4 t+i5
3519 2892 4204 1895 3433
t−i1 t−i2 t−i3 t−i4 t−i5

2409 2700 2794 2408 3716

t+
(i−1)6

t+
(i−1)7

t+
(i−1)8

t+
(i−1)9

t+
(i−1)10

7768 2796 3134 3186 3391
t−
(i−1)6

t−
(i−1)7

t−
(i−1)8

t−
(i−1)9

t−
(i−1)10

4810 3399 3244 2798 2177

t+i6 t+i7 t+i8 t+i9 t+i10
4818 4132 4463 3237 4635
t−i6 t−i7 t−i8 t−i9 t−i10

3139 3893 3229 6252 4508

After sentiment analysis and classification, we perform the
LDA topic analysis to identify the topics of the review set
R+

i−1, R−i−1, R+
i , and R−i , in order to investigate the users

opinions concerning the update and further verify the previ-
ously proposed hypothesis. To train the LDA topic models, we
need to set the number of topics k. Based on an experimentally
study regarding the quality of the topics produced for different
k values, and select k = 10.

Overall, for the collected 174,559 review sentences on
Skype, we perform an LDA topic analysis on the review set
R+

i−1, R−i−1, R+
i , and R−i . For each of the 4 sets of review data,



we use the Gensim topic modeling toolbox to train the 10-topic
LDA models. For the 4 LDA models, each individual topic
is represented by 20 keywords. Then, we assign each review
sentence in the LDA models to the topic to which it has the
highest probability to belong. The numbers of reviews for each
topic of the 4 data sets appear in Table IV (t+in represents the
nth topic of R+

i ). In general, reviews are divided into topics
smoothly and, in most cases, each topic consists of around
4000 review sentences.

C. Topics Similarity Analysis
With the 40 identified topics, each of which is represented

by 20 keywords, we compare the similarity between each topic
from the 20 topics before the update and each one from the
20 topics after the update, which provides 400 topics pairs.
The Jaccard similarity values for those 400 pairs range from 0
to 0.429 (i.e., 0 - 12 common keywords between two topics).
Meanwhile, the KH similarity values range from 0 to 0.676.
Therein, we identify the potential similar topics from the high-
est KH similarity value and eliminate the results where the KH
similarity value is lower than the according Jaccard similarity
value. In this way, we guarantee the common keywords of
each identified topic pairs contain the overall probability value
greater than average. We select the seven topic pairs with the
highest KH similarity values for each comparison set. For
each topic pair, we analyze the similarity of the two topics
by observing their common keywords. Furthermore, from the
unique keywords of each topic from one particular topic pair,
we could also see the topic changes. The seven topic pairs
with the highest KH similarity value are depicted in Table V.

TABLE V. PAIRS OF SIMILAR TOPICS

T+
i−1 - T+

i (t+
(i−1)8

, t+i5) (t+
(i−1)6

, t+i6) (t+
(i−1)7

, t+i9) (t+
(i−1)6

, t+i1)
(t+

(i−1)6
, t+i5) (t+

(i−1)1
, t+i7) (t+

(i−1)8
, t+i3)

T+
i−1 - T−i (t+

(i−1)6
, t−i10) (t+

(i−1)6
, t−i5) (t+

(i−1)8
, t−i7) (t+

(i−1)5
,

t−i6) (t+
(i−1)7

, t−i8) (t+
(i−1)8

, t+i10) (t+
(i−1)2

, t+i3)

T−i−1 - T+
i (t−

(i−1)3
, t+i6) (t−

(i−1)7
, t+i3) (t−

(i−1)5
, t+i1) (t−

(i−1)3
, t+i5)

(t−
(i−1)10

, t+i8) (t+
(i−1)1

, t+i4) (t+
(i−1)6

, t+i9)

T−i−1 - T−i (t−
(i−1)3

, t−i10) (t−
(i−1)10

, t−i3) (t−
(i−1)6

, t−i8) (t−
(i−1)7

,
t−i9) (t+

(i−1)7
, t+i6) (t+

(i−1)8
, t+i6) (t−

(i−1)8
, t−i9)

By further analyzing the common keywords in the obtained
similar topic pairs, we verify the hypothesis H1 - H4 as
follows.
H1. The topic similarities between T+

i−1 and T+
i reflect

the merits regarding the app A in general. The common
keywords of the seven topics pairs with the highest KH
similarity value appear in Table VI. For example, the common
keywords of topics (t+(i−1)8, t+i5) reflects the acknowledgement
from the users before and after the update. Because, the
common keywords ’work’ and ’call’ indicate that the core
function of the app works properly. The common keywords
of topics (t+(i−1)6, t+i6) reflect the users acknowledge also the
benefits brought by the app, e.g., enabling people to chat
in groups, with video or by calling, so that people can see
and hear from their friends. On the other hand, topic pair
(t+(i−1)7, t+i9) contains the common keywords that reflect the
users needs in adding features and fixing bugs. Considering
the overall positive sentiment of the review sets, it is also
possible the users reflect their satisfaction towards the work
done by the developers regarding such matters. Topic pair

(t+(i−1)6, t+i5) reflects the users satisfied with the video and
audio quality of the app. As topic t+i5 is also similar to t+(i−1)8,
both topic pairs reflect similar information. Topic pair (t+(i−1)1,
t+i7) reflects the contribution of the app to the society in a bigger
picture, regarding the communication between friends and
family and helping people keep in touch. Topic pair (t+(i−1)6,
t+i1) contain few common keywords; however, as t+(i−1)6 is also
similar to topic t+i6 and t+i5, all these topic pairs reflect similar
information.

TABLE VI. COMMON KEYOWRDS IN POSITIVE-POSITIVE REVIEWS

Topic Pairs Common Keywords
(t+

(i−1)8
, t+i5) [’call’, ’phone’, ’sound’, ’work’]

(t+
(i−1)6

, t+i6) [’call’, ’chat’, ’friend’, ’group’, ’hear’, ’make’, ’people’,
’person’, ’phone’, ’see’, ’video’]

(t+
(i−1)7

, t+i9) [’add’, ’bug’, ’everything’, ’fix’, ’hope’, ’issue’, ’make’,
’need’, ’please’]

(t+
(i−1)6

, t+i1) [’people’, ’use’, ’year’]

(t+
(i−1)6

, t+i5) [’call’, ’make’, ’phone’, ’quality’, ’video’, ’voice’]

(t+
(i−1)1

, t+i7) [’application’, ’communicate’, ’connect’, ’family’, ’friend’,
’get’, ’help’, ’touch’, ’way’]

(t+
(i−1)8

, t+i3) [’connection’, ’internet’, ’keep’, ’nothing’, ’work’]

H2. The topic similarities between T+
i−1 and T−i reflect

the uncomfortable changes in the update ui. The common
keywords of the selected similar topic pairs are shown in Table
VII. The common keywords of topics (t+(i−1)6, t−i10) reflects
negative user reviews regarding the apps core feature exist,
despite the positive feedback before this update. According to
t−i10, the aspects which users complain about include calling
in general, the user interface, video and sound quality, and
connections. Meanwhile, t−i10 is also considered similar to
t+(i−1)8. Topic t+(i−1)8 indicates that before the update many
users like the internet connection of this app with wifi on
computer and tablet. Topic pair (t+(i−1)5, t−i6) reflects that issues
concerning the user accounts, including logging in, signing up,
passwords emerge after the update, where the users complain
quite often. Furthermore, the topic pair (t+(i−1)7, t−i8) indicates
that many users complain about the developers fixing problems
negatively, despite many others reflect the issue with positive
sentiment (see topic pair (t+(i−1)7, t+i9)).

TABLE VII. COMMON KEYOWRDS IN POSITIVE-NEGATIVE
REVIEWS

Topic Pairs Common Keywords
(t+

(i−1)6
, t−i10) [’call’, ’connect’, ’hear’, ’make’, ’person’, ’phone’, ’qual-

ity’, ’video’, ’voice’]
(t+

(i−1)6
, t−i5) [’make’, ’use’, ’year’]

(t+
(i−1)8

, t−i7) [’need’, ’work’]

(t+
(i−1)5

, t−i6) [’account’, ’go’, ’keep’, ’let’, ’log’, ’password’, ’sign’, ’try’,
’win’]

(t+
(i−1)7

, t−i8) [’fix’, ’please’, ’problem’, ’thing’]

(t+
(i−1)8

, t−i10) [’call’, ’connection’, ’drop’, ’phone’, ’sound’, ’work’]

(t+
(i−1)2

, t−i3) [’conversation’, ’get’, ’take’, ’time’, ’type’]

H3. The topic similarities between T−i−1 and T+
i reflect the

improvement in the update ui. The common keywords of
the selected similar topic pairs are shown in Table VIII. The
common keywords of topics (t−(i−1)3, t+i6) reflect that before the
update, many users have complaint regarding using the app for
phone calls in general. After the update, a number of positive



reviews towards this matter appear. Considering the topic pair
(t−(i−1)3, t+i5), users also switch the attitude regarding the video
and sound quality to positive after the update. Topic pair
(t−(i−1)7, t+i3) reflects the general positive acknowledgement of
the update. Topic pair (t−(i−1)10, t+i8) reflects the users attitude
towards the message notification feature has changed into
positive. (t−(i−1)1, t+i4) reflects the general positive feedback
regarding the new version while (t−(i−1)6, t+i9) reflects the
positive feedback on having some bugs fixed in this version.

TABLE VIII. COMMON KEYOWRDS IN NEGATIVE-POSITIVE
REVIEWS

Topic Pairs Common Keywords
(t−

(i−1)3
, t+i6) [’call’, ’get’, ’hear’, ’make’, ’people’, ’person’, ’phone’,

’see’, ’talk’, ’time’, ’video’]
(t−

(i−1)7
, t+i3) [’get’, ’update’, ’win’, ’work’]

(t−
(i−1)5

, t+i1) [’get’, ’try’, ’use’, ’year’]

(t−
(i−1)3

, t+i5) [’call’, ’make’, ’phone’, ’quality’, ’sound’, ’time’, ’video’,
’voice’]

(t−
(i−1)10

, t+i8) [’message’, ’notification’, ’open’, ’see’, ’send’, ’show’,
’take’]

(t−
(i−1)1

, t+i4) [’version’]

(t−
(i−1)6

, t+i9) [’bug’, ’fix’, ’get’, ’lot’, ’please’]

H4. The topic similarities between T−i−1 and T−i reflect
the remaining issues regarding the app A. The common
keywords of the selected similar topic pairs are shown in Table
IX. For example, the common keywords of topics (t−(i−1)3,
t−i10) reflects the users complaint regarding the general quality
of the app remains after the update, specifically concerning
connections, calling, audio and video quality, etc. On the
other hand, topic pair (t−(i−1)10, t−i3) reflects the problem with
sending and receiving messages with notifications still exist.
Furthermore, crashing is also a persisting issue that many users
complained about based on topic pair (t−(i−1)6, t−i8). Topic
pair (t−(i−1)7, t−i9), despite having only one common keyword,
reflects the users general negativity towards the update. Topic
pair (t−(i−1)7, t−i6) and (t−(i−1)8, t−i6) reflect the issues regarding
logging in and signing up with Microsoft account. Topic pair
(t−(i−1)8, t−i9) reflects the issues regarding user contact list when
specially t−i9 reflects the users’ complaints regarding contact
list syncing and status.

TABLE IX. COMMON KEYOWRDS IN NEGATIVE-NEGATIVE
REVIEWS.

Topic Pairs Common Keywords
(t−

(i−1)3
, t−i10) [’call’, ’connect’, ’drop’, ’hear’, ’make’, ’person’, ’phone’,

’quality’, ’sound’, ’time’, ’video’, ’voice’]
(t−

(i−1)10
, t−i3) [’get’, ’message’, ’notification’, ’open’, ’see’, ’send’, ’show’,

’take’, ’time’]
(t−

(i−1)6
, t−i8) [’crash’, ’fix’, ’give’, ’keep’, ’please’, ’problem’, ’star’,

’think’, ’time’]
(t−

(i−1)7
, t−i9) [’update’]

(t−
(i−1)7

, t−i6) [’let’, ’login’, ’microsoft’, ’time’, ’try’, ’turn’, ’update’,
’win’]

(t−
(i−1)8

, t−i6) [’account’, ’keep’, ’make’, ’sign’]

(t−
(i−1)8

, t−i9) [’add’, ’contact’, ’list’, ’sync’]

Conclusively, we could summarize the users’ opinion
before and after the particular update (version 1.6.2017) as
follows:

The merits in general:

1) (t+(i−1)8, t+i5): calling feature works.
2) (t+(i−1)6, t+i6), (t+(i−1)1, t+i7): people can chat in group with

video and calls, connecting with family and friends.
3) (t+(i−1)7, t+i9): added features and bugs fixed.
4) (t+(i−1)6, t+i5): the video and sound quality.

The uncomfortable changes:

1) (t+(i−1)6, t−i10): user interface, connection, and calling
quality in general.

2) (t+(i−1)5, t−i6): the user accounts, including logging in,
signing up, passwords.

3) (t+(i−1)7, t−i8): bugs fixes.

The improvement:

1) (t−(i−1)7, t+i3): update in general.
2) (t−(i−1)10, t+i8): message notification.
3) (t−(i−1)3, t+i6), ((t−(i−1)3, t+i5): calling in general, video and

sound quality.

The remaining issues:

1) (t−(i−1)3, t−i10): update in general.
2) (t−(i−1)10, t−i3): sending and receiving messages with no-

tifications.
3) (t−(i−1)6, t−i8): crashing.
4) (t−(i−1)7, t−i9): the new version
5) (t−(i−1)7, t−i6), (t−(i−1)8, t−i6): login and signup with Mi-

crosoft accounts.
6) (t−(i−1)8, t−i9): contact list syncing and status update.

Interestingly, these points are verified by the short notes
of Skype developers regarding their updates [21]. Specifically,
the above topics can be associated with the following origi-
nal developers claims: (a) General performance and reliabil-
ity improvements (Version 2017.08.15, Version 2017.08.29:
phone calls, video calls and messaging quality), (b) Improved
sign in - sign back into your account more easily (Version
2017.08.15: ”log in” features, user account related functions),
(c) New controls added to help users manage vibration and
LED notification alerts. (Version 2017.07.05: notification), (d)
Improvements to PSTN call stability (Version 2017.07.05:
connection), (e) Messaging improvements Add content to
chats via the + button and enjoy more room for your messages.
(Version 2017.08.02: messaging), (f) The ability to add or
remove contacts from your profile (Version 2017.08.01), (g)
Activity indicators - see who’s currently active in your Chats
list (Version 2017.08.02: contacts and statuses). Hence, due
to the correlation between the previously mentioned issues
detected using our method and the content of the following
up updates, we can verify the existence of those issues.
However, whether the reason of the according update is the
user reviews is unknown. On the other hand, we can also
detect the disagreement amongst users’ opinions. For example,
a number of users think the calling quality deteriorated after
the update while many others think it was improved ((t+(i−1)6,
t−i10) and (t−(i−1)3, t+i6)). A number of users also think the
update improves the app when other users think it is just
as bad as the previous ((t−(i−1)7, t+i3) and (t−(i−1)3, t−i10)). We
can obtain more details regarding users’ different opinions by
further investigating the keywords-related review texts.



IV. RELATED WORK

The spontaneous feedback from the users, i.e., the user
reviews, helps effectively the evolution of the target system,
where a key to enable such feedback is to ease the users effort
in composing and uploading it [22]. For the contemporary
mobile apps, the app distribution platforms, e.g., Apple App-
Store, and Google Play, enable such spontaneous reviews of the
users and facilitate the developers in terms of maintaining and
evolving mobile apps [23]. Such feedback and reviews contain
helpful information for developers in terms of identifying
missing features and improving software quality [24]. From
those review information, user requirements can be elicited
continuously and, in a crowd-based fashion [25] [26].

The reviews of the mobile app users reflect a variety of
topics, which majorly cover the perspectives of bug reports,
feature requests, user experiences, solution proposal, informa-
tion seeking and giving, and general ratings [2]–[4].

For such purpose, NLP, SA, and supervised learning are
the common techniques used to classify user reviews [3] [4].
According to recent studies, the combination of NLP and SA
techniques has high accuracy in detecting useful sentences [4].
These techniques are also used in many other studies in terms
of review opinion mining [7] [9] [24].

Many studies have contributed to the user opinion mining
of mobile apps. Fu et al. [5] proposes WisCom, which can
detect why the users like or dislike a particular app based
on the users reviews throughout time and provide insights
regarding the users concerns and preferences in the app market.
Similar studies regarding mining information from app stores
data focus on different perspectives of the issues, e.g., the
correlations between ratings and download rank [6], ratings
and API use [27], review classification and useful sentences
detection [4]. On the other hand, Chen et al. [7] provides
the AR-miner framework, which facilitates the informative
reviews extraction, review grouping based on topics, review
prioritization and informative reviews presentation with visual-
ization. Guzman and Maalej [8] proposes an approach focusing
on feature extraction and sentiment analysis, which facilitates
the evaluation of individual app features. Similarly, Iacob and
Harrison [9] focuses also on the feature requests extraction but
via means of linguistic rules and LDA topic modeling. Many
studies also provide methods of using automatic classification
method to study mobile app user reviews [28] [29] [30]

Compared to the previous mentioned approaches in user
review opinion mining, our method aims towards the similar
topic detection and analysis concerning not only the app in
general but also the particular major updates. Furthermore, we
focus on the topic similarity of data segments, classified by
sentiment analysis and supervised learning, which is different
from the methods mentioned above. It enables the developers
to acquire information regarding each individual update and
will provide insights on the future updates.

V. CONCLUSION

In this study, we propose a method for analyzing the
correlation of mobile apps user reviews before and after a
particular app updates in order to detect how users’ opin-
ions change with the update released. After classifying the
reviews before and after a particular update by positive and
negative sentiment, we extract the topics of each segment.

By comparing the similarities of these extracted topics, we
identify both the positive and negative issues reflected by these
reviews regarding the particular update and the app in general.
Overall, this study is an exploratory investigation on using user
review opinion mining techniques in detecting update-specific
issues. The future studies shall extend the use of this method to
the whole maintenance lifecycle of mobile apps to investigate
the broader correlation between users feedback and the apps’
update trends. Releasing strategies improvement based on this
method will also be studied. Other factors, e.g., the different
app categories, different platforms, and different mining and
analysis techniques will also be taken into account.
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Abstract. The user reviews of mobile apps are important assets that reflect the
users’ needs and complaints about particular apps regarding features, usability, and
designs. From investigating the content of such reviews, the app developers can ac-
quire useful information guiding the future maintenance and evolution work. Pre-
vious studies on opinion mining in mobile app reviews have provided various ap-
proaches to eliciting such critical information. A particular update of an app can
provide changes to the app that result in users’ reversed opinions, as well as, spe-
cific new complaints or praises. However, limited studies focus on eliciting the user
opinions regarding a particular mobile app update, or the impact the update im-
poses. In this paper, we propose a method for systematically studying and analyz-
ing the evolution of the users’ opinions taking into consideration a set of mobile
app updates. For doing so, we compare the topics appearing in the users’ reviews
before and after the updates. We also validate the method with an experiment on an
existing mobile app.

1. Introduction

The increasing number of smartphone users has led to a continuous increase in the num-
ber of mobile apps and their overall usage. Users browse and download apps via differ-
ent digital distribution platforms, and these platforms also provide an important channel
for users to provide feedback to the app developers. Users can rate a release and express
their opinions on the release they are using at the time of submitting a review, as in tra-
ditional recommender systems [13,16]. Along with frequent release updates through the
distribution platforms, the reviews accumulate the bugs, desired features, the comparison
and users’ attitude toward the app informally, and form a useful resource for analyzing
change requests in the app maintenance phase.

Existing studies have proposed different approaches to identifying changes [22,26].
One particular example is to identify change requests from user reviews for mobile
app maintenance. With various opinion mining techniques, such as natural language
processing (NLP), sentiment analysis (SA) and supervised learning, many studies have
been conducted regarding the classification of reviews towards different issue perspec-
tives [19, 21]. Other perspectives, such as user preferences, entities analysis, app evalu-
ation, user satisfaction, the relation between download and rating, feature extraction and
review prioritization, have also been widely studied [5,7,8,12,14,15,18]. However, lim-

1Corresponding Author: University of Tampere, Finland; E-mail: xiaozhou.li@uta.fi
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ited studies focus on the use of such methods in opinion mining on particular updates
of a mobile app and the impact on the app’s updates in the following releases, despite
the importance of such information. It is unclear how bugs and requests in user reviews
are addressed in the follow-up releases and how users’ attitude towards a particular issue
changes when new updates are released.

In this paper, we investigate the correlation between users’ positive and negative
reviews before and after a sequence of apps’ releases. We consider two dimensions: time
and sentiment. Specifically, we divide user reviews based on a set of major updates and
distinguish them between those precede and follow the particular updates. Each group
of reviews is further divided into positive and negative ones using sentiment analysis.
We propose a way to measure the similarity of each group of reviews. The measurement
reveals the similarity and changes between different groups of reviews and helps to gain
insight into the app’s change requests in the maintenance phase. Besides understanding
the main issues in user reviews, it helps developers be aware of the users’ opinions on
particular updates and guides them proactively to address the most important issues early.

2. Method Description

2.1. Preliminaries

This method aims to detect the evolving topic trend regarding a particular app by in-
vestigating the correlation between its users’ positive and negative reviews before and
after each major update within a sequence of updates through the app maintenance life
cycle. Such correlation shall show the degree to which the users’ comments are reflected
in the sequence of updates and such updates are accepted by the users. The factors that
influence and reflect such correlation include the main topics of the reviews between ev-
ery two updates, the sentiment of those reviews, and the topics similarities before and
after each update. Next, we illustrate how to detect the correlation via investigating these
factors.

Let R be a collection of user reviews for a particular mobile app A, covering the
time period Ttime = [tis, tie] (where tis, tie are two different time points with tis < tie).
Therein, each review ri ∈ R is associated with a particular time when ri is published.
Let U be the set of updates released by the app developers within the time period Ttime.
Meanwhile, each update is also associated with a time point ti, reflecting the time ui is
announced and delivered. Furthermore, we consider the review set Ri, of which each ri
is published within [ti, ti+1], as the collection of reviews regarding the update ui. Hence,
for the n updates {ui|i ∈ N,k ≤ i < k+ n} where k ≥ 1 and n > 0 for the app A within
period T, the review set R can be divided into n+ 1 subset where each Ri ⊆ R is the set
of reviews commenting on the according ui. R0 is the review set given before the first
update of A. For each review sentence r j ∈ Ri, a sentiment score shall be calculated and
assigned to r j, whose sentiment is either positive or negative. In this way, by identifying
the sentiment of each individual review in Ri, we can divide Ri into a positive review set
R+

i and a negative one R+
i , where R+

i ∪R−
i = Ri and R+

i ∩R−
i = /0.

When modeling topics of each review set, we assign T+
i and T−

i as the topic set for
the positive and negative reviews. Therefore, we investigate the merits and issues of a
particular update ui by compare the similarities and changes between T+

i−1, T−
i−1, T+

i , and
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Figure 1. Hypotheses for the updates and the topic change of user reviews.
T−

i . Furthermore, by investigating such topic similarity and changes regarding each ui,
we shall be able to observe the users’ opinion change on the merits and issues within a
given period of time. Therefore, given a set of updates U = {u1, u2, ... un} with the ac-
cording review sets R+

1 , R−
1 , R+

2 , R−
2 , ... R+

n , R−
n , finding the topic similarity correlations

throughout T+
1 , T−

1 , T+
2 , T−

2 , ... T+
n , T−

n shall reflect the evolving user opinions concern-
ing various aspects of the app within a particular period of time. Therefore, provided a
set of topic {t1, t2, ... ti ... tn|ti ∈ Ti}, where each ti is similar to ti+1 (1 ≤ i < n), then such
topic set is defined as a similar topic chain. We furthermore propose three hypotheses as
follows.

• H1. The similar topic chains through T+
i , T+

i+1, ... T+
n reflect the merits and users’

praise regarding a sequence of app A’s updates ui, ui+1, ... un.
• H2. The similar topic chains through T−

i , T−
i+1, ... T−

n reflect the issues and users’
complaints regarding a sequence of app A’s updates ui, ui+1, ... un.

• H3. The similar topic chains containing topics from both T+
i , T+

i+1, ... T+
n and T−

i ,
T−

i+1, ... T−
n reflect the changing user opinions (positive to negative, or negative to

positive) regarding particular aspects of app A.
Thus, the results obtained from these hypotheses for a certain period of updates ui, ui+1,
... un provide the following information: 1) the merits and users’ praise for the app A,
2) the issues and users’ complaints for the app A, and 3) the evolving of users opinions
regarding particular aspects of the app A.

2.2. Sentiment Classification

The aim of sentiment classification in this method is to classify each review set Ri into
two subsets, i.e., R+

i and R−
i . Herein, R+

i denotes the set of positive reviews from Ri,
and R−

i denotes the set of negative reviews. Therefore, each r j in Ri shall be determined
whether it is positive or negative.

To do so, we assign a sentiment score to each review by exploiting a robust tool for
sentiment strength detection on social web data. As each r j can be seen as a list of words
Wj, we first select a lexicon that will determine the sentiment score of each word wz in Wj.
The lexicon for sentiment analysis is a list of words used in the English language, each of
which is assigned with a sentiment value in terms of its sentiment valence (intensity) and
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polarity (positive/negative). To determine the sentiment of words, we assign a rational
value within a range to a word. For example, if the word “okay” has a positive valence
value of 0.9, the word “good” must have a higher positive value, e.g., 1.9, and the word
“great” has even higher value, e.g., 3.1.

Furthermore, the lexicon set shall include social media terms, such as Western-style
emoticons (e.g., :-)), sentiment-related acronyms and initialisms (e.g., LOL, WTF), and
commonly used slang with sentiment value (e.g., nah, meh).

With the well-established lexicon and a selected set of proper grammatical and syn-
tactical heuristics, we shall then be able to determine the overall sentiment score of a
review. Namely, the sentiment score of a review r j is equal to S j, where S j ∈ (−1,1).
The grammatical and syntactical heuristics are seen as the cues to change the sentiment
of word sets. Therein, punctuation, capitalization, degree modifier, and contrastive con-
junctions are all taken into account. For example, the sentiment of “The book is EX-
TREMELY AWESOME!!!” is stronger than “The book is extremely awesome”, which
is stronger than “The book is very good.”.

With both the lexicon value for each word of the review and the calculation based on
the grammatical and syntactical heuristics, we can then assign unique sentiment values
to each review. That is, each review r j is classified into positive, neutral or negative, as
follows:

r j is

⎧⎨
⎩

positive, if 0 < S j < 1,
neutral, if S j = 0,
negative, if −1 < S j < 0.

Overall, each review set Ri is divided into R+
i , R0

i , and R−
i , denoting the positive,

neutral and negative review sets. By experimentally observing, R0
i contains a large num-

ber of reviews with also useful information. Therefore, we further classify R0
i into pos-

itive and negative using the Naive Bayes Classifier with the training data from R+
i and

R−
i . R0

i is classified into R0+
i and R0−

i , which in turn, are added to R+
i and R−

i , respec-
tively. The reason to perform supervised classification after sentiment analysis instead
of directly applying classification is twofold. Firstly, manually creating training data is
time-consuming and less accurate than using existing sentiment analysis methods. Sec-
ondly, training the sentiment classified reviews will provide domain specific and reliable
results.

2.3. Topic Analysis

After dividing the review sets Ri into R+
i and R−

i , we elicit the main topics from each of
the classified review sets by exploiting the Latent Dirichlet Allocation (LDA) method [3].
First, we consider each review sentence r j in a particular set of reviews as a list of
words Wj, where the sequence of the words is not recorded. The number of topics in
this review set is set as t. Presumably, there is a distribution for the probability of a
particular word appears in a particular topic, when there is also one for that of a par-
ticular review of a topic. We build the set of Review − Topic, where each word of
each review is assigned with a topic out of the t topics. As preparation, we define
Review−topic−numbers, Topic−words−numbers, and Topic−numbers denoting the
number of occurrence of each topic in each review, the number of occurrence of each
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word in each topic, and the number of words in each topic, respectively. For example,
Review− topic−numbers(r j,k) denotes the number of occurrences of topic k in review
r j. Then, we randomly assign each word wz of each review r j with a topic tk. Accord-
ingly, the Review− topic− numbers, Topic−words− numbers, and Topic− numbers
will be updated as the referencing weight of the distribution of the words for each topic.
Then iteratively, for each word, we assign a new topic based on such weight of distribu-
tion and adjust the weight with the Review−topic−numbers, Topic−words−numbers,
and Topic− numbers for the next iteration. After a given number of iteration, t topics
will be determined by the Topic−words−numbers, which is the number of occurrences
of the words in each topic. Each tk is then denoted by the most common keywords used
in this topic. Then, the set of topics T is returned as a result. For the review sets R+

i , R−
i ,

R+
i−1 and R−

i−1, we will have the topics sets T+
i , T−

i , T+
i−1 and T−

i−1 accordingly.

2.4. Calculating Topics Similarities

Based on the topic sets T+
i and T−

i elicited from the review sets R+
i and R−

i ,we further
analyze the similarities between the individual topics between each pair of the topic sets.
As the result from the previous topic analysis, each topic set T encompasses k topics,
each of which is represented by the list of the most possible appearing keywords. Thus,
each topic set T with k topics each of which is represented by w keywords, can be denoted
as:

T =

⎡
⎣kw1,1 kw1,2 ... kw1,w

... ... ... ...
kwk,1 kwk,2 ... kwk,w

⎤
⎦

with each ti ∈ T can be denoted as [kwi,1,kwi,2, ...kwi,k]. To compare the similarity be-
tween two topic sets, each consisting of k topics, we compare all pairs of topics. Due to
the fact that each topic is represented as a set of keywords, the similarity of two topics
shall be denoted by the common keywords of these topics. Hence, an easy way for cal-
culating the similarity between any two topics ti and t j is by using the Jaccard similarity.
This similarity function reflects the percentage of the common keywords of the two sets
in the whole keywords set of the two: J(ti, t j) =

|ti∩t j |
|ti∪t j | .

On the other hand, the probability (pi j) of each keyword kwi j appearing in topic ti
is different. Hence, despite J(ti, t j) = J(ti, tk), when the probability value of the common
keywords varies, the topic similarities for t j, tk towards ti can still differ. Therefore, we
propose a modification of the previously described Jaccard similarity calculation taking
into account the probability of the keywords, named as the Jaccard Extended Similarity.
The c common keywords of ti and t j include [kwi j,1,kwi j,2, ...kwi j,c], when the according
probability list in ti and t j is [pi,1, pi,2, ...pi,c] and [p j,1, p j,2, ...p j,c]. The Jaccard Extended
Similarity is then calculated as follows:

JE(ti, t j) =
∑c

x=1
pi,x+p j,x

2

∑c
x=1

pi,x+p j,x
2 +∑k

x=c+1 pi,x +∑k
x=c+1 p j,x

.

The probability for each keyword of any topic belongs to (0,1). Hence, for this for-
mula, when ti and t j contain more common keywords, the numerator increases mono-
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tonically, and the denominator decreases monotonically. Therefore, JE(ti, t j) increases
when ti and t j have more keywords in common. In addition, when the probability of the
common keywords increases, ∑c

x=1
pi,x+p j,x

2 increases. Because the denominator is greater
than the numerator, and both are greater than 0, JE(ti, t j) increases when the probabilities
of the common keywords of ti and t j increase. In this way, JE takes into account both the
number of common keywords and the probabilities of such keywords.

2.5. Identifying Matching Topics

After computing similarities between pairs of review topics, we shall also identify which
are the matching topics when cross-comparing the topics of the topics sets T+

i , T−
i , T+

i−1
and T−

i−1. Hence, to identify the matching topics between two review topic sets Ta and Tb,
the aim is to identify all the topic pairs (tai, tb j), tai ∈ Ta and tb j ∈ Tb, that have the highest
similarity, and contain the unique tai and tb j which are both different from those of the
other selected pairs. We set a threshold similarity value, so that only the topic pairs that
have a similarity value greater than it can be considered as similar. Given that several
topics are similar to multiple other topics, we apply an algorithm to select the unique
similar topic pairs when comparing two review topic sets, Ta and Tb.

Algorithm 1 Matching Topics Identification

1: procedure MATCHING TOPICS IDENTIFICATION
2: k ← number of topics
3: Ta ←{ta1, ta2, ..., tai, ..., tak}
4: Tb ←{tb1, tb2, ..., tb j, ..., tbk}
5: si j ← Similarity(tai, tb j)
6: For i, j ∈ {1,2, ...,k}
7: if si j ≥ threshold value then

8: S ← si j

9: While len(S)> 0
10: if Only 1 Max(S) in S then

11: P.append((tax, tby)) where Similarity(tax, tby) = Max(S)
12: S - (S ∩ ({sx1,sx2, ...,sxk} ∪ {s1y,s2y, ...,sky}))

13: if More than 1 Max(S) in S then

14: P.append ((tax, tby)) where Similarity(tax, tby) = Max(S) &
Sum({sx1, ...,sxk,s1y, ...,sky})is the minimum

15: Return P

The aim of Algorithm 1 is to select only the similar topic pairs with the highest
similarity value. When a particular topic pair is selected, the other pairs which either
of these two selected topics is also pairing with will be ignored. With this pair and the
ignored ones deducted from the original selected similar topic pairs, we continuously
select the one with highest similarity value, until all selected pairs are unique without
any selected topic being simultaneously similar to more than one topic. Especially, if at
a certain selecting iteration, there is a tie on the highest similarity value, we select the
pair of topics that are the least similar to the rest of the topics, by calculating the sum of
all the similarity values with either topic and selecting the one with the minimum sum
value.
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3. Case Study

3.1. Preprocessing

Before starting the experiment with the proposed method, preprocessing on the raw re-
view data is required. The whole preprocessing work can be divided into four individual
steps as follows.
Filtering non-English reviews. The raw review data may contain a number of review
items that are not written in English, which needs to be filtered out. Also, similar to
social media text, user reviews usually contain many commonly used slurs that are not
regular English vocabularies. Our goal is to not filter out these words, as they likely con-
tain sentiment related information, without which shall influence our experiment results.
Overall, we screen out the non-English review sentences using Langdetect2, a convenient
language detecting package for Python language. Compared with PyEnchant3, another
language detecting package, Langdetect enables determining the language of text on sen-
tence level. It shall remain the review data containing such English slurs.
Focusing on sentence-level granularity. Because each user review can contain more
than one sentence, a multi-sentence review can contain multiple meanings, one for each
sentence. Thus, we divide each review from a review set Ri into individual sentences.
Hereafter, we use r j to denote a review sentence in Ri. We use the sentence tokenizer
feature from the NLTK4 python package, with a further checking on the legitimacy of
the sentences.
Sentiment Classification with VADER. To perform sentiment analysis on the collected
app reviews, we select the Valence Aware Dictionary for sEntiment Reasoning (VADER)
approach [10]. Compared with other sentiment analysis tools, VADER has a number of
advantages regarding this study. Firstly, the classification accuracy of VADER on sen-
timent towards positive, negative and neutral classes is even higher than individual hu-
man raters in social media domain. In addition, its overall classification accuracies on
product reviews from Amazon, movie reviews, and editorials from NYTimes also out-
perform other sentiment analysis approaches, such as SenticNet [6], SentiWordNet [1],
Affective Norms for English Words [4], and Word-Sense Disambiguation [25], and run
closely with the accuracy of an individual human. On the other hand, VADER approach
is integrated into the NLTK package, which can be easily imported and performed using
Python.
Filtering stop-words and non-verb-or-nouns and Stemming. In addition, the col-
lected English review sentences are also transformed into lower cases, screened with
stop-words, and stemmed before topic modeling. In order to obtain more meaningful
topic modeling results, we add the words that connect to only general information but
have a significant appearing rate in the reviews to the list of stop words. For example, the
name of the app and the word app are of neither help towards topic modeling nor towards
sentiment analysis. Furthermore, because the sentiment analysis is done previously, we
select only the nouns and verbs in the review sentence sets to enhance the analysis result.

2https://pypi.python.org/pypi/langdetect
3https://pypi.python.org/pypi/pyenchant/
4http://www.nltk.org



September 2018

3.2. Datasets

In this case study, we use the reviews submitted between 2016-09-13 and 2017-08-31
on the mobile app Whatsapp5 on Android platform. We collected 1,148,032 reviews,
which are then tokenized into 1,327,504 individual sentences. After eliminating the non-
English review sentences, we have 1,012,088 English review sentences as experiment
data.

We investigate the merits and issues concerning the major updates of Whatsapp re-
leased on Android platform. Within this period, 46 updates were released. On average,
the app has been updated nearly every 7 - 8 days with one major update in every 50 days.
By observing the content of each update from the given information on Google Play, we
find that some consecutive updates contain the same content based on their descriptions.
Therefore, we consider the first update of a set of updates which contain same descrip-
tions as a major update, with the rest of the updates as minor updates. Accordingly, seven
major updates are identified during the given period. They divided the review dataset into
seven parts. Each sub review set is seen as the reviews regarding one particular update.
Amongst the major updates of Whatsapp during this period, each update {u1, u2 ... u7}
provides unique changes in UI design and user experiences. By classifying all selected
review sentences into positive and negative using sentiment analysis and supervised clas-
sification with Naive Bayes Classifier, the number of review sentences in each segment
is listed in Table 1. Accordingly, the number of reviews for each review sets of R+

1 ∼ R+
7

and R−
1 ∼ R−

7 , are shown in the figure below. Overall, the total number of positive reviews
around the particular update is bigger than the number of negative reviews. Meanwhile,
the monthly review number increased sharply after this particular major update.

Table 1. The number of Positive and Negative reviews after each Update

u1 u2 u3 u4 u5 u6 u7

Release Date 16.9.13 16.10.11 16.12.1 17.3.14 17.4.18 17.5.17 17.7.13

Positive 39241 92222 246384 99889 50205 89766 72960 690667

Negative 15238 31674 165723 38174 18254 27646 24712 321421

Sum 54479 123896 412107 138063 68459 117412 97672 1012088

After sentiment analysis and classification, we perform the LDA topic analysis to
identify the topics of the review set R+

1 ∼ R+
7 and R−

1 ∼ R−
7 , in order to investigate

the users’ opinions concerning the update and further verify the previously proposed
hypothesis. To train the LDA topic models, we need to set the number of topics k. Based
on an experimentally study regarding the quality of the topics produced for different
k values, and select k = 10. Overall, for the collected 1,012,088 review sentences on
Whatsapp, we perform an LDA topic analysis on the review set. For each of the 14 sets
of review data, we use the Gensim6 topic modeling toolbox to train the 10-topic LDA
models. For the 14 LDA models, each individual topic is represented by 20 keywords.
Then, we assign each review sentence in the LDA models to the topic to which it has the
highest probability to belong.

5https://www.whatsapp.com/
6https://radimrehurek.com/gensim/
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3.3. Topic Evolution Analysis with Similar Topic Chains

Each topic contains 20 keywords. For every major update ui, there are four sets of as-
sociated reviews which results in four sets of topics, i.e., T+

i−1, T−
i−1, T+

i , and T−
i . We

assess the similarity of topics after the update ui, which provides 400 topics pairs. The
number of common keywords for those 400 pairs range from 0 - 14. Since it is difficult
to identify the topic content based on less than five keywords, we set an initial threshold
equal to 0.143 for the Jaccard Extended similarity value, meaning that we consider two
topics as similar only when they have five or more common keywords with the probabil-
ity of these keywords above average. Based on this threshold, we apply Algorithm 1 to
select the unique similar topic pairs in each of the four comparison sets (before and after
each update, positive and negative reviews). Part of the results are shown in Figure 2. In
Figure 2, positive topics are illustrated as blue circle while negative topic as red square.
For example, t+1,7 is denoted as a blue circle marked ”7” in column ”T1” when t−2,10 is
denoted as a red square marked ”10” in column ”T2”.

Figure 2. A Segment of the Topic Similarity Graph

We can firstly analyze the topic similarity between two sets of reviews. Based on
the common keywords of each identified similar topic pairs, we could extract the users’
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opinions regarding the particular update. For example, in Figure 2, we can identify that
t+1,7, t+1,9, and t+1,8 ∈ T+

1 are similar to t+2,2, t+2,1, and t+2,7 ∈ T+
2 respectively. The common

keywords for these three topic pairs are listed in Table 2. Therefore, these similar topic
pairs suggest that the users reflect positively regarding the four topics both before and
after Update 2 (Version 16.10.11), including the quality of video and voice call, asking
for fixing and updating themes and emoji feature, and, contacts and social group option
with picture sending feature. Similarly, by identifying the similar topic pairs (t−1,10, t−2,10),
(t−1,8, t−2,5), and (t−1,7, t−2,1), we can also conclude that the users are still not happy regarding
the function of contact group and its options, message sending and receiving, and the
quality of video calls after Update 2. Similarity, by analyzing the common keywords
between positive topics and negative topics, such as, (t+1,9, t−2,10) and (t−1,7, t+2,7) in Figure 2,
we can also identify the users’ opinion changes after Update 2. The common keywords
of topic pair (t+1,9, t−2,10) reflect that the users start to complain negatively concerning
the feature of sending image and picture in chat group after the update. The common
keywords of (t−1,7, t+2,7) then reflects users become more satisfied with the general call
feature as well as the video and voice quality.

Table 2. Common keywords of Similar Topic Pairs Regarding Update 2

Topic Pairs Common Keywords

(t+1,7, t+2,2) [’chang’, ’emoji’, ’fix’, ’plea’, ’pls’, ’theme’, ’updat’, ’want’]

(t+1,9, t+2,1) [’contact’, ’group’, ’option’, ’photo’, ’pic’, ’pictur’, ’send’, ’share’, ’want’]

(t+1,8, t+2,7) [’ad’, ’add’, ’call’, ’facil’, ’featur’, ’make’, ’need’, ’option’, ’qualiti’, ’video’, ’voic’]

(t−1,10, t−2,10) [’add’, ’contact’, ’group’, ’list’, ’option’, ’want’]

(t−1,8, t−2,5) [’come’, ’get’, ’messag’, ’open’, ’phone’, ’read’, ’receiv’, ’see’, ’seen’]

(t−1,7, t−2,1) [’call’, ’featur’, ’option’, ’qualiti’, ’video’, ’work’]

(t+1,9, t−2,10) [’contact’, ’group’, ’imag’, ’list’, ’option’, ’pictur’, ’send’, ’status’, ’want’]

(t−1,7, t+2,7) [’call’, ’featur’, ’make’, ’need’, ’option’, ’qualiti’, ’video’, ’voic’, ’work’]

Furthermore, by investigating the similar topic pairs throughout the evolution time-
line of a particular app, we can detect the evolution trend of the app. For example, from
Update 1 to Update 7, the positive opinion regarding each update can be reflected by
the common keywords of T+

1 and T+
2 to T+

6 and T+
7 . Therefore, the merit of the app

throughout these updates can be reflected by the similar topic chain shown in Table 3.

Table 3. Common keywords in a Positive Similar Topic Chain

Topic Pairs Common Keywords

(t+1,8, t+2,7) [’ad’, ’add’, ’call’, ’facil’, ’featur’, ’make’, ’need’, ’option’, ’qualiti’, ’video’, ’voic’]

(t+2,7, t+3,1) [’call’, ’facil’, ’make’, ’need’, ’qualiti’, ’vedio’, ’video’, ’voic’]

(t+3,1, t+4,3) [’call’, ’improv’, ’make’, ’need’, ’qualiti’, ’video’, ’voic’]

(t+4,3, t+5,10) [’call’, ’data’, ’improv’, ’make’, ’qualiti’, ’send’, ’video’, ’voic’]

(t+5,10, t+6,2) [’call’, ’group’, ’improv’, ’make’, ’qualiti’, ’send’, ’video’, ’voic’]

(t+6,2, t+7,3) [’call’, ’featur’, ’group’, ’make’, ’send’, ’video’, ’voic’]

From the similar topic pairs identified in Figure 2, we could claim that topic t+1,8, t+2,7,
t+3,1, t+4,3, t+5,10, t+6,2, and t+7,3 are all identified as similar to one another. The similarity is also
reflected by the common keywords listed in Table 3, based on which we could conclude
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from Update 2 to Update 7, the users constantly share positive opinions regarding the
video and voice call quality of the app, which verifies Similarly, the constant negative
opinions can be reflected by the common keywords of the similar negative topic chains
throughout updates. For example, topic t−1,10, t−2,10, t−3,8, t−4,8, t−5,7, t−6,1, and t−7,9 are identified
as similar (shown in Table 4). Such negative topic similarity chain reflects the users’
request for features regarding options of contact and status.

Table 4. Common keywords in a Negative Similar Topic Chain

Topic Pairs Common Keywords

(t−1,10, t−2,10) [’add’, ’contact’, ’group’, ’list’, ’option’, ’want’]

(t−2,10, t−3,8) [’add’, ’contact’, ’list’, ’option’, ’pictur’, ’remov’, ’see’, ’status’, ’want’]

(t−3,8, t−4,8) [’add’, ’featur’, ’need’, ’option’, ’photo’, ’put’, ’remov’, ’status’, ’stori’, ’text’]

(t−4,8, t−5,7) [’add’, ’featur’, ’option’, ’plea’, ’remov’, ’status’, ’stori’, ’text’]

(t−5,7, t−6,1) [’featur’, ’option’, ’peopl’, ’status’, ’want’]

(t−6,1, t−7,9) [’contact’, ’featur’, ’list’, ’peopl’, ’see’, ’seen’, ’status’, ’view’]

By investigating the update history of Whatsapp, we we can observe that the ”video
calling” feature was added to Whatsapp at Update 3 (Version 16.12.1). This can explain
why the common keyword ’call’ became the highest probable common keyword from
(t+2,7, t+3,1). On the other hand, Whatsappp added one update on ”WhatsApp Status: Post
photos, videos, and GIFs to your status and share with your contacts what’s going on
throughout your day. Status updates from your contacts appear in the Status tab, and
they’ll disappear after 24 hours. Long press on a contact’s name in the Status tab to mute
their updates.” in Update 4 (Version 17.3.14) and another update ”You can now send
multiple contact cards at once” in Update 5 (Version 17.4.18). This partially proves the
developers noticed the constant negative opinions of users shown from Table 4

Moreover, in Figure 2, we can also identify particular topics are considered similar
to one positive topic and one negative topic from the next review set simultaneously. For
example, t+3,10 is similar to both t+4,9 and t−4,5. From the common keywords of topic pair
(t+2,1, t+3,10), we can observe that the users share positive opinion regarding the feature
of contacting and chat groups. Then topic pair (t+3,10, t+4,9) contains common keywords
of [’add’, ’featur’, ’group’, ’make’, ’option’, ’person’, ’provid’, ’show’], when (t+3,10,
t−4,5) contains common keywords of [’ad’, ’contact’, ’group’, ’list’, ’peopl’, ’see’, ’seen’,
’show’]. These keywords suggest that after Update 4, a number of users are satisfied with
the chat group feature and options, when some users are not happy with the contact and
chat list. After Update 5, topic pair (t−4,5, t−5,2) suggests that the complaints regarding con-
tact and chat list continues until Update 6 where (t−5,2, t+6,3) suggests that the complaints
regarding contact and chat list is not significant any more. By investigating the update
history of Whatsapp, we can observe that in Update 6 (Version 17.5.17) the developers
added a feature ”Pin chats to the top of your chat list, so you can quickly find them. Just
tap and hold on a chat and tap the pin icon at the top of your screen”, which results in the
reduce in negative opinions regarding the chat list feature. It also verifies the existence
of the significant complaints before this update regarding this matter.



September 2018

4. Related Work

The spontaneous feedback from the users, i.e., the user reviews, helps effectively the
evolution of the target system, where a key to enable such feedback is to ease the users’
effort in composing and uploading it [23]. For the contemporary mobile apps, the app
distribution platforms, e.g., Apple AppStore, and Google Play, enable such spontaneous
reviews of the users and facilitate the developers in terms of maintaining and evolving
mobile apps [20]. Such feedback and reviews contain helpful information for developers
in terms of identifying missing features and improving software quality [9]. From those
review information, user requirements can be elicited continuously and, in a crowd-based
fashion [11, 24].

The reviews of the mobile app users reflect a variety of topics, which majorly cover
the perspectives of bug reports, feature requests, user experiences, solution proposal, in-
formation seeking and giving, and general ratings [17, 19, 21]. For such purpose, nat-
ural language processing (NLP), sentiment analysis (SA), and supervised learning are
the common techniques used to classify user reviews [19, 21]. According to recent stud-
ies, the combination of NLP and SA techniques has high accuracy in detecting useful
sentences [21]. These techniques are also used in many other studies in terms of review
opinion mining [7, 9, 15].

Many studies have contributed to the user opinion mining of mobile apps. Fu et
al. [8] proposes WisCom, which can detect why the users like or dislike a particular app
based on the users’ reviews throughout time and provide insights regarding the users’
concerns and preferences in the app market. Similar studies regarding mining informa-
tion from app stores data focus on different perspectives of the issues, e.g., the correla-
tions between ratings and download rank [14], ratings and API use [2], review classifi-
cation and useful sentences detection [21]. On the other hand, Chen et al. [7] provides
the AR-miner framework, which facilitates the informative reviews extraction, review
grouping based on topics, review prioritization and informative reviews presentation with
visualization. Guzman and Maalej [12] proposes an approach focusing on feature extrac-
tion and sentiment analysis, which facilitates the evaluation of individual app features.
Similarly, Iacob and Harrison [15] also focuses on the feature requests extraction but via
means of linguistic rules and LDA topic modeling.

Compared to the previously mentioned approaches in user review opinion mining,
our method aims towards the similar topic detection and analysis concerning not only
the trend in users’ opinions in general but also the specific users’ opinion changes at par-
ticular updates. Furthermore, we focus on the topic similarity of data segments, classi-
fied by sentiment analysis and supervised learning, which is different from the methods
mentioned above. It enables the developers to acquire the overall perspective regarding
the users’ opinions throughout the mobile app evolution phase, but also the information
regarding each individual update providing insights on the future updates.

5. Conclusion

In this paper7, we propose a method for analyzing the mobile apps user reviews for a
series of updates. After classifying the reviews before and after a particular update by

7The work was partially supported by the TEKES Finnish project Virpa D.
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positive and negative sentiment, we extract the topics of each segment. By comparing the
similarities of these extracted topics, we identify not only the positive and negative issues
reflected by these reviews regarding particular updates, but also the overall trend in users’
opinions regarding the app in general as well as regarding specific aspects. Overall, this
study is an exploratory investigation on using user review opinion mining techniques
in detecting update-specific issues and user opinion evolution. The future studies shall
extend the use of this method by taking into account other factors, e.g., the different app
categories, different platforms, etc. And different mining and analysis techniques will
also be taken into account. Furthermore, a mobile app evolution recommend system can
be developed based on this method to provided maintenance and evolution suggestions
to the developers regarding the continuous user opinion mining result.

References

[1] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: an enhanced lexical resource for sentiment
analysis and opinion mining. In LREC, 2010.

[2] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. Di Penta, R. Oliveto, and D. Poshyvanyk.
The impact of api change-and fault-proneness on the user ratings of android apps. IEEE Trans. on Soft.
Engin., 41(4):384–407, 2015.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[4] M. M. Bradley and P. J. Lang. Affective norms for english words (anew): Instruction manual and
affective ratings. Technical report, Citeseer, 1999.

[5] P. Fafalios, V. Iosifidis, K. Stefanidis and E. Ntoutsi. Multi-aspect Entity-centric Analysis of Big Social
Media Archives. In Proceedings of TPDL, 2017.

[6] E. Cambria, R. Speer, C. Havasi, and A. Hussain. Senticnet: A publicly available semantic resource for
opinion mining. In AAAI fall symposium: commonsense knowledge, volume 10, 2010.

[7] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang. Ar-miner: mining informative reviews for devel-
opers from mobile app marketplace. In Proceedings of the 36th International Conference on Software
Engineering, 2014.

[8] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. Why people hate your app: Making sense of
user feedback in a mobile app store. In KDD, 2013.

[9] L. V. Galvis Carreño and K. Winbladh. Analysis of user comments: an approach for software require-
ments evolution. In ICSE, 2013.

[10] C. H. E. Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media text.
In ICWSM, 2014.

[11] E. C. Groen, J. Doerr, and S. Adam. Towards crowd-based requirements engineering a research preview.
In International Working Conference on Requirements Engineering: Foundation for Software Quality,
2015.

[12] E. Guzman and W. Maalej. How do users like this feature? a fine grained sentiment analysis of app
reviews. In RE, 2014.

[13] I. Ntoutsi, K. Stefanidis, K. Rausch and H. P. Kriegel. Strength Lies in Differences - Diversifying Friends
for Recommendations through Subspace Clustering. In Proceedings of CIKM, 2014.

[14] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: Msr for app stores. In MSR, 2012.
[15] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature requests from online reviews.

In Mining Software Repositories, 2013.
[16] K. Stefanidis, H. Kondylakis, and G. Troullinou. On Recommending Evolution Measures: A Human-

aware Approach. In Proceedings of ICDE Workshops, 2017.
[17] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What do mobile app users complain about?

IEEE Software, 32(3):70–77, 2015.
[18] K. Stefanidis, E. Pitoura and P. Vassiliadis. Managing Contextual Preferences. Information Systems,

36(8):1158–1180, 2011.



September 2018

[19] W. Maalej and H. Nabil. Bug report, feature request, or simply praise? on automatically classifying app
reviews. In RE, 2015.

[20] D. Pagano and W. Maalej. User feedback in the appstore: An empirical study. In RE, 2013.
[21] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall. How can i improve

my app? classifying user reviews for software maintenance and evolution. In ICSME, 2015.
[22] Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, and Y. Stavrakas. A Flexible Framework for

Understanding the Dynamics of Evolving RDF Datasets. In Proceedings of ISWC, 2015.
[23] K. Schneider. Focusing spontaneous feedback to support system evolution. In RE, 2011.
[24] N. Seyff, F. Graf, and N. Maiden. Using mobile re tools to give end-users their own voice. In RE, 2010.
[25] M. Stevenson and Y. Wilks. Word sense disambiguation. The Oxford Handbook of Comp. Linguistics,

pages 249–265, 2003.
[26] Y. Roussakis, I. Chrysakis, K. Stefanidis, and G. Flouris. D2V: A Tool for Defining, Detecting and

Visualizing Changes on the Data Web. In Proceedings of ISWC, 2015.



PUBLICATION

IV

A statistical analysis of Steam user profiles towards personalized gamification
X. Li, C. Lu, J. Peltonen and Z. Zhang

International GamiFIN Conference (GamiFIN), 2019

Publication reprinted with the permission of the copyright holders





A statistical analysis of Steam user profiles towards

personalized gamification

Xiaozhou Li, Chien Lu, Jaakko Peltonen, and Zheying Zhang

Tampere University
Kalevantie 4, 33100, Tampere, Finland

{xiaozhou.li, chien.lu, jaakko.peltonen, zheying.zhang}@tuni.fi

Abstract. Gamification is widely used as motivational design towards enhanc-
ing the engagement and performance of its users. Many commonly adopted game
design elements have been verified to be effective in various domains. However,
the designs of such elements in the majority of the target systems are similar. Due
to inevitable differences between users, gamification systems can perform more
effectively when users are provided with differently and personally designed fea-
tures according to their preferences. Many studies have suggested such require-
ments towards personalizing gamified systems based on the users’ preferences,
with categorizing gamification users and identifying their preferences as the ini-
tial step. This study proposes a preliminary analysis of the factors that catego-
rize user preference in a game community, based on the user profiles data of the
Steam platform. It shall not only facilitate understanding of players’ preferences
in a game community but also lay the groundwork for the potential personalized
gamification design.

Keywords: Gamification · Exploratory Factor Analysis · Steam · User Profile ·
Preference · Personalized Gamification.

1 Introduction

Gamification, commonly defined as the use of game design elements for non-game
contexts [12], has been widely adopted as motivational design to support users moti-
vation enhancement and performance improvement. Many game design elements, e.g.,
badges/achievements, points, leaderboard, progress, story, etc., have been adopted in
various service domains and proven effective in many studies [14]. However, the ma-
jority of the gamification systems provide very limited alteration towards different users
but adopt the one-size-for-all design approach instead [32]. Such rigid gameful designs
are to a certain extent ineffective in persuading the users into positive behaviors. Many
studies have shown that different users are likely to be motivated by different game el-
ements and persuasive strategies [31, 32, 40]. Therefore, it is critical to understand dif-
ferent users’ preferences when providing them the personalized gameful experiences.

The studies on the users’ types and preferences regarding gamification systems are
based on the similar studies on game players. A seminal study on the player types for
multi-user dungeon (MUD) games is Bartle’s player typology [2]. Meanwhile, a num-
ber of studies also contribute to extending the user typology framework by focusing
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on psychographic and behavioral aspects [15]. Even though the direct connection is
not addressed, such studies on player typology do facilitate the understanding of users
preference of play style and their motivations of playing [15]. On the other hand, a
gamification-specific user typology framework is developed by Marczewski [26], who
proposes six gamification user types based on intrinsic or extrinsic motivational affor-
dances [36] and their different degrees for the users. Furthermore, based on this particu-
lar framework, a 24-item survey response scale is presented to score users’ preferences
regarding the six different types of motivation toward a gameful system, which can
therefore identify a users type and describe his/her preferences [42].

Despite the uniform well-defined player types and gamification user types, such a
‘clear-cut’ categorization approach can be questioned as a player may not belong to
a certain type strictly [15, 21]. In addition, limitations of using survey data towards
such categorization have also been recognized [42]. In this study, we focus on users
of the Steam platform and their community-related behaviors presented on their profile
pages. The users’ Steam profiles provide various information, including the games they
have, the game achievements, item trading, friends, groups, reviews, screenshots, profile
customization options, and so on. The objective nature and large volume of such data
shall has the potential to yield enhanced characterizations of users and their diferences.
Herein, based on factor analysis of large user profile data, we identify the factors that
characterize the differences between Steam users. Instead of a strict categorization of
players, the study aims to answer what are the factors that distinguish Steam users from
one another and determine their preferences, as well as how such distinguishing factors
can be applied to facilitate personalized gamification design.

The paper is organized as follows. Section 2 introduces previous studies on game
players and gamification user typologies and on analysis of the Steam platform and user
data. Section 3 introduces our data collection and analysis methods, Sections 4 and 5
present results and discussion Section 6 concludes.

2 Related Work

2.1 Player Types and Gamification User Types

The aim of segmentation in marketing is to identify different customer groups so that
they are served with products and services that match their unique needs. Studies on
player types also serve this purpose. The majority of the prevailingly cited studies focus
on the player segmentation in terms of the behavioral and psychographic attributes in-
stead of geographic or demographic ones [15]; our focus is similar, since our Steam pro-
files did not contain demographic/geographic attributes and we focused on the available
profile information reflecting player behavior. When available, our modeling principle
could accommodate demographic/geographic attributes as covariates.

Bartle’s seminal player typology — Achiever, Explorer, Socializer and Killer — is
based on the things people enjoy about MUD in either an action or interaction dimen-
sion towards either players or the game world [2]. It is also criticized for being dichoto-
mous and too simplifying, as well as focusing on only one game genre instead of a broad
range [3, 15, 42]. Extending Bartle’s typology model, many studies have proposed sim-
ilar typology models for online game players with specialized focuses [43, 45]. Many



other studies present different ways of categorizing players based on their various moti-
vation and behaviors when not fixating on online games [21, 39]. Such player typology
models provide ways to detect the difference in players and their preference regarding
motivations and behaviors in general. On the other hand, many studies also focus more
specifically on players’ preferences regarding game design elements [11, 19].

The studies on gamification user types also adapt the results from the player typol-
ogy studies. Such studies are mostly supported by the research on behavior motivations
and personalities [29,36]. Regarding the user typology in the gamification domain, Mar-
czewskis gamification user type model is the most cited work [26]. Motivated by the in-
trinsic and extrinsic motivational factors of the users, which is defined by the Self Deter-
mination Theory (SDT) [35], Marczewski categorizes the users of gamification services
into six types, including socializers, achievers, philanthropists, free spirits, players, and
disrupters. Other studies also attempt to provide adapted typology frameworks regard-
ing specific domains [1,44]. Meanwhile, adapting Marczewski’s gamification user types
model, Tondello et al. present and validate a standard scale to determine users’ prefer-
ence towards gamification systems regarding different motivation types [42]. Based on
that, their subsequent works contribute to suggesting gameful design elements regard-
ing user preferences, personalizing persuasive strategies, and creating a recommender
system model for personalized gamification [32, 40, 41]. However, mentioned as their
limitation, the data are self-reporting and subject heavily to participants’ personal un-
derstanding of survey statements and preferences towards diverse game elements. Thus,
relevant objective data with a larger sample volume can address such limitation and can
also yield alternative results.

2.2 The Steam Platform and Users

Steam, a popular digital game distribution platforms, has drawn attention from the
academia. Becker et al. analyze the role of games and groups in the Steam community
and present the evolution of its network over time [5]. O’Neill et al. also investigate the
Steam community but focus on the gamers’ behaviors, in terms of their social connectiv-
ity, playtime, game ownership, genre affinity, and monetary expenditure [30], whereas
Blackburn et al. focus more specifically on the cheating behavior [7]. Many other stud-
ies also investigate the various perspectives of players’ behaviors on the Steam platform.
For example, Sifa et al. investigate the players’ engagement and cross-game behavior by
analyzing their different playtime frequency distributions [37,38]. Baumann et al. focus
on “hardcore” gamers’ behavioral categories based on their Steam profiles [4]. Lim and
Harrell examine players’ social identity and the relation between their profile maintain-
ing behaviors and their social network size [22]. Meanwhile, other scholars also study
the other perspectives of Steam, such as, recommender systems for its content [6], early
access mechanism [24], game updating strategies [23], game reviews [25], and so on.
However, research on characterizing players based on their Steam profile data towards
analyzing players’ preference to different game design elements is still limited.



3 Method

3.1 Data Collection

A web crawler based on the Beautiful Soup Python module was created to collect data
from public user profiles. The data collection proceeded in a “snowball” manner. The
crawler started from one user’s Steam profile URL which was selected at random from
the top 10 Steam user leaderboard, and crawled the list of the user’s friends profile URL.
Iteratively, the list of users was grown via crawling the friends of each of the existing
users on the list and appending the results to the end of the list. Although guarantee-
ing an unbiased sample from such a huge base is difficult and our gathered dataset is
necessarily small, it can still achieve a good representativity. Duplicated profile URLs,
as well as private ones from which no valid data can be obtained, were eliminated.
To reduce crawling time while achieving reasonable coverage, only profile URLs were
crawled, and from the initial data pool of 2561387 unique user profile URLs, we col-
lected the profile information on a random subset of the URLs which includes 60267
users. The crawled features include Levels, Showcases, Badges, Number of Games,
Screenshots, Workshop Items, Videos, Reviews, Guides, Artworks, Groups, Friends,
Items Owned, Trades Made, Market Transactions, Achievements, Perfect Games, Game
Completion Rate, and four binary profile customization related variables: Avatar, Sta-
tus, Background, and Favorite Badge customization (customized or not). To summarize
the binary variables per user, we define an aggregate value called Profile Customization
whose value is the percent of ‘customized’ values: for example, if a particular user cus-
tomized three of the four items mentioned above, his/her Profile Customization score
will be assigned as 0.75. In addition, each user’s active time span was also collected
based on the time when the user last logged off and the time when the user created the
account, using the SteamAPI. To take the user activity into account, we further com-
puted the duration the profile had existed using the above-mentioned information and
utilized it to normalize the profile variables, by simply dividing each variable by the
profile duration.

3.2 Exploratory Factor Analysis

To uncover the underlying structures of the Steam user profiles, an exploratory factor
analysis (EFA, [13]) is conducted. It enables us to reduce the complexity of the data,
explain the observations with a smaller set of latent factors and discover the relations
between variables. Unlike clustering which discovers groups of players, EFA discovers
underlying axes characterizing players and their differences. In game culture studies,
EFA has been widely used especially in studies related to user/player types and user
motivations (e.g. [42, 43]). Extracted EFA factors can also be a basis for analysis such
as clustering (player segmentation) or prediction in follow-up work; we focus on dis-
covering underlying axes of variation in Steam user profiles through EFA and their
applications in gamification.

One common issue in EFA is how to decide the number of factors. In this paper,
the parallel analysis (PA) introduced by Horn [18] is adopted to solve the problem. It
has been widely used and has given good results in recent research works (e.g. [33,



34]). Several comparative studies (e.g. [8, 46]) have shown that it is an effective way to
determine the number of factors.

Table 1. Result of Parallel Analysis

Factor Observed Eigenvalue Simulated Eigenvalue

1 3.104 1.031
2 2.744 1.025
3 1.650 1.021
4 1.382 1.018
5 1.167 1.015
6 1.130 1.011
7 1.073 1.008
8 1.027 1.006
9 0.916 1.003

In PA, the Monte Carlo simulation technique is employed to simulate random sam-
ples consisting of uncorrelated variables that parallel the number of samples and vari-
ables in the observed data. From each such simulation, eigenvalues of the correlation
matrix of the simulated data are extracted, and the eigenvalues are, as suggested in
the original paper [18], averaged across several simulations. The eigenvalues extracted
from the correlation matrix of the observed data, ordered by magnitude, are then com-
pared to the average simulated eigenvalues, also ordered by magnitude. The decision
criteria is that the factors with observed eigenvalues higher than the corresponding sim-
ulated eigenvalues are considered significant. Hereby, we conduct the parallel analysis
task with 5000 simulations to determine the number of factors.

To simplify interpretation of the factor analysis result, the varimax rotation tech-
nique [20] which maximizes the variance of the each factor loading is employed. Re-
sults with an alternative rotation approach promax [17] were similar.

4 Result

4.1 Factor Analysis

The result of the parallel analysis is shown in Table 1. Based on the mentioned criteria,
the turning point can be found easily by examining the differences between observed
eigenvalues and simulated eigenvalues. Since the simulated eigenvalue becomes greater
than the observed eigenvalue in the 9th factor (1.003 and 0.916 respectively), the first
8 factors are retained. The corresponding factor loadings can be found in Table 2. A
cross-loading of the variable Profile.Customization was found on Factor 1 and 7, we
further computed the Cronbach’s alpha [9] on those two factors to evaluate their internal
consistency and the values are found acceptable (0.87 and 0.71 respectively).

4.2 Factors Interpretation

Based on the result of EFA, we interpret each of the eight factors and summarize each
of the unique preference attributes of Steam users.



Table 2. Loadings of the Extracted Factors

Variable Factor 1 2 3 4 5 6 7 8

Level 0.641 -0.005 0.004 -0.002 0.008 -0.013 -0.263 0.002
Showcases 0.026 0.107 0.065 0.828 0.162 0.180 0.028 0.067
Badges 0.954 0.033 0.004 0.010 0.006 0.043 0.016 0.004
Games 0.019 0.511 0.020 0.016 0.108 0.365 0.030 0.088
Screenshots -0.000 0.118 0.332 0.046 0.344 0.039 0.022 0.490

Workshop.Items 0.007 -0.045 0.042 0.127 0.789 -0.027 0.003 -0.082
Videos 0.002 -0.030 -0.066 0.046 -0.074 -0.022 -0.003 0.901

Reviews 0.002 0.232 0.039 0.044 0.769 0.039 0.018 0.113
Guides 0.002 0.024 0.879 -0.031 -0.090 -0.003 -0.001 -0.002
Artwork 0.004 -0.010 0.836 0.101 0.192 0.006 0.018 0.030
Groups 0.078 0.017 0.020 0.031 0.026 0.008 0.951 0.009
Friends 0.947 0.002 0.004 0.043 0.007 0.014 0.202 0.001
Items.Owned 0.004 0.048 0.005 0.049 -0.004 0.733 0.006 -0.022
Trades.Made -0.003 -0.142 -0.002 0.281 -0.063 0.551 0.003 -0.061
Market.Transactions 0.017 0.116 0.001 -0.063 0.044 0.645 -0.007 0.049
Achievements 0.005 0.865 0.014 0.125 0.014 -0.010 -0.001 -0.011
Perfect.Games 0.003 0.847 0.006 0.210 0.105 -0.045 -0.002 -0.017
Game.Completion.Rate 0.008 0.274 0.013 0.852 0.054 -0.004 0.003 0.021
Profile.Customization 0.808 -0.007 -0.008 -0.019 -0.015 -0.016 0.553 -0.007

Factor 1: Elite (Level, Badge, Friends, and Profile Customization) Factor 1 in-
dicates the users’ tendency to become the elite of the Steam community. The elite users
focus on their social comparison advantages over the others by enhancing their quantifi-
able social scores, such as, levels, badges, and friends numbers. According to Steam’s
unique mechanism, the users can upgrade their levels and earn more badges without the
requirements of exerting more effort in actual gameplay. Therefore, the elite users tend
to value their social achievement more than experiences in gameplay. In addition, they
also prefer profile customization in order to present their unique social identity.

Factor 2: Achiever (Games, Achievement, and Perfect Games) Users’ tendency
in Factor 2 indicates their preference towards mastering the games. They focus on com-
pleting games thoroughly and obtaining as many in-game achievements as possible.
They also tend to enlarge their game collection whenever possible. Compared to the
elite users, the achiever users prefer to put their effort in games and less in social.

Factor 3: Provider (Guides and Artworks) Users with high attribute in Factor 3
love to provide facilitation to the others with gameplay guides and self-created unique
game-related arts. Different from elite and achiever users who focus on their social
presence or achievement, the provider users tend to be more altruistic and care about
other users and their game playing.

Factor 4: Completer (Showcases and Game Completion Rate) Similar to the
achiever users, the completer users also focus on gameplay but less on achievements.
They prefer to finish the games that they start but have less intention of pursuing the
full achievement by investing extra amount of hours. Meanwhile, they like to show
their possessions, e.g., showcases, as much as possible, but put less effort on organizing
compared with the elite users.



Factor 5: Improver (Workshop Items and Reviews) Users with high value on
Factor 5 focus on game improvement. They make efforts to add unique experiences to
games via workshop items and reviews. These encourage developers to improve the
games and publish better games in the future. Similar to provider users, they are also
altruistic but focus more on game quality.

Fig. 1. An Example of User Preference Attributes Radar Chart

Factor 6: Trader (Item Owned, Trades Made, and Market Transaction) The
trader users do not pay much attention to either games or social, but to buying and sell-
ing game related virtual items instead. According to Steam’s mechanism, users neither
have to own or play games to obtain items nor have to become friends with others or
join groups to make trades. Thus, trader users tend to make the community a business
playground, buying low and selling high.

Factor 7: Belonger (Groups and Profile Customization) Similar to the elite users,
the belonger users also tend to focus more on social interaction than gameplay, when
the difference is that the belonger users prefer the feeling of relatedness and belonging,
rather than social comparison. Belonging to social groups is always their first priority.
Having a proper customized profile is thus also necessary to fit them in the groups.

Factor 8: Nostalgist (Screenshots and Videos) Users with high nostalgist attribute
have the tendency of restoring their gameplay memories by taking screenshots and
recording videos. They also share their gameplay memories with others in the activ-
ity timeline, so that other players can enjoy the unique scenes and compare to their own
gameplay too. Meanwhile, the ”thumbs up” and appreciation from the others is their
reward.

It is worth noting that the eight factors aim to explore the various attributes of Steam
users instead of arbitrarily categorizing each user into a single type. Generally, each in-
dividual user shall contain certain scores in all given attributes while the attribute value
distribution of different users shall differ. Meanwhile, each user may also contain high
or low score in multiple attributes simultaneously. By reducing the variable dimensions
to one for each attribute and normalizing the value, each individual user shall have a
radar chart illustrating his/her salient attributes. Fig. 1 shows an example of a user who
possesses a salient attribute of improver and is creative with workshop items and also
loves to contribute in improving games by giving reviews. Meanwhile, this particular



user also possesses relevantly salient attributes of elite, achiever, and provider. It indi-
cates that the user also favors gaining levels, badges, and achievements, and providing
guides and artworks to the community.

Table 3. An Example Mapping between Preference Attributes and Motivation Types

Attributes Steam Variables Motivation Types [10, 36] Gameful Elements [40]

Elite Level Mastery Progression
Badges Mastery Incentive
Friends Relatedness Socialization
Profile Customization Autonomy Customization

Achiever Games Mastery Progression
Achievements Mastery Incentive
Perfect Games Mastery Incentive

Provider Guides Mastery, Purpose Altruism
Artwork Autonomy Altruism

Completer Showcases Autonomy, Mastery Customization
Game Completion Rate Mastery Progression

Improver Workshop Items Autonomy, Purpose Altruism
Reviews Autonomy, Purpose Altruism

Trader Items Owned Mastery Incentive
Trades Made Relatedness Socialization
Market Transactions Relatedness Socialization

Belonger Groups Relatedness Socialization
Profile Customization Autonomy Customization

Nostalgist Screenshots Autonomy, Relatedness Socialization
Videos Autonomy, Relatedness Socialization

To apply such a preference framework in gamification design, based on the vari-
ables each attribute is related to, we could find connections between attributes and the
established intrinsic motivation types or other similar gamification design models or
frameworks. With different player motivation and design elements frameworks, the ap-
plication towards personalized gamification design could differ. Table 3 is an example
of connecting the obtained preference attributes with the SDT motivation types [10,36]
and the gameful design elements categories [40]. Ideally, each Steam variable can be
mapped to a certain type of motivation and a particular gameful design element cate-
gory. Subsequently, the motivation that drives the corresponding preference attributes
and the related gameful design element set can be decided and weighted (e.g., based
on relatedness of the variables to the attributes). However, such presumption of con-
necting attributes, motivation types, and design elements can be subjective, when the
motivation of each user towards each individual Steam variable is unknown and hard to
be dichotomized. For example, ‘Level’ is likely to be driven by the motivation of mas-
tery, when, on the other hand, particularly in Steam, higher level means that the user
will have more badges and showcases to customize. Therefore, the ‘Level’ variable



is driven by the motivation of autonomy, to some extent. Furthermore, a quantifiable
value of ‘Level’, together with ‘Badges’ and ‘Profile Customization’, can be also seen
as the tendency towards social comparison. Such equivocality shall be addressed with
potential ordering or voting schemes.

5 Discussion

Compared with Lim and Harrell’s study on players’ social identity [22], we cover more
perspectives of Steam users’ social behaviors in the gamer community by extending
the data collection to more features. However, different from Sifa et al.’s work [38] our
data covers only the Steam users’ profile information and not users’ in-game behaviors.
Thus, with the current dataset, mapping from the obtained user preferences towards the
gameful design elements regarding heavily in-game behaviors, such as, immersion or
risk/reward, is not possible [40]. Furthermore, based on the goal of this study to study
users’ preference regarding gamification design, the data limits generalization towards
all gamification users instead of only gamers. Despite the above limitations, the data
(similar to other product-oriented social media profiles, e.g. Amazon profiles) can be
seen as more generalized rather than focusing on gamers from specific games or genres.
Compared with previous studies on gamification user types [40,42], such data collected
from user profiles can be more objective than self-reported survey data.

This study presents a data-driven approach to investigating users’ preferences to-
wards game design elements. The resulting axes of variation among players can be in-
spected and used in gamification. In future work the results can also be used as a basis
for categorization of players; data-driven approaches [16] can improve efficiency and
representativeness compared to manually designed categories. One follow-up direction
is to build a collaborative filtering recommender system based on similarity of users’
preference towards various game design elements, allowing a personalized gamifica-
tion design based on the recommendation for each user [41]. Another future direction
is to validate the user preference framework with empirical analysis. For example, the
user preference scale of Tondello et al. [42] can be adopted as a reference, with Steam
users as participants. Furthermore, the data volume can be enlarged with more users,
e.g., by crawling from multiple seed users; our data could further be combined with
additional data regarding, e.g., players’ in-game behaviors, preference on game genres,
and reviews on games. After validation, the proposed user preference framework can
be applied to future data-driven player studies. Together with previous gamification de-
sign methods [27], the framework will facilitate gamification design and provides an
efficient way to address key issues in the user analysis phase [28].

6 Conclusion

We presented an exploratory way of analyzing user presences towards game design ele-
ments using Steam user profile data. Using EFA, eight factors/attributes are gained, the
value of which can be used to define each individual user’s preference regarding behav-
iors in the Steam community. Together with the connection between such behaviors and
the underlying motivation types and gameful design elements, each user’s preference



regarding gamification systems can be also perceived. Due to the quantifiable and ob-
jective nature of the data, such estimation of the users’ preference can be more precise.
It will contribute to the future work of personalized gamification design and creation of
recommender systems for personalized gamification in a data-driven manner.
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Abstract: Mobile applications (apps) on IOS and Android devices are mostly maintained and updated
via Apple Appstore and Google Play, respectively, where the users are allowed to provide reviews
regarding their satisfaction towards particular apps. Despite the importance of user reviews towards
mobile app maintenance and evolution, it is time-consuming and ineffective to dissect each individual
negative review. In addition, due to the different app update strategies, it is uncertain that each update
can be accepted well by the users. This study aims to provide an approach to detect the particular
days during the mobile app maintenance phase when the negative reviews require developers’
attention. Furthermore, the method shall facilitate the mapping of the identified abnormal days
towards the updates that result in such negativity in reviews. The method’s purpose is to enable
app developers to respond swiftly to significant flaws reflected by user reviews in order to prevent
user churns.

Keywords: mobile app; sentiment analysis; maintenance; update; user review; exponential power
distribution; Word2Vec

1. Introduction

Contemporary mobile applications (apps) play an increasingly important role in people’s daily
lives, which are directly influenced by the apps’ quality. Via the dynamic way of distribution supported
by the platforms e.g., Apple Appstore and Google Play, the release periods of mobile apps are largely
shortened compared to those of traditional software products [1]. Due to the fiercely competitive
mobile app market, the developers are obliged to constantly update their app products by fixing bugs,
improving interfaces, adapting to system updates, and providing new features, in order to maintain
the quality of the apps and to increase user retention and satisfaction [1,2]. In the constant updating
process, understanding end users’ needs and requests is important and requires enormous effort.
There are various ways of getting access to users’ feedback for a particular app. Besides the dedicated
in-app user feedback collecting tools, the online app stores contain a mechanism to allow users to
provide text reviews and rating scores, which enhances their importance as a stakeholder [3].

The reviews given by end users are helpful towards improving the app quality in general through
its maintenance and evolution with proper analysis, despite the proportion of informative reviews is
around one third [4,5]. Many studies have proposed approaches and techniques facilitating the analysis
of mobile app user reviews [5–11]. Therein, sentiment analysis and topic modeling are often applied
for the analysis with various focuses, e.g., on detecting review characteristics [12], on identifying
review inconsistency and user concerns [11], on review classification [7,8], on the controversiality
about the sentiment towards specific entities [13], or even on comparing them with users ratings [14].
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Furthermore, many studies also contribute to applying other methods of review analysis in order
to tackle other software maintenance and evolution related issues, e.g., release planning [15,16],
change requests localizing and recommendation [17], as well as software suggestions [18].

On the other hand, due to the dynamic distribution mechanism and constant market changes,
mobile apps are continuously updated with a rapid pace, though such an update mechanism
implementation is risky for potential user dissatisfaction [19]. Despite most users being happy with
the apps with frequent updates but hesitate to install them, worrying about potential hazards [1].
Most of the previous studies focus on eliciting users’ general opinion from the reviews regarding a
particular mobile app as a whole, while also lacking support on the detection of updates, which may
adversely affect user experience and satisfaction. We call such updates problematic updates. Releasing
continuously problematic updates can stop users from using the particular app again, which in turn
impacts the app’s exposure opportunities on the app stores. Identifying the problematic updates
early on and understanding the causes of user dissatisfaction can help mobile app providers predict
potential problems before releasing a new update which ensures the success of the app in its life cycle.
Li et al. propose an approach to analyzing the topic and sentiment changes before and after a particular
update, but has a lack of support for identifying the particular time and the potential update that
requires attention [10]. Xia et al. provide a way to predict mobile app crashing updates based on
commit data analysis, but lack of facilitation towards identifying generally problematic updates [20].

In this paper, we propose a sentiment-statistical approach of identifying the problematic mobile
app updates based on user review analysis, by specifically answering the following research questions:

1. How to identify the collective dissatisfaction of users based on their reviews?
2. How to verify it is the recent update that results in the users’ dissatisfaction?

The reminder of the article is organized as follows. Section 2 introduces the related studies
regarding similar topics. Section 3 presents our method with details. Section 4 presents a case study,
applying the proposed method on retrieved mobile app review data. Section 5 further discusses the
relevant issues, as well as the limitation of the study and future works. Section 6 concludes the article
with a summary of our contributions.

2. Related Work

Regarding the use of data mining techniques for user reviews analysis towards mobile app
quality, as well as practice regarding maintenance and evolution, many previous studies focus
on aspects, like the helpfulness and informativeness of the reviews, feature extraction and review
classification [21]. For example, towards informative review identification, Chen et al. adopt the
expectation maximization for the naive Bayes method to classify informative and non-informative
reviews and topic modeling methods to group informative reviews [5]. Gao et al. adopt the Info-rate
index to analyze the informative rate of the reviews and track the dynamics of top-rated reviews
without manual labeling [22]. Chandy and Gu propose a method to identify spam reviews with
the baseline decision tree model and latent class model [23]. Towards feature extraction, Vu et al.
propose a keyword-based framework for semi-automated review analysis facilitating the extraction
of review keywords and the mapping to the related negative reviews [24]. Fu et al. adopt statistical
analysis and topic modeling method to discover inconsistency in reviews and identify the major
concerns of the users marked by extracted keywords [11]. Many other studies also use topic modeling
methods, such as, LDA and ASUM, to extract major concerns of users from the reviews and the
related features [4,6,25]. Furthermore, despite qualitative and exploratory methods also being used for
the classification of user reviews, specifically the complaint types of the users [2,26], many scholars
still adopt natural language processing, topic modeling and sentiment analysis techniques for such
purpose [8,10,27].

Together with the opinion mining of user reviews, many studies focus on the continuous
maintenance of mobile apps via update analysis and release planning. Villarroel et al., propose the
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CLAP method to categorize and cluster user reviews based on extracted features and to prioritize and
recommend review clusters towards the planning of the subsequent updates [15]. Ciurumelea et al.,
propose the user request referencer prototype to not only classify reviews but also map the reviews
according to source code files that can be modified to address the issues within [16]. On the other hand,
towards the analysis of mobile app updates, Wang et al. use a k-means clustering algorithm to identify
seven mobile app update patterns based on the feature intensity trend between two neighboring
updates, reflecting the common update behaviors towards acting on user reviews [28]. Li et al,
present a method with topic modeling and sentiment analysis to analyze the changes of user opinions
through continuous app updates [29]. Overall, the previous works on mobile app reviews opinion
mining largely focus on issues related to detection, and provide corresponding strategies for future
updates. This study, on the other hand, aims to facilitate the identification of particular updates that
result in statistically abnormal amount of negative reviews.

3. Method

In this work, we propose an approach aiming to identify the periods of time when the user
reviews of a particular mobile app reflect noticeable amount of negativity. Such identification of
the opinion changes shall also be correlated with the changes of the topics in the according review
periods. This approach also aims to identify the particular update that is most likely connected to
such sentiment and main topic changes by comparing the similarity between the keywords of the
update content and those of the reviews from the period of such changes. In general, this approach
encompasses two key steps: (1) identifying the abnormal days of changes in the sentiment of user
reviews, and (2) identifying the corresponding problematic update that is most likely connected
to such abnormality. The outcomes of these two steps, respectively, answer the research questions
mentioned above.

3.1. Sentiment Change Distribution

In order to identify the period of time during the maintenance and evolution of a particular
mobile app, where the overall user review sentiment of that period is abnormal, we shall firstly be able
to differentiate such abnormality from normal review sentiment. By observing the rating percentage of
changes of a number of popular mobile apps from the last 90 days (from 13 June 2020 to 10 September
2020), we find that the rating percentages are largely stable, despite the varied proportion number
from app to app. For example, such stability in the rating proportions through days can be easily
observed in Figure 1, which shows the rating percentage changes for 90 days for mobile app Whatsapp
(Obtained from https://www.appannie.com).

Figure 1. The rating percentage changes of Whatsapp from 13 June 2020 to 10 September 2020.

Figure 1 shows an abnormal rating proportion that is noticed on the 3rd July 2019, when the
percentage of 1-star ratings rose from an average 10% up to 28.4%, while that of 5-star ratings dropped
from 70% down to 47.4%. Such sudden rating proportion changes on that particular day can be
assumed to be reflecting the changes in the quality of the app via the recent update. On the other hand,
user ratings are somehow inconsistent towards the review content provided [11], when the reviews
are considered more accurately reflecting the user’s opinion. In addition, based on the results from the
1-year data of reviews and ratings from the five mobile apps given next (3,793,125 reviews), we find
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the correlation between the daily average sentiment and ratings is high (with Pearson’s r = 0.984).
Due to such high correlation between ratings and review sentiment, the phenomenon of sudden
changes in rating proportion caused by updates can also be observed by the changes in the collective
review sentiment.

Accordingly, when considering such phenomena of daily average review sentiment being stable,
we can then propose a hypothesis that having the review data divided by a fixed time period (e.g.,
by day), the changes of the average sentiments of the obtained review divisions along the timeline
are normally distributed. To test the hypothesis, we use the Kolmogorov–Smirnov test (K-S test) [30]
for the fitness of negative sentiment changes of the previously mentioned data of five mobile apps to
normal distribution. However, the hypothesis does not stand with p taking value equal to 0.000001 (less
than 0.05). Furthermore, in order to find the best fitting distribution model, we apply the K-S test for 86
other different distribution models (https://docs.scipy.org/doc/scipy/reference/stats.html) finding
that our data fits best to generalized normal distribution (version 1. Exponential power distribution,
shown in Figure 2) [31] with a p value of 0.968 (μ = 0.0002, α = 0.0227, β = 1.0444).

Figure 2. The distribution of the review data negative sentiment change.

3.2. Identify Abnormal Sentiment Changes

The overall review sentiment of a particular day can be defined in various ways, such as the
average sentiment score of the reviews on each day or the rate of certain type of sentiment (i.e.,
positive or negative). For review sentiment analysis, due to the inconsistency between the sentiment
expressed by users and the actual quality, it is highly likely the majority of moderate negative reviews
can be neutralized by the minority positive reviews with exaggerated expression. Furthermore, as the
method is to identify the abnormal day when a significant number of negative reviews occur, we hereby
define the sentiment change between two days as the increase or decrease rate of negative review
numbers, where the strength of sentiment is chosen to be ignored. Thus, considering respectively
ni and ni+1 negative reviews found in the Ni reviews on the day di and Ni+1 reviews on the next
day di+1, the review sentiment changes between day di and day di+1, denoted as asi, is calculated as
asi = (ni+1/Ni+1)− (ni/Ni).

Based on the hypothesis proposed previously, if the variables of daily sentiment changes fit
normal distribution, we can then consider the samples that lie within the band around the mean
in a normal distribution with a width of six standard deviations as normal (i.e., the three sigma
rule [32]). However, for the non-normal distributions, such inference towards the percentage of
normal values may vary. Based on the previous exponential power distribution model for the review
sentiment change data, we simulate 1,000,000 samples having such distribution with the obtained
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parameters (i.e., μ = 0.0002, α = 0.0227, β = 1.0444). The simulation is from the R package gnorm
(https://cran.r-project.org/web/packages/gnorm/index.html). The calculated number of samples
lying in the band around the mean with ±3σ width is 986,424, indicating 98.6% of the values shall
be considered normal. Thus, the abnormal sentiment changes of the reviews are the ones lying
outside the band. On the other hand, considering Chebyshev’s inequality [33], no more than 1/k2 of
the distribution’s values can be more than k standard deviations away from the mean. Specifically,
regarding the simulation data, the abnormal values are the 1 − 1/k2 = 0.986 of the distribution,
that is, around k = 8 standard deviations away from the mean. Therefore, regarding our dataset, it is
reasonable to consider the days when the sentiment change values lying out the 98.6% band around
the mean as abnormal.

3.3. Identify Problematic Updates

Despite the changes in review, sentiment scores can be used to identify the potential problems in
the mobile app quality, it is possible that such changes result from the general quality deterioration
instead of from particular problematic updates [34]. A way of finding the connection between the
identified abnormal review sentiment changes and the corresponding problematic updates is to detect
the similarity between the content of the reviews that causing the changes and that of the updates.
Towards such purpose, we adopt the Word2Vec tool [35].

The Word2Vec tool uses vectors to represent words with efficient and continuous bag-of-words and
skip-gram schemes [36]. Each word from the text corpus generated from the text data is transformed
into an individual vector. The vocabulary model is constructed by training the text data, which uses a
log-linear classifier to predict words occurring within a certain range to either side of the word and
learn the word representation. Simply put, for a particular word in the corpus, it is less likely related
to the words occurring frequently far away from it. Thus, the similarity between this word and the
words far away weighs less.

In order to investigate the similarity between the content of reviews and that of the update,
we firstly train the Word2Vec model with the textual review data of a particular app. After identifying
the days when the sentiment changes are considered abnormal, we summarize the negative reviews of
that day using the term frequency–inverse document frequency (TF-IDF), which reflects the importance
of a word to a document (i.e., review text) in a collection of corpus (i.e, collection of reviews) [37].
Thereafter, the similarity between the content of a particular update and that of the negative reviews
of the identified abnormal days can be measured by averaging the similarities between the words
with high TF-IDF value of the abnormal-day negative reviews and the keywords extracted from the
update description text. Ideally, when the main cause of a particular abnormal day is verified, it is
most likely the nearest update before the abnormal day that results in such abnormality. Otherwise,
further investigation into the details of the reviews is required to verify the causes.

3.4. Algorithm

Algorithm 1 offers an overview of the proposed approach. Specifically, our approach consists of
three main steps:

1. Calculate the parameters of the exponential power distribution model of the daily review
sentiment changes.

2. Identify the abnormal sentiment change days based on the distribution model, if any.
3. Check whether it is the nearest previous update that is problematic and causing such detected

abnormality in user review sentiment change by comparing the similarity between the negative
reviews of the abnormal days and the update description texts.
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Algorithm 1: Algorithm of identifying abnormal days and problematic updates.
Data: Set of Reviews within a Fixed Period
Result: Identified Problematic Update if Abnormal Sentiment Change Detected
INITIALIZATION;
R ← set of reviews;
for each ri ∈ R do

si (∈ S) ← getSentimentScore(ri)
end
D ← set of days, where R is obtained;
for each {rx, rx+1, ... rx+m} obtained in di ∈ D do

Let asi be the average review sentiment for di;
asi ← len([s in {sx, sx+1, ... sx+m} if s is negative])/m

end
for each di ∈ D do

Let sci be the sentiment change between di and di+1;
sci ← (asi+1 − asi)

end
Let X be the continuous random variable of sentiment changes;
Then, as X ∼ EPD(μ, α, β), calculate μ, α, and, β;
Let AD be the set of abnormal sentiment change time spans;
AD ← [for sci in X if sci > μ + 3σ];
if AD exist then

Let U be the set of updates released within the fixed period;
Ut ← [the update content of u for u in U];
for each adi ∈ AD do

F ← sorted(getTF-IDFList([reviews in di+1]), reverse=True)[:150];
K ← [getKeywords(ut) for ut in Ut];
if the ui with the max([Similarity(k, F) for k in K]) is the nearest previous update then

return ui;
else

adi is not caused by update;
end

end
else

no abnormal days detected
end

Let R be a set of user reviews for a particular mobile app A within a defined time period, where
each individual review ri ∈ R is tagged with a specific time point. Meanwhile, let U also be the set of
updates released by the developers of app A within the same time period, where each update ui ∈ U is
also released at a particular time point. Thus, if any abnormal days are detected, for each identified day
with abnormal sentiment change during the period, adi, we can verify whether it is the nearest previous
update that is problematic and causing adi. Herein, the similarity between the negative reviews and
the previous update is calculated by the average of the Word2Vec similarity values of each update
description keyword and each of the top TF-IDF review keywords. The according TF-IDF are also taken
into account as the weight of the similarity values. To be noted, we hereby select 150 keywords with
the highest TF-IDF score to ease the calculation cost of the algorithm, while maintaining its accuracy.
If based on the comparison of similarities, the nearest previous update is not identified as problematic,
the negativity in user reviews can be caused by other issues, which requires further investigation.
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4. Case Study

This case study is to validate the usefulness of the proposed method in identifying the abnormal
days from user reviews and the problematic updates during the mobile app maintenance. We collect
the review data from five popular mobile apps and apply our method. The result shows that the
problematic updates can be identified when using this method.

4.1. Data Preprocessing

Preprocessing on the acquired raw review data is required before experimenting with the proposed
method. We hereby apply the following steps to clean the data into usable.

Filtering non-English reviews. We screen out the non-English review sentences using
Langdetect [38], a convenient language detecting package for Python language. Langdetect identifies
the language of a particular sentence using the sentence as a whole instead of individual words within.
Hence, due to the nature of user reviews, the sentences with misspelled words, slurs and abbreviations,
used often in social media, will not be filtered out.

Separating Long Reviews into Sentences. Despite mobile app reviews being shorter, in general,
compared with reviews on other platforms, particular reviews still contain multiple sentences, each of
which might convey different meanings and sentiments. Therefore, we use the sentence tokenizer
feature from the NLTK [39] python package to obtain the sentence set of each individual review item.

Calculating the Sentiments. Herein, we use the Valence Aware Dictionary for sEntiment
Reasoning (VADER) approach [40] to calculate the sentiment score of each review sentence. VADER is
a commonly used sentiment analysis tool due to its classification accuracy on sentiment towards
positive, negative and neutral classes, which is even higher than individual human raters in the social
media domain. According to Hutto and Gilbert’s experiment results [40], the F1 score of VADER on
social media text (i.e., short text with informal language) is 0.96. Due to the unique trait of mobile app
reviews being short and informal compared to other reviews types (e.g., movie reviews), we expect
such sentiment analysis being as accurate as that on social media text. To further verify the accuracy of
the VADER approach on mobile app reviews, we calculate the precision, recall and F1 score. Shown in
Table 1, the overall accuracy of VADER on mobile app review sentences is 0.819. When considering
multi-sentences reviews, we calculate the sentiment score of each review as the mean of scores of each
sentence in the review. Shown in Table 1, the accuracy of overall accuracy of VADER on mobile app
reviews is 0.842.

Table 1. Sentiment score accuracy testing.

App
Review-Level Sentence-Level

Precision Recall F1 Score Precision Recall F1 Score

Imo 0.826 0.786 0.804 0.822 0.777 0.797
Hangouts 0.839 0.803 0.819 0.802 0.780 0.790
Messenger 0.883 0.835 0.855 0.869 0.815 0.836

Skype 0.874 0.828 0.844 0.828 0.790 0.795
Whatsapp 0.851 0.814 0.830 0.833 0.787 0.805

Overall 0.868 0.823 0.842 0.850 0.800 0.819

In addition, compared to the other popular sentiment analysis approaches, such as SenticNet [41],
SentiWordNet [42], Affective Norms for English Words [43] and Word-Sense Disambiguation [44],
its overall classification accuracy on product reviews from Amazon, movie reviews and editorials
from NYTimes also prevails. Furthermore, VADER is easy to import and use as it is integrated in the
NLTK package.

Filtering Stopwords and Lemmatization. Every review sentence shall contain words that are
used often but carry less meaning, i.e., the stopwords. The stopwords must be removed in order to
obtain meaningful term frequency results. The adopted stopwords set also includes the app-specific
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terms with high occurence, like ‘app’, ‘application’ and ‘whatsapp’, as well as the common typos of
other stopwords, like ‘dont’, ‘whasapp’ and ‘appp’. In addition, the acquired review sentences are also
transformed into lower cases and lemmatized before the calculation of term frequency so that the
same term with different cases shall be seen as one. We hereby use the stopword set in NLTK corpus
package to screen the stopwords from review sentences, and the WordNetLemmatizer from NLTK stem
package to lemmatize words.

Selecting Nouns and Verbs. Nouns and verbs are two major word types we consider in term
frequency analysis. Adjectives and adverbs are filtered because the term frequency analysis is to gain
an insight into the issues in reviews with a negative sentiment score. The adjectives and adverbs which
mainly contribute to the sentiment score have been considered in sentiment analysis, and require no
redundant covering in the term frequency analysis. We use the RegexpTokenizer from NLTK and the
pos_tags of the tokenized words to identify and filter words that are not nouns or verbs.

4.2. Data Description

In this study, we use the user reviews of five instant messenger mobile apps from Android
platform, namely Imo, Hangouts, Messenger, Skype and Whatsapp. We collect for each app the
reviews from 1 September 2016 to 31 August 2017, eliminate the non-English reviews and tokenize
each into sentences. The numbers of reviews and the obtained English reviews and numbers of
sentences for each app are shown in Table 2, while the number of review sentences on each day is
shown in Figure 3-left. Together with the user reviews, we also collect the release date information
regarding the updates within the given period. The numbers of updates counted for each app are also
shown in Table 2.

Table 2. Application (app) review statistics.

App Name Reviews English Reviews Sentences Updates

Imo 202,870 86,194 100,838 84
Hangouts 122,622 68,535 10,1704 43
Messenger 1,654,360 886,643 1,185,368 105

Skype 153,128 105,875 189,995 76
Whatsapp 1,660,145 851,662 109,8583 49

total 3,793,125 1,998,909 2,676,488 357

Figure 3. Number of reviews and average sentiment score by day (from 2016-09-01 to 2017-09-01).

Thereafter, for each of the 2,676,488 review sentences, we calculate its sentiment score using the
VADER sentiment algorithm. The sentiment scores range from 1.0 (i.e., very positive) to −1.0 (i.e.,
very negative). Furthermore, we calculate the daily average sentiment score for each selected app and
plot the changes in Figure 3. Such average sentiment score is calculated as follows. Provided m reviews
are given on the day di with the sentiment score of each review ri within is calculated and denoted as
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si (i = 1, 2, . . . , m), the average sentiment score on di is calculated as (∑m
i=1 si)/m. From the sentiment

changes, we can observe that the majority of the daily sentiment range from 0.1 to 0.4. It indicates
that for these five apps, the overall sentiment within the given period is still positive despite such
changes. In addition, we find that the daily average rating of each app is highly correlated with the
daily average sentiment with an average Pearson R score of 0.93. It indicates the sentiment of the
reviews can be used to reflect the users’ evaluation to their general fondness of the apps.

4.3. Results

Herein, we apply the previously presented method, that is, identifying abnormal days based on
the distribution of negative sentiment changes and matching such abnormality to a particular update,
on each review dataset of the given five mobile applications. By doing so, we aim to investigate
whether such a method can be used towards obtaining meaningful results.

4.3.1. Identify Abnormal Days

For the 1-year review sentiment data of the given five mobile apps, we firstly calculated the
sentiment changes of each day as the negative review proportion change. Considering all 1840
obtained daily sentiment change values as the continuous random variable, we detect the most likely
distribution model that fits the values. By doing so, we find that the best fitting distribution model is
the exponential power distribution (EPD), with a p value of 0.968. Furthermore, the parameters for the
obtained EPD model are μ = 0.0002, α = 0.0227 and β = 1.0444.

Based on the obtained distribution parameters, we calculate the confidential intervals (μ ± 3σ) for
each set of sentiment change values for each mobile app (shown in Table 3). Based on the obtained
confidential intervals, we can identify the abnormal days of each mobile app, where the sentiment
changes are greater than μ + 3σ.

Table 3. Confidential intervals and identified abnormal days.

App Name CI Abnormal Days (Year-Month-Day)

Imo (−0.082, 0.083) [’13 December 2016’, ’7 January 2017’, ’3 August 2017’]
Hangouts (−0.098, 0.099) [ ]
Messenger (−0.060, 0.061) [’16 December 2016’, ’9 June 2017’, ’3 August 2017’, ’31 August 2017’]

Skype (−0.095, 0.096) [’4 September 2016’, ’21 May 2017’, ’25 May 2017’]
Whatsapp (−0.053, 0.052) [’12 October 2016’, ’15 October 2016’, ’21 February 2017’, ’23 February 2017’,

’24 February 2017’, ’3 May 2017’]

By observing the daily sentiment changes, we can easily map the obtained abnormal days
results with the significant sentiment changes from the evolution chart. Figure 4-left shows the
review sentiment changes of Whatsapp. The x-axis represents the consecutive dates, while the y-axis
represents the proportion of positive, neutral and negative reviews (shown in green, blue and red
curves, respectively). The six abnormal days can be observed by the obvious rise in negative sentiment
and fall of positive sentiment. Furthermore, such abnormal days can also be validated by the changes
of top frequent words of each day. By comparing the Jaccard similarity of the top frequent words of
each day, we can also find that the top frequent words of abnormal days are largely different from
those of other days. The similarity values of the top 10 frequent words between each day for Whatsapp
are shown in Figure 4-right, where the dark color indicates the low similarity value. Therein, we can
observe that the identified abnormal days contain different top frequent words from the other days,
when the reviews of the other days largely share common top frequent words.

In addition, we can also observe that all the days on which top frequent words are different from
those of the others are not identified as abnormal days. For example, from 2017-02-20 to 2017-03-31,
the daily average review sentiments of Whatsapp are continuously more negative than usual, despite
the rising from 2017-02-27. Accordingly, we can observe that the similarities among the top frequent
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words during that period are high, but also low towards other days. Thus, an implication can be
made that the negative effect of the identified abnormal days lasts for the whole period regarding
similar issues.

Figure 4. The identified abnormal days of Whatsapp as an example.

4.3.2. Identify Problematic Updates

Based on the obtained abnormal days of the given mobile apps, we continue to investigate the
particular updates that result in such abnormality in review sentiment, if any. For such purpose,
we retrieve the update description text of each update during the review period for the mobile apps.
Herein, the update description texts are required to specifically describe, to a certain extent, the update
content for each particular new version. Therefore, we only select Whatsapp and Skype for this
experiment, due to the fact that the update description texts of IMO and Messenger are vague and
identical throughout the period, and no abnormal days are identified for Hangouts. Furthermore,
we take into account only the major updates, which are identified as the first updates whose description
text is different from that of the previous one(s). For example, shown in Figure 5, Version 2017.06.16 is
identified as a major update when the other ones are identified as minor ones.

Figure 5. Examples of major and minor updates.

In order to identify the cause of each identified abnormal day, we compare the similarity between
the negative review content of the identified abnormal days and the description text of the major
updates. As mentioned in the prior section, we select only nouns and verbs from both the update
description and reviews. Furthermore, for the review texts, we select only the words with high TF-IDF
scores, which represent the main content of the text.

Figure 6 shows the similarity of the negative reviews of each identified abnormal day and the
descriptions of the nine major updates. Therein, the nearest previous update of each abnormal day
is marked red. As shown in the figure, for the identified abnormal days of Whatsapp: 2017-02-21,
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2017-02-23, 2017-02-24 and 2017-05-03, the similarities of the negative reviews and the descriptions
of their nearest previous updates are significantly high. By observing the review texts of these four
dates, we locate 20017 negative review sentences out of 32,922 containing the keyword “update” or
“version”, which shows the connection between the review negativity of the abnormal days and the
most recent updates. However, for the abnormal days 2016-10-12 and 2016-10-15, the similarities are
not as significant as with the four ones shown in the first two charts of Figure 6. We investigate closely
on the update description text of Version 2016.10.11, stating “Now you can draw or add text and emojis
to photos and videos you capture within WhatsApp...New emoji. And sending a single emoji will now appear
larger in chats”. As we find “emoji” being the core feature updated in this particular version, 46 out of
105 negative review sentences on these two days contain the word “update”, “version” or “emoji”.

Figure 6. Similarity between update description and negative reviews of abnormal days for Whatsapp.

The result for Skype is shown in Figure 7, which is not significant compared to that for Whatsapp.
The negative reviews of the identified abnormal days, 2017-05-21 and 2017-05-25, cannot be matched
to their nearest previous update by similarities to the description text. Abnormal day 2016-09-04 is
ignored here, as it occurs before the first update retrieved within the review data period. By further
investigating the review texts of the two abnormal days, we find only 4 out of 70 review sentences
contain word “update” or “version”. The review texts are mostly describing quality related issues with
scattered topics, which indicates that it is not the particular update that cause the negativity in reviews.

Figure 7. Similarity between update description and negative reviews of abnormal days for Skype.
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To summarize, for a particular mobile app, the proposed method can be used to identify specific
time period, e.g., days, during which the negative sentiment of the reviews is considered abnormal
compared to a much larger set of reviews within a much longer period. It is also possible to identify
the particular update, mostly the nearest one before an identified abnormal day, that causes such
abnormality in review sentiment (e.g., the problematic Version 2017.02.22 of Whatsapp). However,
when not the nearest update is identified with the highest similarity between negative reviews and
the update description texts, it is likely that the negative reviews of the abnormal days are regarding
more general and scattered issues, instead of a particular update (e.g., the result of Skype). The vague
description of the update content and the limited review numbers can be the factors that result in
various unpredictable outcomes with the method.

5. Discussion

Compared to the previous studies on mobile app review analysis [21], this study focuses on
finding the negative user reviews in a particular day that matter the most to the developers in terms of
sentiment changes, and investigating the connection between these reviews and the potential updates
that cause the negativity. It is a light-weight method that eases the effort of the continuous analysis
of the increasing amount of user reviews that also contain large volume of non-informative content.
Regarding the mobile app maintenance practice, the method can facilitate the emergency-oriented
maintenance model, which is usually adopted by the mobile apps with stable core functionalities [45].
Thus, our method can be considered more suitable for indie app developers [46] or a small development
team to swiftly identify and fix problematic updates reflected by noticeable amount of negativity
in reviews.

Taking into consideration the results of the case study above, the method performs well when the
volume of review data is sufficient and the update description texts are detailed composed. Hence,
one of the limitations of this study is the validation of the method towards particular mobile app cases,
which receive only a limited amount of reviews. Furthermore, due to the adoption of distribution
analysis, the method can also suffer from a “cold start” issue, that is, for a newly launched app product
without sufficient review data, the method will fail to perform. Another critical limitation of this
research is the threat to validity, as only the review data of five instant messenger mobile apps are
taken into account. Thus, further verification of the method regarding its prerequisite on review
data volume and update description texts is required. In addition, a further validation of the review
sentiment change distribution model is also necessary, which can be done with a larger mobile app
data repository. Accuracy of the sentiment analysis can, to a certain extent, influence the validity of
the identified abnormal days. Thus, the adoption of such method on the analysis of other reviews,
e.g., movie reviews, product reviews, etc., shall yield to such threat to validity, especially when the
accuracy is relatively low and the volume of the data is limited.

In our future work, we will focus on addressing the limitations mentioned above and improving
the method on the following aspects. Methods, such as aspect-based sentiment analysis [47] together
with user review feature extraction [24], will largely enhance the effectiveness of the method in
terms of the uneven user sentiment on various complaint types from mobile app users [2]. Similarly,
topic model techniques can also be applied to extract app feature related topics, which will also
enhance the usefulness of the method. Building on such results, the method will be able to prioritize
the severity of topic-based or feature-based categorized issues and facilitate developers planning on
updates. In addition, taking into account the different reviewing behaviors of app users, as well as
their preferences on app types, can also provide insights on analyzing the helpfulness of the reviews
given. On the other hand, a method for automatically evaluating the helpfulness of update description
and extracting the features of the updates shall also be helpful towards reducing the human effort
provided the number of apps selected for the future work being excessive.
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6. Conclusions

This study proposes a sentiment-statistical approach for detecting abnormal days during mobile
app maintenance. The core of the method is based on the analysis of review sentiment distribution,
and the similarities between update descriptions and review texts. Specifically, critical conclusions
can be made when the negative sentiment increases sharply in a particular time period. In addition,
we use the same method to map abnormal days to potential updates that cause such days.

Our method aims to facilitate mobile app developers to identify the critical moment during mobile
app evolution when the users’ opinion towards the app product grows overwhelmingly negative very
quickly, and checking whether such negativity is caused by the nearest update. The results of the case
study show that the proposed method performs effectively, however, with the prerequisite of having
sufficient volume of user review data and adequately detailed update description text.
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Video game genre classification has long been a focusing perspective in game studies domain. Despite the commonly
acknowledged usefulness of genre classification, scholars in the game studies domain are yet to reach consensus on the game
genre classification. On the other hand, Steam, a popular video game distribution platform, adopts the user-generated tag
feature enabling players to describe and annotate video games based on their own understanding of genres. Despite the concern
of the quality, the user-generated tags (game tags) provide an opportunity towards an alternative way of understanding video
game genres based on the players’ collective intelligence. Hence, in this study, we construct a network of game tags based on
the co-occurrence of tags in games on Steam platform and analyze the structure of the network via centrality analysis and
community detection. Such analysis shall provide an intuitive presentation on the distribution and connections of the game
tags, which furthermore suggests a potential way of understanding the important tags that are commonly adopted and the
main genres of video games.

CCS Concepts: • Applied computing → Computer games; • General and reference → Document types; • Human-
centered computing → Social network analysis.

Additional Key Words and Phrases: Video Game, Genre, Game Tag, Network, Modularity, Centrality, Community Detection,
Steam

1 INTRODUCTION
In various subjects, the usage of genre classification has become a normative tool of information managing, it
helps users to identify, locate, and retrieve items of interest within mutually exclusive divisions of collection.
As typical examples, music, literature, and film are categorized with genres based on their unique observable
and objective characteristics [21, 25, 64]. Proper genre classification provides authoritative guidance to media
audience in information retrieval, i.e., searching, browsing, locating and retrieving media items, based on common
understanding on their characteristics [16]. It has become increasingly significant towards the distribution and
marketing of cultural media, as well as to facilitate the learning and understanding of a particular domain
[5, 32, 37]. However, mutual exclusivity and joint exhaustivity in genre classification, although being seen as
the best practice for genre classification [9], are also considered impossible to define [35]. Thus, instead of strict
and rigid taxonomies, flexible approaches in genre classification may be useful based on theories, such as the
“family resemblance" notion by Wittgenstein [72], who use game as an example and ‘see a complicated network
of similarities overlapping and criss-crossing: sometimes overall similarities, sometimes similarities of detail’ to
characterize such different similarities and relationships [50].
Regarding video game genre classification in the domain of game studies, previous studies tend to select

various variables in order to reach stable definitions [66]. An early genre-like taxonomy given by Chris Crawford
categorizes computer games into “skill-and-action" games and strategy games based on players’ perceptual
and cognitive skills [22]. Mark J.P. Wolf provides 42 categories of games based on gameplay and interactivity,
excluding other elements, e.g., mood or theme [73]. Subsequently, with different focuses, many other studies also
attempt to provide distinguishable categorization of video games in different ludic terms [1, 3, 20, 70]. On the
other hand, other studies focus on the structural perspectives and provide meta-categories of video games [24, 33].
Summarized by Vargas-Iglesias, game studies in general investigate game genre from either an inductive or a
deductive perspective, which, however, have not reached a consensual solution [66]. In addition, the strict and
rigid taxonomies provided by the previous studies on video game genre classification are increasingly challenged
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by the rapid evolution of video games together with the blending of multiple genre elements, where a more flexible
approach could be useful [18]. Hence, concurring with Wittgenstein’s statement and taking into account the
overlapping similarity amongst contemporary video games, we characterize video games as a complex network
connected by their similar attributes and distinguished by their uniqueness.

Together with the rapid development in data mining, many studies provide solutions towards genre classifica-
tion, e.g., in music [59, 74] and movie [60, 77], with such computational approaches. Accordingly, the metadata
of video games and players becomes increasingly important facilitating various studies towards understanding
games and player behaviors [46, 58, 62]. However, limited studies have attempted such approaches on game
genre classification. Faisal and Peltoniemi adopt Latent Dirichlet Allocation (LDA) topic modeling technique on
game descriptions from online game databases and obtain 31 topics/genres [26]. The result provides a different
game genre set but lacks further interpretation on the intertwined network-like connections between different
genres. On the other hand, user generated tags, which allow end users to annotate and interact with information
objects freely, provide a unique set of crowd-sourced metadata that facilitates the description and understanding
of such information objects with decent agreement level to formal taxonomies [31, 67]. Specifically towards
video games, Steam platform provides a unique user tagging feature enabling players to denote some aspects of
the “aboutness" of the games [71]. Thereby, the connections among such tags (i.e., partial descriptions of games)
forms the network of genres and sub-genres, instead of rigid taxonomies, requires further examination with
approaches from network analysis.

Hence, in this study, we collect the user-generated tags metadata from Steam platform and construct a network
of tags. Therein, each game tag is seen as a node of the network when an edge is formed between two tags
provided both tags are annotated to the same game. Towards the purpose of understanding video game genre
classification based on such game tag networks, we analyze the important game tags on the platform with
network centrality measures as well as the grouping of the tags based on the network community detection. Such
network analysis shall answer the following research questions: RQ1. What are the most important game tags on
Steam platform based on centrality measure? and RQ2. What are the major game tag communities via community
detection? The answers to the questions above shall lay the ground for an crowd-sourced understanding of video
game genre classification.

The remainder of the article is organized as follows. Section 2 presents the related works in video game genre
studies, the studies using Steam platform as data source, as well as the use of community detection methods
tackling other classification-related issues. Section 3 briefly introduces network analysis methods adopted in this
study. Section 4 describes the obtained Steam game tag dataset. Section 5 provides the analysis and reasoning
of results. Section 6 further discusses relevant issues, including the limitation and future work of the study,
concluding the article.

2 RELATED WORK
In the perspective of library and information science, the main purposes of genre classification are to identify
the taxonomic identification of works, to enable collection and help users find similar items, and to promote
the overall commercial marketing [18]. Although strict taxonomies of genre with mutual exclusivity and joint
exhaustivity are ideal, such best practice is barely possible [9, 35]. For other forms of media, e.g., literature, films
and music, a set of characteristics, such as, their styles, forms or patterns, are used to define their genres [21, 25].
For video games genre classification, the most common characteristic selected is their gameplay, which is the
all-important quality factor and the pure interactivity of the games [36]. Focusing on the gameplay that the
designer intend to advocate in particular games, many game genre classification are proposed that are either
classified overly general (e.g., the “skill-and-action" and “strategy" genres by Chris Crawford [22]) or overly
detailed (e.g., the 42 genres by Mark J.P. Wolf [73]). Thereafter, many other studies attempt to find the middle
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ground but still focus on finding the mutual exclusivity and joint exhaustivity while also reason their proposal
with focus on different perspectives. For example, Apperley focus on players’ interaction and relations with the
the game genres and propose four commonly used game labels [3]. Lee et al. use facet analysis and propose a
12-facet-and-358-foci scheme describing the game genre information [42]. Vargas-Iglesias focuses on the different
functions within video games and presents four elemental genres and a way of configuring hybrid genres with
binary function relations [66].
Many also argue that purpose shall be also taken into account when classifying genres. Johns suggests that

genres shall be categorized the particular jobs they are used to accomplish instead of the structural components
[34]. Other scholars on this matter also suggest that genres shall be defined as sets of communicative events
sharing communicative purposes or communicative action with both purposes and elements of form [65]. For
understanding game genres in such perspective, Bogost indicates that game genres are classified by the players
through the on-screen effects and controllable dynamics they experience [11]. On the other hand, other scholars
also suggest to understand game genre as a socially constructed phenomena instead of a clear-cut taxonomy.
Clearwater indicates that formal and aesthetic considerations, industrial and discursive context, and social
meaning and cultural practice shall all be taken into account regarding video game genres [20]. Arsenault also
emphasizes that the genre of a game is tied not to a checklist of features, but to the phenomenological, pragmatic
deployment of actions through the gameplay experience, as gameplay is both functional and aesthetic [4].

Despite the studies in video game genre classification that provides various classification outcomes, the issues
of such classification being rigid and falling short at contributing to the original purpose of classification persist.
Considering the primary purpose of genre classification being to help users find similar items, the previous
classifications perform ineffectively when games with different characteristics located in same genre lacking
concrete identification criteria [18]. Such lack of concrete definition then results in the heavily overloaded genre
labels that representing multi-dimensional information [42]. Towards such end, metadata are used to describe
video games and interactive media. Lee et al. introduce a schema of 16 elements to formally describe video games
based on a user-centered design approach [44]. Despite the importance of the works towards preserving and
retrieving video game legacy as well as the usefulness of metadata reflecting the characteristics of video games
[41], it falls short on providing approaches towards game genre classification based on the analysis of such
metadata.

Steam is one of the most popular digital game distribution platforms, offering various services including video
game purchasing and downloading, digital rights management, online game matchmaking, video streaming,
forum and social networking, etc. It has also drawn attention from the academia targeting the studies on multiple
aspects of the Steam community, video games and the players due to the detailed metadata it provides. Regarding
player behaviors, Sifa et al. analyze the players’ different playtime frequency distribution and investigate their
engagement and cross-game behavior on Steam [57, 58]. Lim and Harrell examine the players’ social identity, as
well as the connection between players’ behaviors on maintaining their profiles and their social network [46].
Regarding video games, Slivar et al. analyze the the impact of game types and video adaptation strategies on the
quality of experience via a case study on Steam platform [62]. Lin et al. focus on the video game development
and maintenance practices and analyze the urgent update strategy of popular games on Steam [47]. Windleharth
et al., conduct a conceptual analysis on the user-generated game tags on Steam and propose a categorization of
them according to the Video Game Metadata Schema (VGMS) category [43, 71]. Furthermore, other perspectives
regarding player communities [8], game reviews [49], game recommendation mechanisms [75], and etc. have
also been studied using the data obtained from Steam.
On the other hand, network analysis and community detection methods have been used in various domain

tackling the classification related issues. For example, Siew uses the Louvain community detection method to
extract communities in the phonological network towards understanding the dynamics of activation spread
among words and the mechanisms that underlie language acquisition and the evolution of language [56]. Sokolova
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et al. use similar method to classify Android applications based on the analysis of the permission requests network
that provides information about the application’s behavior [63]. Such methods are also used in biology and music
studies in terms of classification [27, 78].

3 METHODOLOGY
In this study, two classic centrality measures: closeness centrality and betweenness centrality [28], are applied to
the obtained game tag network. In addition, PageRank, a popular algorithm measuring the importance of website
pages [15], is also adopted herein to measure the importance of game tag vertices, compared with the results
of the centrality measures. On the other hand, Louvain method for community detection, a method to extract
communities from large networks [10], is used to obtain the communities of game tags.

3.1 Closeness and Betweenness Centrality
Closeness centrality is an importance index based on the geodesic distances from the network vertices to all
others. It is a metric used to identify how long it shall take for information to travel from a particular vertex to
the others in the network, i.e., how close is it to them [53]. Let V be the set of vertices of a given network, where
i is a particular vertex within. The geodesic distance between i and another vertex j ∈ V is denoted as dG (i, j).
Thus, as the closeness centrality is defined as the inverse of the average distance [7], the closeness centrality of i ,
CC (i), is calculated as follows.

CC (i) =
1∑

j ∈V DG (i, j)
(1)

Betweenness centrality, indicating the “brokering positions between others that provides opportunity to
intercept or influence their communication" [14], is based on the shortest paths through a particular vertex.
Herein, the geodesic path of two individual vertices in the network is defined as the shortest path between them.
For a particular vertex i ∈ V , the number of geodesic paths between another two vertices h, j ∈ V via vertex i is
denoted as дhi j . Meanwhile, the number of geodesic paths from h to j is denoted as дhj . Then, the betweenness
centrality of i , CB (i), is calculated as follows.

CB (i) =
∑
j ,h,i

дhi j

дhj
(2)

Both Betweenness Centrality and Closeness Centrality calculate the shortest paths of a vertex to the rest of the
vertex pairs in relative large network [12]. Betweenness centrality measures the others’ dependence on a specific
vertex[13], to define which vertex has the most control. Closeness centrality measure the access efficiency of
the specific vertex to the other vertices [76], to define which vertex can most easily reach the rests of vertices
between vertices or sub-vertices. Regarding the network of game tags, the tags with the high closeness centrality
are the ones more close to the other tags in the network. Hence, such tags are more common applied to games
together with other tags. On the other hand, the game tags of high betweenness centrality are the ones critically
linking two sets of tags that are tend to be separate from each other. Thus, when removing such tags, we tend to
have separate sets of tags across which seldom be applied to same games.

3.2 PageRank
PageRank is the core designing concept of Google search engine. It assigns universal ranks to web pages based
on a weight-propagation algorithm [15]. The web page ranking mechanism can be described as: a web page is
assigned high rank if the sum of the ranks of its backlinks is high, which covers both the case when a page has
many backlinks and when a page has a few highly ranked backlinks. We assume web pagew has k pages (i.e.,
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w1, w2, ..., wk ) linking to it when there are totally N web pages. We also define a damping factor d ∈ (0, 1) as
the probability at each page the “random surfer" will get bored and request another random page (normally set
at 0.85) [15]. Let C(w) be the number of links going out ofw while the the PageRank value ofw , PR(w) is then
calculated as follows.

PR(w) =
1 − d

N
+ d

k∑
i=1

PR(wi )

C(wi )
(3)

Specifically regarding the Steam game tags, one is assigned high rank when it co-occurs with many other tags
in games or it it co-occurs with highly ranked tags.

3.3 Network Modularity and Community Detection
It is common that very diverse systems in various domains can be described as complex network, when community
structure is a topological property of networks [2, 55]. A network community (also referred to as module or
cluster) is a group of vertices that have denser connections with the members of the group than the connections
with the remainder of the network [30, 55]. Hence, community detection is to identify such communities of
a network in order to reveal the valuable information of its structure and functionalities. On the other hand,
modularity is a popular measure for the structure of networks, as it measures the strength of division of a
network into communities [52]. High-modularity networks have dense connections between the vertices within
communities and comparatively sparse connections between vertices between different communities. Herein, we
adopt the Louvain method that extracts the community structure of a particular large weighted network when
its modularity value is optimized [10].
A network is defined by V and E being the set of vertices and edges of the network. We assumem be the

number of communities the network is partitioned into. Let lk be the number of edges between any two vertices
from the k-th community. Meanwhile, let dk be the sum of degree of all those vertices. The network modularity
Q is then calculated as follows.

Q =
m∑
k=1

[
lk
|E |

− (
dk
2|E |

)2] (4)

According to the Louvain community detection method, we firstly assign each vertex to a community when Q
is maximized. When moving vertex i to community C , the gained ∆Q is then calculated as follows.

∆Q =

∑
C +k

C
i

2n
− (

∑
Ĉ+ki

2n
)2 − [

∑
C

2n
− (

∑
Ĉ

2n
)2 −

ki
2n

] (5)

In the above equation, ki is the sum of weighted edges incident to i; kCi is such sum of the edges from i to
vertices in community C ;

∑
C is sum of the weighted edges in C ;

∑
Ĉ is such sum of the edges incident to vertices

in C . Let n be the sum of the weights of all the edges of the network. Continuously, the method changes the
structure of the communities by moving vertices from one community to another and calculating ∆Q until ∆Q is
significantly improved [23].

4 DATA
We choose Steam platform as the source of data crawling as it contains the largest video game collection compared
with other game platforms on PC, e.g., Origin, GOG, Uplay, and so on. On the other hand, console-exclusive
games are of limited amount compared to the volume of games on Steam, when the majority of games on consoles
are also published on Steam. On the other hand, despite the mobility of mobile devices and unique ways of
interaction for mobile players [45], mobile platform contains limited unique game genres that unique to the
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devices [51]. Thus, the data obtained from Steam platform shall be seen statistically representative for PC and
console based video games. In this study, we crawl all 378 game tags from Steam platform “Popular Tags" page1
using BeautifulSoup2. For any two different game tags, we identify they are undirectedly connected when at least
one game on Steam contains both of the two tags. In addition, each connection between two particular game tags
are weighted by the number of games that contain both tags. For example, as 1119 games on Steam have both the
tag “Adventure" and “Open World", the undirected connection between these two tags is weighted 1119.

Fig. 1. The Top Connected Tags for "FPS"

Furthermore, we filter the weighted connections between the obtained game tags by selecting only the top
weighted connections based on the “Narrow by Tags" recommendation function of Steam platform. For example,
Figure 1 shows the recommended most commonly connected tags for the "FPS" tag, where the number of games
containing both tags are also shown. Thereby, we only select the top weighted connections shown in the “Narrow
by Tag" for each tag with duplicates filtered. As 38 tags out of the 378 contain no recommended tags, we drop
them considering these tags hardly connect any other tags in any games. Another 14 tags for utilitarian software
products, e.g., “Utilities", “Design & Illustration", ‘Animation & Modeling" and so on, are also eliminated due to
their irrelevance to games. For the remaining 326 tags, we obtain 3035 weighted tag connections.

Using Gephi [6], a popular open-source network analysis and visualization software, we visualize the obtained
game tag connections into a graph with 326 vertices and 3035 edges. The average degree of the graph is 18.62
when the average weighted degree is 4703.656. Among the tags, the “Indie" tag has the highest degree of 300 and
the highest weighted degree of 171430, while seven tags have the lowest degree of 1 and tag “Gambling" has the
lowest weighted degree of 21. The diameter of the network is 4 with an average path length of 2.005. The graph
density is 0.057.

5 RESULTS
Based on the game tag network constructed, we calculate the weighted degree, closeness centrality, betweenness
centrality and PageRank for each tag. By doing so, the important game tags can be identified by the above
metrics. On the other hand, via the Louvain community detection method, we also identify the communities of
the network, based on which the core game genres can be summarized by the game tags contained within.

1https://store.steampowered.com/tag/browse/
2https://www.crummy.com/software/BeautifulSoup/
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5.1 The Important Game Tags on Steam
The obtained results show that five game tags, i.e., “Indie", “Action", “Adventure", “Singleplayer" and “Casual",
rank the highest in all above mentioned metrics. Shown in Figure 2, which shows the Top 15 tags by every metric,
these five game tags have significantly higher value than the rest ten regardless.

Fig. 2. Importance Rank of Game Tags based on Weighted Degree, Betweenness, Closeness and PageRank

The results indicate that each of these tags associates with the majority number of other tags with the number
of games including them being the largest. Furthermore, each of these tags occur most frequently together
with the other four or the less important ones. Additionally, the number of games with at least one of these
tags rank also the highest. We can thus suggest that these five tags are the most commonly adopted ones on
Steam platform. Taking into account the category of Steam tags with the Video Game Metadata Schema (VGMS)
category [43, 71], “Action" and “Adventure" are the core gameplay related tags, while “Indie" (Production) and
“Singleplayer" (Number of Players) are concerning the other perspectives. “Casual" is a complex notion regarding
games, the players and their playing styles and manners [38], which is also regarding a different perspective
from gameplay.

Indie games, often referring to “Independent games", has become a increasingly popular concept in the game
industry and game academia. Commonly, the “Indie" concept is used to distinguish the independently developed
games from the “AAA" or “mainstream" ones; however, such implicit categorization evokes further arguments
[61]. Garda and Grabarczyk argue that indie games shall be seen “independent" from three perspectives: financial
independence, creative independence and publishing independence, by belonging to at least one of which a game
shall be classified as independent [29]. In addition, the authors also argue that the concept of indie game refers
to a broad understanding of independent games including the adoption of digital distribution, the preference
of retro style, the small budge and team, etc. Steam, as a online distribution channel for video games, enables
independent developers to publish games easily. Furthermore, the “Early Access" mechanism of Steam also
support independent developers financially by enable them continuously maintaining their “incomplete" games
by earning early commitments from their players [48]. Therefore, the thriving number of games with “Indie" tag
is, to some extent, reasonable.
The action and adventure games have long been an important genre, which is included in many game genre

classifications. In Crawford’s early classification of “Skill & Action" games and “Strategy" games, adventure games
are seen as part of the strategy games, as the player requires proper strategies to move within complex world,
find and manage tools, overcome obstacles and reach goals [22]. Another reason to such classification is that the
adventure games at that time were majorly text-based (e.g., Zork). In Wolf’s 42 gameplay-based genres, adventure
game is categorized similarly with emphasis on obstacle variety and free exploration, while action game is not
specifically categorized [73]. Thereafter, the other studies on game genre classification tend to categorize action
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game as a relatively broader genre when adventure game being assimilated towards role-playing games (RPG)
[3]. As the game industry grows and the information technology advances, the boundary of action and adventure
game grows ambiguous when players mostly play roles in an exploring adventure and meanwhile combat through
obstacles by actions [19]. “Action" and “Adventure" become the easiest labels to attach to games, as, technically,
we can see all games as action games due to the fact that all games involve physical input interactions that
result in actions on the screen, meanwhile we can also see all games as adventure because all players take on the
roles of imaginary characters who engage in adventures [18]. Therefore, these given factors, to a certain extent,
rationalize the surprising result of “Action" and “Adventure" being seen more as universal tags than genre-specific
ones. It should be hereby emphasized that we mean not to assert that “Action-Adventure" shall be seen as a
common game element, but instead only provide findings to reflect the players’ existing tendency of seeing both
tags applicable to multiple game types.
Casual games, described as the ones with less complicated controls and complexity in gameplay, have been

exceeding in game market since a decade ago [68]. It is hard to fit casual games into a particular genre based
on gameplay (like action and adventure), when the notion “casual" herein can be understood from multiple
perspectives in terms of specified terminologies, including casual games (i.e., games with appealing content,
simple controls, easy-to-learn gameplay, etc.), casual gaming (i.e., a casual gaming attitude), casual playing (i.e.,
casual play session), casual gamer (i.e., a player playing a not-necessarily-casual game in casual manner), and
casual game player (i.e., a player playing a casual-labelled game) [38, 39]. Therefore, it is common that a number
of games from various gameplay-based genres are labeled “casual" regarding any of the above mentioned ways
of thinking.

5.2 Genres from Community Detection
It has been acknowledged that nodes that are connected to many other vertices across a network can disturb the
community structures [17, 69]. Thus, in order to better detect the communities from the game tags network, we
remove the above mentioned five core tags from the network due to their high degree. Meanwhile, another 15
vertices are detected only connecting to these five tags, including “Pinball", “Gambling", “Typing", etc. which are
removed as well. Thereafter, we apply the Louvain method on the remaining network with 306 vertices and 1813
edges. With the feature of randomizing the initial moving node for the Louvain method in Gephi, we obtain the
highest modularity score of Q = 0.414 with four communities (shown in Figure 3) detected via over 100 rounds
of testing. The modularity result is largely improved from the result (Q = 0.150) of a previous experiment with
the five high-degree vertices included, which indicates a comparatively strong community structure.

Fig. 3. The Detected Communities of Tags

Based on the games tags contained in each detected community, we summarize the four major game genres
based on the high-centrality gameplay-defining tags within. Via the Video Game Metadata Schema (VGMS)
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category [43] and the Steam tag categorization based on information presentation [71] as references, we describe
each genre in details as follows.

5.2.1 Genre 1: Strategy & Simulation Games. This game genre contains 104 game tags (34.0%) and 468 connections.
With the closeness centrality, betweenness centrality and PageRank, the Top 10 tags of this genre are listed as
follows.

Table 1. Genre 1 Top Tags

Closeness Betweenness PageRank
1 Strategy Simulation Strategy
2 Simulation Strategy Simulation
3 Multiplayer Multiplayer Multiplayer
4 Open World Sports Early Access
5 Early Access Early Access Open World
6 Survival Open World Co-op
7 Political Card Game Turn-based
8 Medieval Co-op Sand-box
9 Historical Racing Sports
10 Realistic Historical Survival

We summarize this genre as the Strategy & Simulation due to the fact that these two gameplay-defining tags
rank highest in all three importance metrics. The other gameplay tags in this genre, e.g., “Sports", “Racing",
“Survival", etc., can be understood as a more specific type of simulation-oriented game with, certainly, strategy
needed to win. On the other hand, this genre also contains other types of tags, such as, “OpenWorld" (Progression),
“Multiplayer" (Number of Players), “Realistic" (Mood), “Turn-based" (Pacing) etc. indicating the other perspectives
of the games in this genre.

5.2.2 Genre 2: Puzzle & Arcade Games. This genre contains 79 game tags (25.8%) and 342 connections. This genre
can be summarized as Puzzle & Arcade due to the important gameplay tags.

Table 2. Genre 2 Top Tags

Closeness Betweenness PageRank
1 2D Great Soundtrack 2D
2 Great Soundtrack 2D Great Soundtrack
3 Puzzle Puzzle Puzzle
4 Funny Funny Difficult
5 Comedy Arcade Funny
6 Relaxing Difficult Pixel Graphics
7 Classic Classic Arcade
8 Masterpiece Fighting Platformer
9 Family Friendly Dark Comedy Retro
10 Reply Value Comedy Family Friendly

The convergence of “Puzzle" and “Arcade" games into one genre is due to the large weight between each of the
two tags and the “2D" and “Great Soundtrack" tags of high centrality. The other less important gameplay tags

9



X. Li & B. Zhang

include “Classic", “Fighting", and so on, which can be seen as either a similar overlapping concept or a sub-genre.
Furthermore, “Difficult" (Evaluation), “Funny" and “Relaxing" (Mood), “Retro" (Visual Style), “Family Friendly"
(Rating) are mostly connected to this genre. Importantly, “2D" and “Great Soundtrack" are the two tags with high
importance values, indicating the most intuitive characteristics of the games in this genre.

5.2.3 Genre 3: RPG Games. This genre contains 68 game tags (22.2%) and 232 connections. Due to the most
important tag in this genre being “RPG", we summarize it as the RPG genre.

Table 3. Genre 3 Top Tags

Closeness Betweenness PageRank
1 RPG RPG RPG
2 Story Rich Story Rich Story Rich
3 Fantasy Fantasy Fantasy
4 Choices Matter Anime Anime
5 Text-based Female Protagonist Female Protagonist
6 Dark Fantasy Hack and Slash Visual Novel
7 Kickstarter Visual Novel Nudity
8 Action RPG Point & Click Sexual Content
9 Mythology Movie Point & Click
10 Crime Illuminati Mystery

The main gameplay of this genre include role playing and story, while the other tags with high importance
values are mostly regarding the particular story themes (e.g., “Fantasy", “Crime"), main characters (e.g., “Female
Protagonist"), game mechanics (e.g., “Hack and Slash", “Point & Click"), or rating (e.g., “Nudity", “Sexual Content").
“Visual Story" is the other gameplay related tag, which can be seen as a story-focus RPG without combats.

5.2.4 Genre 4: Shooter Games. This genre contains 55 game tags (18.0%) and 155 connections. Similar to the
previous genre, we summarize it as Shooter genre by the highest valued gameplay related tag.

Table 4. Genre 4 Top Tags

Closeness Betweenness PageRank
1 Atmospheric Atmospheric Atmospheric
2 Sci-fi Sci-fi Shooter
3 Exploration First-Person Sci-fi
4 First-Person Shooter First-Person
5 Space Horror Horror
6 Dystopian Violent Violent
7 Third Person Exploration FPS
8 Hacking Third Person Gore
9 Underwater FPS Exploration
10 Futuristic Space Space

Based on the top ranking tags in this genre, “First-Person" and “Third Person", are the main sub-genres of
shooter games. The major themes of shooter games include “Sci-fi", “Space", “Dystopian", and so on, which evokes
the players’ mood, including “Horror", “Atmospheric", “futuristic", etc.
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The above game tag community detection results can be seen aligning closely with Vargas-Iglesias’ study on
game genre classification focusing on the understanding of gameplay category as a functional construction, but
with slight differences [66]. The author proposes four elemental game genres (i.e., Action, Strategy, Puzzle and
RPG) based on, respectively, four game functions (i.e., Intuitive, Formal, Inductive, and Deductive). Furthermore,
the study also indicates that we can distinguish a particular game by the elemental genres according to the
one single function configuring the game, while games of hybrid genres are configured by a binary functional
relations, i.e., either with two separated factors or with one factor submitted to the other.

Fig. 4. The Connections between Core Tags

The key difference between Vargas-Iglesias’ elemental genres and our community detection result is the
universalized “Action" and “Adventure" tag with the reasons of such phenomena presented previously. By
observing the connections between the six tags (shown in Figure 4), we find all the four genre-defining tags are
linked to both “Adventure" and “Action" tags, suggesting that each combination covers a considerable number
of games. Compared to a broader notion of “Action", the “shooter" games can be perceived as more specifically
motor-skill-oriented and distinguishable from the other genres. Thus, such result can be seen as a validation of
Vargas-Iglesias’ function-oriented genre classification by confirming that games are likely to be perceived and
distinguished towards such genres according to players’ collective intelligence reflected by the generated tags on
Steam platform.

However, despite the agreement of such results to previous genre classification, due to the nature of the applied
network analysis method, the results shall only reflect the existence of a phenomenon that video games share the
tendency of belonging to one of the four genres and most likely contain other elements as well. The obtained
game tag network shows that all the detected tag communities are inter-connected via various tags indicating the
common existence of cross-genre games. Thus, this study is to show that, facilitated by such network analysis,
we can detect such connections between the tags that reflect elemental genres and the other relevant information,
such as, themes, narratives, visual styles, players’ mood, pacing and so on [71]. For example, “Historical" and
“Medieval" themes are more often adopted for strategy and simulation games, when “Sci-fi" and “Futuristic"
themes are for shooter games; “2D" visual style and “Great Soundtrack"s are often adopted by puzzle and arcade
games towards “Relaxing" and “Funny" experiences, when RPG games often prefer “Fantasy" theme and “Choice
Matter" mechanics. More importantly, such perception of game genres aligns with and emphasizes the nature of
the game genre classification being a complicated network of overlapping similarities [72].

6 DISCUSSION AND CONCLUSION
This study provides a new approach of video game genre classification via the network analysis of the user-
generated game tags on Steam with centrality analysis and community detection. It contributes to game genre
studies by offering a new way of understanding the complexity and intertwined connections of game genres
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with a set of interesting findings. Firstly, we find that players tend to apply the tag “Action" and “Adventure" to
various games across genres, which results in the phenomenon of having these two tags commonly connected
to majority of other tags. The reason for the phenomena is, agreeing to the statement from Clarke et al. [18]
that any physical input interactions resulting in actions on the screen can be seen as “Action" while any story
in game with player taking the role of an imaginary character can be seen as “Adventure". Meanwhile, “Indie",
“Singleplayer" and “Casual" are the other three commonly applied tags that are connected to majority of other
genre-reflecting tags. The reason for such phenomenon is that these tags reflect the "non-gameplay" aspects of
games. Secondly, we find video games can be roughly classified into four genres, i.e., Strategy & Simulation, Puzzle
& Arcade, RPG and Shooter, which aligns with the results of Vargas-Iglesias’ four elemental genres [66]. The main
difference is that, due to the notion of “Action" being often perceived universalized in terms of video games, we
find “shooter" being the important tag for the genre reflecting the motor-skill-based mechanics. Moreover, puzzle
games and arcade games are found closely connected by the common application of 2D visual style and great
soundtracks as media enhancement.
Importantly, we argue that video games, in terms of genres, form a complicated network where they share a

particular set of similarities and also differ in various ways. Thus, despite the usefulness of genre classification in
general, such perception of “network-ish" game genres shall have its position in the game studies domain. The
obtained network of game tags intuitively shows that it is nearly impossible to find any game that can be classified
into a single genre, when it most likely contains particular elements that similar to ones from other genres. What
needs to be emphasized is that the preliminary findings of this study do not necessarily reject the previous genre
classification or propose the the obtained classification results as a new better set of genres. Instead, this study
aims to propose an alternative approach of understanding game genres via network analysis which better reflects
the such complex connections underneath. It shall lay the ground for and encourage the further investigation of
such intertwined connections between the game genres (reflected by game tags) of unevenly defined abstraction
levels and different focuses with the repertoire of network analysis and other data-driven approaches.
Despite the preliminary findings, this study can still be improved towards the following ends. This study

only contains data from Steam platform and does not include data from other platforms, such as, mobile
devices, consoles, and other PC-based platforms. Though we argue the Steam platform data being statistically
representative, it can still be seen as a major threat to validity. For example, location-based games, e.g., Pokemon
Go3[54], can be seen as a unique game genre but is not covered herein. On the other hand, the understanding of
user-generated tags as well as the players’ perception regarding game genres shall be further investigated via
future empirical studies. A potential comparison between the perception of game genres from players and game
analysts shall also contribute to such end. Furthermore, a more quantified dataset regarding the prioritized game
tags for each particular game can lead to more thorough results with fruitful details. In addition, other data sources,
such as the players’ reviews and comments on game forums, can also contribute to the such understanding.
Regarding the methodologies, Louvain community detection method falls short in detecting small communities
of networks, where the other community detection methods can be applied for meaningful comparison [40]. By
doing so, we could expect a hierarchical structure of game genre classification model working more effectively
towards game recommendation and player community recommendation. Furthermore, our future work shall also
include using other machine learning methods to categorize video games towards potential genre classification,
provided such data is available.

REFERENCES
[1] Espen Aarseth, Solveig Marie Smedstad, and Lise Sunnanå. 2003. A multidimensional typology of games.. In DiGRA Conference.
[2] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex networks. Reviews of modern physics 74, 1 (2002), 47.

3https://www.pokemongo.com/

12



A Preliminary Network Analysis on Steam Game Tags: Another Way of Understanding Game Genres

[3] Thomas H Apperley. 2006. Genre and game studies: Toward a critical approach to video game genres. Simulation & Gaming 37, 1 (2006),
6–23.

[4] Dominic Arsenault. 2009. Video game genre, evolution and innovation. Eludamos. Journal for Computer Game Culture 3, 2 (2009),
149–176.

[5] Bruce A Austin and Thomas F Gordon. 1987. Movie genres: Toward a conceptualized model and standardized definitions. Current
Research in Film: Audiences, Economics and the Law 4 (1987), 12–33.

[6] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an open source software for exploring and manipulating
networks. In Third international AAAI conference on weblogs and social media.

[7] Alex Bavelas. 1950. Communication patterns in task-oriented groups. The Journal of the Acoustical Society of America 22, 6 (1950),
725–730.

[8] Roi Becker, Yifat Chernihov, Yuval Shavitt, and Noa Zilberman. 2012. An analysis of the steam community network evolution. In
Electrical & Electronics Engineers in Israel (IEEEI), 2012 IEEE 27th Convention of. IEEE, 1–5.

[9] Clare Beghtol. 2000. The concept of genre and its characteristics. Bulletin of the American Society for Information Science and Technology
27, 2 (2000), 17–17.

[10] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory and experiment 2008, 10 (2008), P10008.

[11] Ian Bogost. 2007. Persuasive games. Vol. 5. Cambridge, MA: MIT Press.
[12] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25 (2001), 163–177.
[13] Ulrik Brandes, Stephen Borgatti, and Linton Freeman. 2016. Maintaining the duality of closeness and betweenness centrality. Social

Networks 44 (01 2016), 153–159. https://doi.org/10.1016/j.socnet.2015.08.003
[14] Ulrik Brandes, Stephen P Borgatti, and Linton C Freeman. 2016. Maintaining the duality of closeness and betweenness centrality. Social

Networks 44 (2016), 153–159.
[15] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN

systems 30, 1-7 (1998), 107–117.
[16] Lois Mai Chan and Athena Salaba. 2015. Cataloging and classification: an introduction. Rowman & Littlefield.
[17] Pin-Yu Chen and Alfred O Hero. 2015. Deep community detection. IEEE Transactions on Signal Processing 63, 21 (2015), 5706–5719.
[18] Rachel Ivy Clarke, Jin Ha Lee, and Neils Clark. 2017. Why video game genres fail: A classificatory analysis. Games and Culture 12, 5

(2017), 445–465.
[19] Rachel I Clarke, Jin Ha Lee, and Stephanie Rossi. 2015. A Qualitative investigation of users’ video game information needs and behaviors.

School of Information Studies - Faculty Scholarship 166 (2015). https://surface.syr.edu/istpub/166
[20] David Clearwater. 2011. What defines video game genre? Thinking about genre study after the great divide. Loading... 5, 8 (2011).
[21] Pam Cook. 2007. The cinema book. British Film Institute.
[22] Chris Crawford. 1984. The art of computer game design. (1984).
[23] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro Provetti. 2011. Generalized louvain method for community detection

in large networks. In 2011 11th International Conference on Intelligent Systems Design and Applications. IEEE, 88–93.
[24] Christian Elverdam and Espen Aarseth. 2007. Game classification and game design: Construction through critical analysis. Games and

Culture 2, 1 (2007), 3–22.
[25] Franco Fabbri. 1982. A theory of musical genres. Two applications. (1982).
[26] Ali Faisal and Mirva Peltoniemi. 2018. Establishing video game genres using data-driven modeling and product databases. Games and

Culture 13, 1 (2018), 20–43.
[27] Stefano Ferretti. 2018. On the complex network structure of musical pieces: analysis of some use cases from different music genres.

Multimedia Tools and Applications 77, 13 (2018), 16003–16029.
[28] Linton C Freeman. 1978. Centrality in social networks conceptual clarification. Social networks 1, 3 (1978), 215–239.
[29] Maria B Garda and Paweł Grabarczyk. 2016. Is every indie game independent? Towards the concept of independent game. Game Studies

16, 1 (2016).
[30] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and biological networks. Proceedings of the national

academy of sciences 99, 12 (2002), 7821–7826.
[31] Scott A Golder and Bernardo A Huberman. 2006. Usage patterns of collaborative tagging systems. Journal of information science 32, 2

(2006), 198–208.
[32] Albert N Greco. 2013. The book publishing industry. Routledge.
[33] Aki Järvinen. 2008. Games without frontiers: Theories and methods for game studies and design. Tampere University Press.
[34] Ann M Johns. 1997. Text, role and context: Developing academic literacies. Cambridge University Press.
[35] Kevin P Jones. 1973. The environment of classification: the concept of mutual exclusivity. Journal of the American Society for Information

Science 24, 2 (1973), 157–163.
[36] Jesper Juul. 2011. Half-real: Video games between real rules and fictional worlds. MIT press.

13

https://doi.org/10.1016/j.socnet.2015.08.003
https://surface.syr.edu/istpub/166


X. Li & B. Zhang

[37] Heather Kay and Tony Dudley-Evans. 1998. Genre: What teachers think. (1998).
[38] Jussi Kuittinen, Annakaisa Kultima, Johannes Niemelä, and Janne Paavilainen. 2007. Casual games discussion. In Proceedings of the 2007

conference on Future Play. ACM, 105–112.
[39] Annakaisa Kultima. 2009. Casual game design values. In Proceedings of the 13th international MindTrek conference: Everyday life in the

ubiquitous era. ACM, 58–65.
[40] Andrea Lancichinetti and Santo Fortunato. 2009. Community detection algorithms: a comparative analysis. Physical review E 80, 5

(2009), 056117.
[41] Jin Ha Lee, Rachel Ivy Clarke, and Andrew Perti. 2015. Empirical evaluation of metadata for video games and interactive media. Journal

of the Association for Information Science and Technology 66, 12 (2015), 2609–2625.
[42] Jin Ha Lee, Natascha Karlova, Rachel Ivy Clarke, Katherine Thornton, and Andrew Perti. 2014. Facet analysis of video game genres.

iConference 2014 Proceedings (2014).
[43] Jin Ha Lee, Andrew Perti, Rachel Ivy Clarke, Travis W Windleharth, and Marc Schmalz. 2017. UW/SIMM Video Game Metadata Schema

Version 4.0. http://gamer.ischool.uw.edu/official_release/
[44] Jin Ha Lee, Joseph T Tennis, Rachel Ivy Clarke, and Michael Carpenter. 2013. Developing a video game metadata schema for the Seattle

Interactive Media Museum. International journal on digital libraries 13, 2 (2013), 105–117.
[45] Xiaozhou Li and Zheying Zhang. 2015. A User-App Interaction Reference Model for Mobility Requirements Analysis. In ICSEA 2015,

The Tenth International Conference on Software Engineering Advances. 170–177. https://academic.microsoft.com/paper/2604476080
[46] Chong-U Lim and D Fox Harrell. 2014. Developing Social Identity Models of Players from Game Telemetry Data.. In AIIDE.
[47] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. 2017. Studying the urgent updates of popular games on the steam platform. Empirical

Software Engineering 22, 4 (2017), 2095–2126.
[48] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. 2018. An empirical study of early access games on the Steam platform. Empirical

Software Engineering 23, 2 (2018), 771–799.
[49] Dayi Lin, Cor-Paul Bezemer, Ying Zou, and Ahmed E Hassan. 2018. An empirical study of game reviews on the Steam platform. Empirical

Software Engineering (2018), 1–38.
[50] Anthony Manser. 1967. Games and Family Resemblances. Philosophy 42, 161 (1967), 210–225. https://doi.org/10.1017/S0031819100001297
[51] Frans Mäyrä. 2015. Mobile games. The International Encyclopedia of Digital Communication and Society (2015), 1–6.
[52] Mark EJ Newman. 2006. Modularity and community structure in networks. Proceedings of the national academy of sciences 103, 23

(2006), 8577–8582.
[53] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. 2008. Ranking of Closeness Centrality for Large-Scale Social Networks. In Frontiers in

Algorithmics, Franco P. Preparata, Xiaodong Wu, and Jianping Yin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 186–195.
[54] Janne Paavilainen, Hannu Korhonen, Kati Alha, Jaakko Stenros, Elina Koskinen, and Frans Mayra. 2017. The Pokémon GO experience: A

location-based augmented reality mobile game goes mainstream. In Proceedings of the 2017 CHI conference on human factors in computing
systems. ACM, 2493–2498.

[55] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi. 2004. Defining and identifying communities
in networks. Proceedings of the national academy of sciences 101, 9 (2004), 2658–2663.

[56] Cynthia SQ Siew. 2013. Community structure in the phonological network. Frontiers in psychology 4 (2013), 553.
[57] Rafet Sifa, Christian Bauckhage, and Anders Drachen. 2014. The Playtime Principle: Large-scale cross-games interest modeling.. In CIG.

1–8.
[58] Rafet Sifa, Anders Drachen, and Christian Bauckhage. 2015. Large-scale cross-game player behavior analysis on steam. Borderlands 2

(2015), 46–378.
[59] Carlos N Silla, Alessandro L Koerich, and Celso AA Kaestner. 2008. A machine learning approach to automatic music genre classification.

Journal of the Brazilian Computer Society 14, 3 (2008), 7–18.
[60] Gabriel S Simões, Jônatas Wehrmann, Rodrigo C Barros, and Duncan D Ruiz. 2016. Movie genre classification with convolutional neural

networks. In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 259–266.
[61] Bart Simon. [n.d.]. Indie Eh? Some Kind of Game Studies. Loading... 7, 11 ([n. d.]).
[62] Ivan Slivar, Mirko Suznjevic, and Lea Skorin-Kapov. 2015. The impact of video encoding parameters and game type on QoE for cloud

gaming: A case study using the steam platform. In 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX).
IEEE, 1–6.

[63] Karina Sokolova, Charles Perez, and Marc Lemercier. 2017. Android application classification and anomaly detection with graph-based
permission patterns. Decision Support Systems 93 (2017), 62–76.

[64] Gerard Steen. 1999. Genres of discourse and the definition of literature. Discourse Processes 28, 2 (1999), 109–120.
[65] John Swales. 1990. Genre analysis: English in academic and research settings. Cambridge University Press.
[66] Juan J Vargas-Iglesias. 2018. Making sense of genre: The logic of video game genre organization. Games and Culture (2018),

1555412017751803.

14

http://gamer.ischool.uw.edu/official_release/
https://academic.microsoft.com/paper/2604476080
https://doi.org/10.1017/S0031819100001297


A Preliminary Network Analysis on Steam Game Tags: Another Way of Understanding Game Genres

[67] Csaba Veres. 2006. The language of folksonomies: What tags reveal about user classification. In International Conference on Application
of Natural Language to Information Systems. Springer, 58–69.

[68] Margaret Wallace and Brian Robbins. 2006. Casual games white paper. IGDA Casual Games SIG, http://www. igda.
org/casual/IGDA_CasualGames_Whitepaper_2006. pdf (accessed April 9, 2008) (2006).

[69] Haoran Wen, EA Leicht, and Raissa M D’Souza. 2011. Improving community detection in networks by targeted node removal. Physical
Review E 83, 1 (2011), 016114.

[70] Zach Whalen. 2004. Game/genre: A critique of generic formulas in video games in the context of “the real”. Works and Days 22, 43/44
(2004), 289–303.

[71] Travis W Windleharth, Jacob Jett, Marc Schmalz, and Jin Ha Lee. 2016. Full steam ahead: A conceptual analysis of user-supplied tags on
Steam. Cataloging & Classification Quarterly 54, 7 (2016), 418–441.

[72] Ludwig Wittgenstein. 1953. Philosophical investigations. Philosophische Untersuchungen. (1953).
[73] Mark JP Wolf. 2001. Genre and the video game. The medium of the video game (2001), 113–134.
[74] Changsheng Xu, Namunu C Maddage, Xi Shao, Fang Cao, and Qi Tian. 2003. Musical genre classification using support vector machines.

In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03)., Vol. 5. IEEE, V–429.
[75] Hsin-Chang Yang and Zi-Rui Huang. 2018. Mining personality traits from social messages for game recommender systems. Knowledge-

Based Systems (2018).
[76] Junzhou Zhao, John C.s Lui, Don Towsley, and Xiaohong Guan. 2014. Measuring and maximizing group closeness centrality over

disk-resident graphs. 689–694. https://doi.org/10.1145/2567948.2579356
[77] Howard Zhou, Tucker Hermans, Asmita V Karandikar, and James M Rehg. 2010. Movie genre classification via scene categorization. In

Proceedings of the 18th ACM international conference on Multimedia. ACM, 747–750.
[78] Chengsheng Zhu, Tom O Delmont, Timothy M Vogel, and Yana Bromberg. 2015. Functional basis of microorganism classification. PLoS

computational biology 11, 8 (2015), e1004472.

15

https://doi.org/10.1145/2567948.2579356




PUBLICATION

VII

A Data-Driven Approach for Video Game Playability Analysis Based on
Players’ Reviews

X. Li, Z. Zhang and K. Stefanidis

Information 12.3 (2021), 129

Publication reprinted with the permission of the copyright holders





  information

Article

A Data-Driven Approach for Video Game Playability Analysis
Based on Players’ Reviews

Xiaozhou Li * , Zheying Zhang and Kostas Stefanidis

��������	�
�������

Citation: Li, X.; Zhang, Z.; Stefanidis,

K. A Data-Driven Approach for Video

Game Playability Analysis Based on

Players’ Reviews. Information 2021, 12,

129. https://doi.org/10.3390/

info12030129

Academic Editor: Vincenzo Moscato

Received: 27 February 2021

Accepted: 15 March 2021

Published: 17 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Information Technology and Communication Sciences, Tampere University, Kalevantie 4,
33100 Tampere, Finland; zheying.zhang@tuni.fi (Z.Z.); konstantinos.stefanidis@tuni.fi (K.S.)
* Correspondence: xiaozhou.li@tuni.fi

Abstract: Playability is a key concept in game studies defining the overall quality of video games.
Although its definition and frameworks are widely studied, methods to analyze and evaluate the
playability of video games are still limited. Using heuristics for playability evaluation has long been
the mainstream with its usefulness in detecting playability issues during game development well
acknowledged. However, such a method falls short in evaluating the overall playability of video
games as published software products and understanding the genuine needs of players. Thus, this
paper proposes an approach to analyze the playability of video games by mining a large number of
players’ opinions from their reviews. Guided by the game-as-system definition of playability, the
approach is a data mining pipeline where sentiment analysis, binary classification, multi-label text
classification, and topic modeling are sequentially performed. We also conducted a case study on
a particular video game product with its 99,993 player reviews on the Steam platform. The results
show that such a review-data-driven method can effectively evaluate the perceived quality of video
games and enumerate their merits and defects in terms of playability.

Keywords: playability; player reviews; text classification; sentiment analysis; topic modeling; steam

1. Introduction

Playability has been widely acknowledged as the key concept reflecting the overall
quality of a video game, in terms of its rules, mechanics, goals, and design within the
process of design and analysis [1]. This concept is commonly used in game studies. It
reflects the players’ degree of satisfaction towards their various ways of interaction with
the game system, that is, in a nutshell, “A good game has good playability” [2]. It can also be
narrowly interpreted as being equal to the quality of “gameplay” or simply the usability
of video games, that cannot be balanced by “any non-functional designs” [3]. It is also
common to consider both “gameplay” and “usability” as parallel elements of the playability
framework [4,5]. Moreover, playability is also seen as the quality in use [6] of video games
and represents “the degree in which specific player achieve specific game goals with effectiveness,
efficiency, flexibility, security and, especially, satisfaction in a playable context of use” [7]. Thus,
seeing games as systems and taking into account also the technical, mechanical, or material
quality of video games, playability is “the design quality of a game, formed by its functionality,
usability, and gameplay” [8].

Scholars across domains agree that playability, however measured, can be used to
reflect and evaluate the quality of a video game [1,8]. However, regardless of the definition
or framework adopted, research on the approaches to analyze the playability of a particular
game is limited. The most commonly adopted approach to playability analysis is the use
of heuristics [4,5,9,10]. Acknowledgedly, heuristic evaluation has multiple advantages
including being cheap, being easy to motivate evaluators, not requiring advanced planning,
and importantly it can be done in the early development stage [11]. However, it is also
inevitable that such evaluation is biased by the mindset of the evaluators [11,12]. Their
experiences and preferences influence the outcome as well [9,13–17]. In addition, it is
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common that such usability test contains inconsistency due to the evaluator effect [9,18].
Furthermore, the difference in game rule structures, i.e. games of emergence and games of
progression [19], has not been considered in playability evaluation using heuristics. It is
obviously not possible to detect gameplay issues of the game elements appearing in the
later game scenes of progression games (e.g., Witcher 3 [20]) with the limited time spent on
testing with game demos [10].

Hence, towards relevantly fair evaluation on the overall playability of any released
video game product, the opinions of the players who have played it for a fair amount
of time shall be valuable. Players’ game reviews are then the target data source for such
purposes. For software products, the analysis of end user reviews has been considered
important towards evaluation of software quality [21,22]. Meanwhile, text and opinion
mining is a well-known way of “using large text collections to discover new facts” [23,24].
With such support, many studies have provided various approaches towards effective
review analysis to uncover the critical user needs for software products [25–27]. Despite
the differences between video games and utilitarian software products and in the review
styles, such players reviews can be used towards the improvement of game products [28].
As one of the most popular digital game distribution platforms, Steam (https://store.
steampowered.com/, accessed on 16 March 2021) provides an online venue for the players
to review games. With such a large amount of players’ opinion data at hand and together
with the opinion mining techniques, it is then possible to evaluate video game playability
from the perspective of players’ collective intelligence.

Herein, we propose a data-driven video game playability analysis approach based
on the collection of player textual reviews. It answers the following research question:
How can the data-driven approach be used to gain insights into the playability of a game? The
proposed method uses a pre-trained text classifier model to elicit informative reviews from
the pre-processed review collection and uses another pre-trained classifier to classify such
reviews into pre-defined playability categories. In this paper, we choooe Paavilainen’s
game-as-system definition of playability as the reference of classification [8]. With such
an explicit and simplified framework and the proposed method, we can obtain not only
the intuitively quantified evaluation of the overall playability of the target game but also
the specified merits and defects of it in every framework-oriented perspective (answering
the research question). We also validated the usefulness of the proposed approach by
conducting a case study on a real-life video game with 99,993 reviews.

Compared to heuristic evaluation on playability, this approach relies on the collective
intelligence of a large number of players instead of a few experts’ opinions. Furthermore,
this approach evaluates the game by its released versions instead of demos. Thus, it can
provide both the overall playability evaluation and the detailed merits and defects on
a game-as-system level. Therefore, although acknowledging the usefulness of heuristic
evaluation in game development, we emphasize that the contributions of our approach
are: (1) to help game developers obtain a quick overall impression of the perceived game
playability from players’ perspective; and (2) to help game developers understand the
collective needs and complaints of players to identify the playability issues for video game
maintenance and evolution.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the playability analysis approach, including the series of proce-
dures and details. Section 4 presents the case study on validating the proposed approach.
Section 5 provides further discussion. Section 6 concludes the article.

2. Related Work
2.1. Playability Evaluation with Heuristics

Heuristic evaluation, targeting originally usability evaluation, is an informal analysis
method where several evaluators are asked to comment on the target design based on pre-
defined heuristics/principles [11,29]. It aims at finding the usability problems during the
iterative design process so that such problems can be addressed before software products
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releasing [30]. Despite the rapid development of the video game industry, the methodolo-
gies for evaluating game quality and player experience are still limited. Therein, heuristic
evaluation is still an effective way of evaluating games compared to other methods for
being cheap and fast [31].

Malone proposed the set of heuristics as a checklist of ideas to be considered for
designing enjoyable user interfaces which is largely seen as the earliest game heuristics [32].
Therein, three main features are proposed: challenge, fantasy, and curiosity. Federoff’s list
of game heuristics is based on the observation and interviews with five people from one
game development company [33]. For such heuristics, game interface, game mechanics,
and game play are the three main aspects. Neither of these early studies provides validation
of the respectively proposed heuristics.

Desurvire et al. introduced Heuristic Evaluation for Playability (HEP) towards video,
computer, and board game evaluation with four categories: game play, game story, game
mechanics, and game usability [4]. HEP is validated via comparison with a user study
of a new game at the beginning of its development with four prospective users in 2-h
sessions. The authors also emphasized HEP is helpful at the early stage of game design but
admitted players’ behavior is still unpredictable. In addition, HEP is extended into Game
Genre-Specific Principles for Game Playability (PLAY) to adapt usability principles to game
design [34]. Forty-eight game design principles from eight categories are proposed.

Korhonen and Koivisto’s playability heuristics are designed for mobile games where
gameplay, game usability, and mobility are the main categories [5]. It is validated by four
experts over a mobile game in the production phase. The authors also admitted that,
although heuristics are helpful, the gameplay is much harder to evaluate. Furthermore,
they extended the heuristics to mobile multiplayer games with experiments showing the
heuristics can be applied to non-mobile games as well [35]. Korhonen et al. also compared
their heuristics with HEP finding the respective strength and weakness [9]. The study
also detects inconsistency within evaluators in terms of their reported problems due to the
potential evaluator effects [18] or different reporting baseline.

Pinelle et al. proposed heuristic evaluation focusing on the usability for video game
design based on the analysis of game expert reviews [10]. The heuristic set contains 12
problem categories and 285 individual problems. It is verified via a testing evaluation of the
demo of a PC game by five expert evaluators. Thereafter, an extension study is conducted
towards heuristics for networked multiplayer games; as a result, five problem categories
with 187 problems specially for network multiplayer games are proposed and verified by
10 expert evaluators on two network games [13]. However, Pinelle and colleagues also
emphasized “the heuristics do not address design issues related to how fun and engaging games
are for users”.

Koeffel et al. proposed a three-aspect heuristic set (including game play, game
story, and virtual interface) to evaluate the user experience in video games and table-
top games [36]. The authors summarized 29 heuristic items based on extensive literature
search and verified the heuristics based on expert evaluation (two experts) on five games
of different genres and comparison to game media reviews.

Many other scholars also conduct research on utilizing heuristic evaluation for specific
types of games. Röcker and Haar showed that existing heuristics can be transferable to
pervasive gaming applications [37]. Tan et al. proposed using heuristic evaluation, the
Instructional Game Evaluation Framework, for educational game analysis [38]. Khanana
and Law illustrated the use of playability heuristics as design tools for children’s games [39].
However, whether these heuristics can be used for video games in general is not verified.

On the other hand, regarding the different ways of using heuristic evaluation to-
wards video game playability, Aker et al. found, based on an extensive literature search,
that empirical evaluation, expert evaluation, inspection, and mixed method are the meth-
ods used for such purpose [40]. Among the four mentioned, expert evaluation is the
most commonly applied with many of the above mentioned studies adopting such a
method [5,9,13,33,35,36]. However, the outcomes of such a method rely heavily on the
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experts’ skills and preferences and seldom capture the behaviors and needs of real end
users [41]. Empirical evaluation, such as surveys, interviews, and focus groups, is also a
relevantly common method of using heuristics [4,32,37,38]. However, with such a method,
it is difficult to properly select the correct user sample and reproduce actual usage/play
situations within the limited given time [41].

2.2. User Review Studies

Being an important data source, customer feedback is commonly used for companies
to understand the market and the needs of their customers so that they could improve
products and services accordingly. Regarding software products, it is also critical to
facilitate the evolution of software products and services via the analysis of end user
reviews [21,22].

Many studies show mining the end user reviews of software products can help reveal
the hidden user behaviors, software characteristics, and the relations in between. Vasa
et al. conducted a preliminary analysis on 8.7 million reviews of 17,330 mobile apps
using statistic methods on user review character counts and ratings [42]. Their results
show mobile app reviews tend to be short and both the rating and the category of an app
influence the length of a review. With the same data, Hoon et al. showed that the most
frequently used words in user reviews are to express sentiment [43]. Harman et al. used
customized algorithms to extract app features and correlation analysis on 32,108 non-zero
priced apps from Blackberry app store [44]. The results show a strong correlation between
customer rating and the app download ranking but no correlation between the app price
and either downloads or ratings.

More importantly, many studies also show that the results from mining end user
reviews can reflect the positive and negative user experience regarding software products.
For example, Vu et al. proposed a keyword-based review analysis method to detect key-
word trends and sudden changes that could possibly indicate severe issues [45]. Panichella
et al. proposed an approach to extract information from user reviews relevant to the
maintenance and evolution of mobile apps using Natural Language Processing (NLP),
sentiment analysis, and text analysis techniques [46]. Gu and Kim proposed a method to
categorize reviews, extract aspects from sentences, and evaluate the obtained aspects of the
mobile apps using NLP techniques [47]. Many other studies also show that opinion mining
on end user reviews can help identify user complaints [48], the useful information [26],
and the factors for software success [25] and evaluate the experience towards specific soft-
ware features [49], merits and defects of particular software updates [50,51], and software
evolution [27].

Despite the differences in video games and utilitarian software products, as well as
those between the review styles, such end user reviews are considered valuable for game
designers and developers towards the improvement of their game products. Lin et al.
conducted an empirical study on the reviews of 6224 games on Steam and analyzed the
review content and the relation between players’ play hours and their reviews [28]. Santos
et al. compared the expert and amateur game reviews on Metacritic and found amateur
reviews are more polarized and have stronger sentiments than expert reviews [52]. Lu
et al. used topic modeling on Steam reviews to investigate the temporal dynamics of player
review topics and the influence of updates to such dynamics [53]. Although game reviews
form a rich resource for understanding the players’ experience and opinion on a particular
game, the game playability analysis based on players’ reviews is yet under-explored.

3. Method

In this section, we present an overview of our approach towards video game playabil-
ity evaluation, with further explanation of the key steps.
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3.1. The Framework Overview

Figure 1 depicts the overview of the video game playability evaluation approach
with each key step specified. The framework starts with collecting the player reviews
from online platforms (e.g., Steam) via either API or web crawling. Then, we prepro-
cess the obtained raw review data into structured form. The second step is to filter out
the “non-playability-informative” reviews via a pre-trained classifier. With the obtained
“playability-informative” reviews dataset, the third step is to classify the data into different
playability perspectives according to a selected playability framework. For example, when
selecting the framework of Paavilainen [8], the reviews are then classified into three per-
spectives accordingly, i.e., functionality, gameplay, and usability. With each review instance
categorized into a specific perspective, the fourth step is to quantify the evaluation result
of each perspective. Subsequently, the fifth step is to visualize such a result and present an
intuitive summary. Meanwhile, the sixth step is to extract the existing merits and defects
from each perspective by modeling and summarizing the topics of the reviews within. The
output of both the visualization and topic modeling is then synthesized into a report.

Figure 1. Video Game Playability Evaluation Framework.

3.2. Preprocessing

The preprocessing step encompasses the following key activities. First, we divide each
review item from the dataset into sentence-level review instances, due to the fact that each
review with multiple sentences can contain multiple topics and various sentiments. In this
study, we use the sentence tokenizer feature from the Natural Language ToolKit (NLTK)
(http://www.nltk.org/, accessed on 16 March 2021), a popular Python package with
text processing libraries, corpora, and lexical resources. Secondly, based on the obtained
sentence-level review dataset, we build the bigram and trigram models to identify the
phrases within the data. For such a purpose, we use the phrase detection feature of Gensim
(https://radimrehurek.com/gensim/models/phrases.html, accessed on 16 March 2021), a
popular semantic modeling package. Subsequently, for each review sentence, we perform
a series of text processing activities, including transforming text into lowercase, removing
non-alpha-numeric symbols, screening stop-words, eliminating extra white spaces, and
lemmatization (using the WordNetLemmatizer model of NLTK). Note that the processing
is only applied to the text when topic modeling is required. For sentiment analysis, such
activities are not only unnecessary but also counter-productive.

3.3. Filtering

Herein, the filtering step is to classify the dataset of sentence-level review instances
into “playability-informative” and “non-playability-informative”. By doing so, we identify
the review sentences that contain description regarding the playability of the particular
game and screen out those not relevant. Due to the variety in playability definition, the
criteria by which review instances are categorized slightly vary. In this study, we adopt
the game-as-system playability definition given by Paavilainen [8] as a reference, as this
definition provides clear criteria for the identification of playability-related text with a
pre-defined playability perspective framework with minimum complexity compared to the
other frameworks. Thus, accordingly, we set the two unique class labels as {‘Playability-
informative (P)’, ‘Non-Playability-Informative (N)’}. Based on the adopted definition and
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framework, the criteria for “playability-informative” reviews are listed in Table 1 with
explanation and examples attached. On the other hand, a review is accordingly labeled
“non-playability-informative” when it contains no information related to such criteria. For
example, review sentences such as “I’m glad I supported this Dev team.” (Development
and Publishing), “Now the game has exceeded my expectations!” (Feeling Expression), and
“Ive got this game on PS4, XBOX and now Steam.” (Player Self Description) are all seen as
“non-playability-informative”.

Table 1. “Playability-informative” Criteria based on Paavilainen’s Framework [8] and Examples.

Criteria Explanation Review Examples

Functionality the technical, mechanical or material quality of the “...the performance in VR mode is absolutely terrible.”
game that is related to its smooth operation. “Crashing and stuttering constantly...”

Gameplay the rule dynamics that provide “gameness”. “Survival is not challenging unless you play hardcore,...”
e.g., goals, challenge, progress, and rewards. “...doing the same repetitive things over and over again”

Usability the user-interface of the game and “Controls and menus are bad,...”
its ease of use. “...the massive improvements to the games graphics...”

To efficiently identify and filter the “non-playability-informative” review sentences,
we herein apply a classifier based on machine learning algorithm. In the study, we compare
the Naive Bayes (NB) and the Expectation Maximization for Naive Bayes (EMNB) [54] and
adopt the EMNB classifier in the filtering step. EMNB is a well-recognized semi-supervised
text classification algorithm, which can build a classifier with high accuracy using only a
small amount of manually labeled training data. With EMNB, we thus filter out the review
sentences labeled ’N’ and build the “playability-informative” review sentence dataset.

3.4. Classification

In this step, we classify the obtained “playability-informative” review sentences into
perspectives according to the selected playability framework. As stated above, in this study,
we adopt the playability framework that contains three perspectives, i.e., Functionality
(F), Gameplay (G), and Usability (U). Targeting the specific objectives of this study when
the classes (i.e., playability perspectives) are determined by the existing framework, a
supervised learning algorithm is more suitable. On the other hand, it is also frequent that
a particular review sentence contains information regarding multiple perspectives. For
example, the review sentence “The gameplay, UI and story are not bad, unfortunately this game
has no Beginner friendly and you had to figure out by your own.” describes the players’ opinion
on both gameplay and usability. Thus, to cope with such a situation, we adopt a multi-label
classification algorithm. For such a multi-label classification task, we select from three
algorithms: kNN classification method adapted for multi-label classification (MLkNN) [55],
Twin multi-Label Support Vector Machines (MLTSVM) [56], and Binary Relevance multi-
label classifier based on k-Nearest Neighbors method (BRkNN) [57]. The interfaces of these
classification algorithms are provided by the Scikit-multilearn (http://scikit.ml, accessed
on 16 March 2021), a BSD-licensed library for multi-label classification built on top of
the Scikit-learn ecosystem (https://scikit-learn.org/, accessed on 16 March 2021). The
comparison of these algorithms is discussed in Section 4.2.

3.5. Quantification

In this step, with the classified three sets of “playability-informative” review sen-
tences, we evaluate each of the playability perspectives by quantifying the overall opinions
extracted from the according set of review sentences.

Herein, we use the average sentiment score of the “playability-informative” re-
view sentences representing the players’ collective evaluation towards the playability
of the game.

Algorithm 1 depicts the process of quantifying the playability of a particular game. Let
R be the set of “playability-informative” review sentences, where each ri ∈ R is evaluated
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with the sentiment score (si) assigned via a selected sentiment analysis method, e.g.,
Valence Aware Dictionary for sEntiment Reasoning (VADER) [58], Sentiment strength [59],
etc. Meanwhile, each ri ∈ R is labeled by one or more playability perspectives (Li) using
the pre-trained multi-label text classifier (i.e., MLclassifier). Thereafter, for each playability
perspective (p), we find the set Rp that contains all the review sentences labeled p and
calculate the sentiment value for such perspective as the average of the sum of the sentiment
score (see Line 10).

Algorithm 1: Algorithm of Quantifying the Playability on Multiple Perspectives.
Data: A set of “playability-informative” review sentences
Result: A dictionary of playability scores, each for one perspective

1 R ← set of “playability-informative” review sentences;
2 Let P be the set of all playability perspective labels;
3 for each ri ∈ R do
4 si (∈ S) ← getSentimentScore(ri);
5 Li (⊆ P, �= ∅) ← MLclassifier.predict(ri);
6 end
7 Let result be return dictionary;
8 for each p ∈ P do
9 Rp ← any ri has p ∈ Li;

10 vp ← ∑ri∈Rp si

len(Rp)
;

11 result[p] ← vp;
12 end
13 return result;

3.6. Visualization

In this step, we visualize the output of the quantification of player opinions regarding
each playability perspective with a polygon diagram. The number of vertices of the selected
polygon is equal to the perspective numbers. For example, when adopting Paavilainen’s
playability framework of three perspectives, the analysis of playability to a particular game
can be depicted as a triangle chart (Figure 2).

As shown in Figure 2, the line segments from the triangle center to each vertex
represent the scales measuring each playability perspective. The distance between a green
playability triangle vertex and the center represents the playability score in the particular
perspective. The central point of each line segment is value 0 indicating the neutrality of
the according perspective. The larger the green triangle is, the higher the overall playability
score the game has. When the red area is shown in any direction, the playability of that
game suffers in that particular perspective. Herein, the scale range indicating the positive
and negative of each perspective is determined by the average sentiment score ranging
from −1 to 1. For this particular game example, after the analysis of its reviews through
Algorithm 1, a result list [−0.2, 0.5, 0] is obtained. Based on such a result, Figure 2 is drawn.
It shows the game is good for its gameplay (G = 0.5), mediocre for its usability (U = 0),
and unsatisfactory for its functionality (F = −0.2).
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Figure 2. An example of playability triangular chart.

3.7. Topic Modeling and Summarization

As a critical part of the playability evaluation results, finding the players’ opinions
regarding the pros and cons of a particular game product can convey great value to the
developer team. Thus, in this step, besides the quantified outcome of overall playability, we
identify the specific issues regarding each playability perspective using a topic modeling
algorithm. In this study, we use Latent Dirichlet allocation (LDA) topic modeling, a well-
recognized effective topic modeling algorithm that finds the hidden topics from a large set
of text data [60].

4. Case Study

In this section, we verify the effectiveness of the proposed playability evaluation
method by conducting an experiment on a real-life video game from Steam platform.

4.1. Data Description

The game we select for this case study is No Man’s Sky (NMS) [61], a space exploration
and survival game developed and published by Hello Games (https://hellogames.org/,
accessed on 16 March 2021). The game was first released on 12 August 2016, before which a
social media “hype” had been evoked leading to an unprecedentedly high expectation from
the players. However, the release of the game was disastrous due to the unfulfilled promises
from the developers as well as the performance and gameplay defects. Interestingly, for
the last four years, the game has been continuously maintained with its quality gradually
increasing, which makes it a unique case where the changes in game quality is observable.

We collected the 99,993 English reviews from 12 August 2016 to 7 June 2020 for NMS.
Within the collected review set, the longest contains 116 sentences while the shortest is a
single-sentence review. Via tokenization, we obtained 519,195 review sentences. We then
manually labeled the sentences with “Playability-informative” (P) and “Non-playability-
informative” (N) in a random order, until obtaining 1500 “playability-informative” sen-
tences and 1500 “non-playability-informative” sentences. Therein, 1000 sentences (500 for
each label) were saved as training data and 2000 (1000 for each label) as testing data for
building the filtering classifier model. Furthermore, adopting Paavilainen’s playability
framework, we further labeled the 1500 “playability-informative” review sentences in both
the training and testing dataset into Functionality (F), Gameplay (G), and Usability (U), where
it is possible for one sentence to contain multiple labels. Such dataset was used to train
the classifying model. Note that the labeling of the training data is ideally done by three
expert evaluators. Two evaluators first label the sentences separately and then each label is
confirmed by the agreement of both parties. A third evaluator is invited to provide final
verification when agreement cannot be reached.

4.2. Classifier Selection

To evaluate the performance of the proposed method, we conducted experiments
testing its key steps, including the filtering and the classification steps.
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4.2.1. Filtering Evaluation

To evaluate the performance of filtering, with a series of experiments, we compared the
results of the original NB algorithm and the EMNB algorithm with the amount of training
and test data from 60 to 3000 with a step of 60. Within the amount of data selected for
each experiment iteration, 1/3 was selected as training data with the other 2/3 as test data.
The evaluation results show that the performances of NB and EMNB are similar regarding
our dataset throughout various data volumes. Throughout the series of experiments, the
accuracy (F1-score) difference between NB and EMNB with that same data volume does
not exceed 0.04. On the other hand, with a limited number of training data (100 training
data and 200 testing data), the accuracy of both algorithms reaches a satisfactory level
(�0.7). The level of accuracy does not drop when enlarging the data volume. Furthermore,
with the data volume reaches around 1200, both classification algorithms can provide
optimal accuracy (�0.8). In this study, considering the large amount of unlabeled review
sentence data as well as the according efficiency, we adopted the EMNB algorithm with the
full training data volume in order to obtain the best performance (F1-Score = 0.85).

4.2.2. Classification Evaluation

Furthermore, we conducted a series of experiments to compare the performances of
three multi-label text classification (MLTC) algorithms, i.e., MLkNN, MLTSVM, and the two
versions of BRkNN. With the manually labeled 1500 “playability-informative” training data,
we first found the best parameters targeting the best performance for each algorithm. Then,
the best accuracy of the three algorithms with the detected parameters were calculated for
comparison. The results shown in Table 2 indicate that MLkNN algorithm has the best
classification accuracy (0.769) on our training dataset with the detected best parameter.
Together with the previous filtering step with EMNB (accuracy of 0.85), the overall accuracy
is satisfactory (0.85 ∗ 0.769 = 0.653).

Table 2. Comparison of the performance of MLTC algorithms.

Algorithm Best Parameter Accuracy

MLkNN k = 27, s = 0.5 0.769
MLTSVM c_k = 0.125 0.532
BRkNNaC k = 19 0.663
BRkNNbC K = 17 0.712

In addition, to further tune the method, we evaluated both the performance of com-
bining the two individual steps and that of applying only the MLTC algorithm targeting
both filtering and classifying tasks. For such purpose, we manually labeled “N” to the 1500
“non-playability-informative” training data and combined them with the 1500 “playability-
informative” ones. The performance of the above three algorithms on the enlarged dataset
is shown in Table 3.

Table 3. Comparison of the performance of two- and one-step classification.

Two-Step One-Step

Algorithm Best Parameter Accuracy Algorithm Best Parameter Accuracy

EMNB + MLkNN k = 27, s = 0.5 0.653 MLkNN k = 1, s = 0.5 0.121
EMNB + MLTSVM c_k = 0.125 0.452 MLTSVM c_k = 0.125 0.349
EMNB + BRkNNaC k = 19 0.564 BRkNNaC k = 1 0.121
EMNB + BRkNNbC K = 17 0.605 BRkNNbC k = 6 0.276

The results show that a two-step classification, i.e., “playability-informative” review
filtering with EMNB and perspective classifying with multi-label text classification, has a
much better accuracy rate than one-step classification with only MLTC. In addition, we
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found that using MLkNN (with the parameter k = 27 and s = 0.5) for the classifying
procedure has the best overall accuracy.

4.3. Results

In this section, we present the results from applying the proposed playability analysis
approach on the review dataset of NMS. The results contain two major parts: (1) the overall
playability score; and (2) the merits and defects of the game.

4.3.1. Playability Score

With the obtained 519,195 review sentence data, we follow the analysis method
procedure by first filtering out the “non-playability-informative” ones. As an outcome,
273,476 review sentences are automatically labeled as “playability-informative” using
the pre-trained EMNB classifier with the 3000 training data. Subsequently, we classify
them into the three perspectives using the selected MLkNN algorithm receiving 43,110
review sentences on functionality, 20,5474 on gameplay, and 30,176 on usability. To perform
sentiment analysis on the review sentences, we select the VADER approach, due to its
high classification accuracy on sentiment towards positive, negative, and neutral classes in
social media domain [58]. In addition, its overall classification accuracy on product reviews
from Amazon, movie reviews, and editorials also outperform other sentiment analysis
approaches and run closely with that of an individual human [58]. It is also easy to import
and perform using Python as being integrated into the NLTK package. By calculating
the sentiment score for each review sentence with VADER and the average score for each
review set, we obtain the result as {‘Functionality’: 0.025, ‘Gameplay’: 0.111, ‘Usability’:
0.039} (shown in Figure 3). It indicates that the overall playability of this game is at the level
of mediocre in each of the two out of three perspectives, when only performs only slightly
better than mediocre in the gameplay perspective. Such results comply with the overall
rating of Mixed on Steam (https://store.steampowered.com/app/275850/No_Mans_Sky/
#app_reviews_hash, accessed on 16 March 2021).

Figure 3. Overall playability score for NMS.

Furthermore, to further verify the results, we follow the major updates of NMS via the
information from its patch notes (https://nomanssky.gamepedia.com/Patch_notes, accessed
on 16 March 2021). As the release date of the 11th major update is 11th June 2020, the
review dataset for the 10th update is incomplete. Thus, focusing on the first nine updates
(Foundation, PathFinder, Atlas Rises, NEXT, Abyss, Visions, Beyond, Synthesis, and Living
Ship), we divide the “playability-informative” review sentences into 10 subsets based on
their release dates. Via the same calculation on each subset, the playability analysis results
regarding the original release (marked as Release 1.0) and the nine following major updates,
as well as their data volumes, are shown in Table 4.
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Table 4. Playability score changes through major updates.

1.0 Foundation PathFinder Atlas Rises NEXT Abyss Visions Beyond Synthesis Living Ship

Date 16.11.27 17.03.08 17.08.11 18.07.24 18.10.29 18.11.21 19.08.14 19.11.28 20.02.18 20.04.07

Count F. 28,251 800 718 1851 4222 135 1858 2680 1052 555
Count G. 120,894 6128 5460 12,582 19,085 554 12,649 10,011 7667 3579
Count U. 18,106 758 751 1698 2876 103 1692 1900 922 449

Score F. −0.0054 0.0372 0.0973 0.0684 0.0487 0.0091 0.0760 0.0458 0.0966 0.0770
Score G. 0.0765 0.1322 0.1346 0.1534 0.1389 0.1080 0.1686 0.1406 0.2211 0.2113
Score U. 0.0106 0.0708 0.0807 0.0948 0.0608 0.0823 0.0755 0.0481 0.1489 0.1538

Based on such results, we can conclude that the playability of the game increased in
terms of all three perspectives through the nine updates, even though it decreased regarding
some particular updates (e.g., Beyond). The reason for such a situation is the introduction
of new critical features, major interface changes, new vital bugs, etc. Taking the Beyond
update as an example, as a Version 2.0.0, it added the Virtual Reality support and a wide
range of features to the game (https://nomanssky.gamepedia.com/Update_2.00, accessed
on 16 March 2021). It evoked controversy among players regarding its performance and
gameplay. Nonetheless, by comparing the playability of Release 1.0 and that of the version
after the “Living Ship” update, all three perspectives had been greatly improved.

4.3.2. Playability Merits and Defects

To detect the merits and defects of the game in terms of each playability perspective,
we first divide the review sentences into three subsets based on the classification result. For
each subset, i.e., the review sentences for each perspective, we further select the positive
(sentiment score greater than 0) review sentences and the negative ones (sentiment score
smaller than 0) forming six review sentence sets. The volume of each subset is shown in
Table 5. To detect the explicit sentiment from the review, we ignore the neutral (sentiment
score equals 0) review sentences herein. In addition, to conveniently compare the results
to the information extracted from the Metacritic later, we select only the review data
concerning the original game release (i.e., between 12 August 2016 and 27 November 2016).

Table 5. Data volume for review subsets for Release 1.0.

Functionality Gameplay Usability

Positive 10,684 47,780 6537
Negative 10,637 32,627 6396

Subsequently, to find the best topic number for each review subset, we conduct a
series of experiments for each set testing with the topic numbers ranging from 2 to 20.
We use the topic coherence representing the quality of the topic models. Topic coherence
measures the degree of semantic similarity between high scoring words in the topic. A
high coherence score for a topic model indicates the detected topics are more interpretable.
Thus, by finding the highest topic coherence score, we can decide the most fitting topic
number. Herein, we use c_v coherence measure, which is based on a sliding window,
one-set segmentation of the top words and an indirect confirmation measure that uses
normalized pointwise mutual information (NPMI) and the cosine similarity [62]. Note that
we pick the model that has the highest c_v value before flattening out or a major drop, in
order to prevent the model from over-fitting.

With the best topic number (k) values detected for the six review subsets (shown in
Table 6), we can continue with building the according topic models and detecting the topics.
Table 7 shows the extracted topics for each subset as well as the top 10 keywords that
describe each of them.
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Table 6. Best fitting topic numbers and c_v values.

Functionality Gameplay Usability

P k = 3, c_v = 0.552 k = 4, c_v = 0.535 k = 3, c_v = 0.397
N k = 3, c_v = 0.438 k = 3, c_v = 0.522 k = 5, c_v = 0.374

Table 7. Detected topics for each review set.

Topic (Positive Functionality) Top Words

+ Load Screen and Crashing “game”, “play”, “crash”, “time”, “screen”, “start”, “hour”, “go”, “load”, “get”
+ Performance and bugs fixed via update “issue”, “game”, “performance”, “fix”, “people”, “update”, “would”, “bug”, “problem”, “patch”
+ Running game fine with settings “run”, “game”, “setting”, “graphic”, “work”, “get”, “fps”, “pc”, “fine”, “high”

Topic (Negative Functionality) Top Words

− Poor Performance, Bugs, Crash, Need Fix “game”, “issue”, “problem”, “performance”, “fix”, “people”, “crash”, “bad”, “poor”, “bug”
− Lag, Stutter, fps drop, even with low settings “run”, “setting”, “low”, “game”, “stutter”, “drop”, “pc”, “graphic”, “lag”, “fps”
− Crash at Start screen, try hours “crash”, “game”, “play”, “time”, “screen”, “get”, “start”, “can”, “try”, “hour”

Topic (Positive Gameplay) Top Words

+ Explore, survival, different planet systems “planet”, “find”, “new”, “explore”, “system”, “beautiful”, “different”, “look”, “survival”, “thing”
+ Crafting, ship-flying, resource and inventory “space”, “ship”, “get”,“resource”, “fly”, “well”, “craft”, “upgrade”, “inventory”, “learn”
+ Fun exploration gameplay “game”, “exploration”, “fun”, “play”, “get”, “hour”, “gameplay”, “good”, “enjoy”, “lot”
+ Need story to make better “game”, “want”, “make”, “need”, “would”, “give”, “bit”, “people”, “story”, “work”

Topic (Negative Gameplay) Top Words

− Repetitive, boring gameplay “game”, “get”, “hour”, “feel”, “repetitive”, “start”, “bore”, “boring”, “gameplay”, “people”
− Lack of inventory upgrade “ship”, “resource”, “make”, “need”, “inventory”, “find”, “upgrade”, “lack”, “craft”, “much”
− Fly, explore, combat “planet”, “space”, “see”, “look”, “explore”, “combat”, “find”, “fly”, “kill”, “ship”

Topic (Positive Usability) Top Words

+ Control feels with controller, fly ship “control”, “use”, “ship”, “take”, “feel”, “get”, “controller”, “fly”, “space”, “flight”
+ Beautiful graphics “game”, “graphic”, “play”, “change”, “setting”, “beautiful”, “look”, “run”, “work”, “good”
+ Music&sound, hold and click button “hold”, “button”,‘ ‘music”, “menu”, “screen”, “system”, “inventory”, “click”, “sound”, “second”

Topic (Negative Usability) Top Words

− Graphic settings poor, restart “graphic”, “game”, “setting”, “change”, “run”, “bad”, “start”, “poor”, “get”, “restart”
− Fly control with mouse annoying “control”, “mouse”, “ship”, “fly”, “game”, “use”, “get”, “annoying”, “make”, “press”
− Terrible texture and sound “terrible”, “look”, “texture”,‘ ‘game”, “sound”, “pop”, “point”, “require”, “complaint”, “way”
− Horrible flight control, cluncky inventory “control”, “flight”, “feel”, “people”, “horrible”, “system”, “inventory”, “lack”, “clunky”, “fov”
− Option, click and hold button, bad/awful PC port “game”, “pc”, “option”, “button”, “hold”, “port”, “menu”, “awful”, “bad”, “click”

From the detected topics, we can easily summarize the merits and defects of the
game in terms of each playability perspective. For example, the topics extracted from the
“negative-functionality” review set show that users are satisfied with the performance of
the game when settings are tackled properly. They are also satisfied with the bugs being
fixed and with the game despite the load screen and crashing. On the negative side, players
often complain about various issues, including poor performance, bugs, crashes, lagging,
stuttering, fps, etc. Regarding gameplay, the exploration and survival through different
planet systems, as well as the crafting, spaceship cruising, and resource and inventory
management, are well received by the players. They also indicate a better story is needed.
On the other hand, the players feel negative about the gameplay being repetitive and
boring and frustrated about the lack of inventory upgrade. The flying, exploring, and
combat mechanisms also suffer. Regarding usability, the players feel positive regarding
the spaceship control using controller and the beautiful graphics. They also like the music
and sound effects and the menu interface using a click and hold button to access the
inventory. However, players also complain about the following aspects: the graphic setting
only changes after restarting, controlling with mouse is annoying, texture and sound
being terrible, horrible flight control and clunky inventory, the click-and-hold interaction
mechanism, and being an awful PC port. Note that a similar topic shown in both the
positive and negative groups (e.g., loading screen and crash) suggests that a relevantly high
number of players express different sentiment when talking about ’crash’. For example,
“With a Rift S headset and a gtx1080 graphics card I’m getting great performance out of the game
with no crashes.” and “This game has a TON of performance problems and has crashed on me far
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too many times to be acceptable.” express sentiment differently when both are about “crash”.
Such a situation indicates players’ opinions diverge regarding this topic.

To verify the correctness of the detected merits and defects of the game via topic
modeling, we compare our results to the expert opinions extracted from the critic re-
views of Metacritic (https://www.metacritic.com/game/pc/no-mans-sky, accessed on
16 March 2021). Metacritic reviews have been considered valuable in providing insights
in evaluating the quality of media products, e.g., movies and games [63,64]. We find
the 10 critic reviews (including ‘gamewatcher’, ‘hookedgamers.com’, ‘ign denmark’, ‘the
games machine’, ‘mmorpg.com’, ‘pelit.fi’, ‘pcgamer.com’, ‘gamegrin.com’, ‘games.cz’, and
‘game-debate.com’) on NMS. Their full review contents are accessible online with the “pros
and cons” explicitly listed. Due to the fact that all the critic reviews were given soon after
the release date, the opinions thus only apply to Release 1.0 of the game. As stated above,
such opinions are used to compare with the extracted players’ review opinions regarding
the same version.

As shown in Table 8, we can easily compare the extracted positive and negative topics
from the player reviews and the summarized “playability-informative” “Pros and Cons”
from the critic reviews. We can conclude that a great majority of the merits and defects of
the game mentioned by the media experts are detected from the player review modeling.
For example, regarding functionality, both parties point out the problems of crashing, bugs,
frame drops, and performance issues. Note that the critic reviews do not mention the merits
regarding functionality, which is reasonable as providing a functional product is clearly
a “must-have” instead of an “exciter”. Regarding gameplay, the exploration and survival
gameplay is praised by both, as well as the different planet systems and spaceship flying.
The sense of relaxing that mentioned by the media is not covered by the players’ topics. On
the negativity of gameplay, the complaints about inventory, repetitive/tedious gameplay
(limited options), lack of combat, etc. are mutual. Furthermore, regarding usability, the
graphics and sound are praised by both, when the players’ reviews additionally give credits
to the controlling performance with controllers. On the other hand, both parties reflect
negative opinions on the control (with mouse) and menu/option being frustrating, when
the players complain more specifically about the “hold and click button” control.

In addition, we also compare these extracted topics to the original game-as-system
definition and the according perspective descriptions of Paavilainen’s playability frame-
work [8]. Regarding functionality, nearly all the sub-perspectives are covered by the player
review topics, except for “error reporting”. Apparently, the players are generally not satis-
fied with functionality from all sub-perspectives, as all such can be related to at least one
topic from negative reviews. On the other hand, regarding gameplay, the player reviews
reflect positively on the play styles, goals, challenges, and rewards of the game, when
convention and consistency are not mentioned enough. Repetitiveness and autonomy (i.e.,
lack of inventory upgrade -> cannot freely preserve more items) are the gameplay sub-
perspectives being complained often. Finally, regarding usability, the negative opinions
are about the control with mouse (control), texture (audiovisual), inventory (UI layout),
graphic setting, option/menu (Navigation), and click and hold button (feedback). Such
results further validate the extracted review topics are “playability-informative”.
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Table 8. Mapping between extracted player review topics and metacritic reviews pros and cons.

Playability Players’ Review Topic Metacritic Review Pros and Cons

Functionality + Load Screen and Crashing
+ Performance and bugs fixed via update
+ Running game fine with settings
− Poor Performance, Bugs, Crash, Need Fix − Still major technical issues.

− Deplorable technical condition.
− The PC version is heavy, buggy, and crashing

− Lag, Stutter, fps drop, even with low settings − Random frame rate drops.
− Poorly optimized.

− Crash at Start screen, try hours

Gameplay + Explore, survival, different planet systems + Solid survival gameplay with great freedom.
+ Crafting, ship−flying, resource and inventory + Relaxing exploration
+ Fun exploration gameplay + Massive universe to explore.

+ It truly is an impossibly huge galaxy.
+ A sense of majesty and grandeur unlike anything else.
+ Lots of options to fiddle with.
+ Near limitless replay value.
+ Huge scale, infinite content.
+ Solid survival gameplay with great freedom.
+ Relaxing exploration.

+ Need story to make better − Very little real story.
− No reason to proceed, lacks a narrative...

− Repetitive, boring gameplay − a lack of real discovery
− Most planets look the same
− repetitive systems
− Repetitive
− Dull, tedious crafting.
− Planets all hold the same handful of interest points.
− ... disappoints in almost every way and just has no depth
− ... gameplay options extremely limited.
− ... Has too few features to be varied in the long run.
− soon turns into a routine stereotype...
− The universe is a lifeless and static backdrop.

− Lack of inventory upgrade − Loads of inventory management.
− Fly, explore, combat − Not for thrill seekers or combat fans.

− whilst gathering resources to move on but won’t linger.

Usability + Control feels with controller, fly ship
+ Beautiful graphics + Beautiful alien worlds.

+ Breathtaking views.
+ Stylish in graphics ...
+ some lovely scenery
+ An atmospheric walk through beautiful worlds

+ Music and sound, hold and click button + stylish..sound
+ A successful.. atmospheric audiovisual implementation.

− Graphic settings poor, restart
− Fly control with mouse annoying
− Terrible texture and sound
− Horrible flight control FOV, cluncky inventory − Uncomfortable controls
− Option, click and hold button, bad/awful PC port − frustrating menus

+ It may work perfectly as an occasional short distraction
− Many promises left undelivered

“+” represents positive, “−” represents negative.

5. Discussion

Considering that other factors can also influence the outcome of the playability analy-
sis, we extended the experiments using the playtime of the players and the voted helpfulness
value as the weight to the sentiment score. The playtime value indicates how long each
player has been playing the game, i.e., the game experience. It is reasonable to assume that
players who spend more time on a particular game with more gaming experience shall pro-
vide more trustworthy reviews. On the other hand, the voted helpfulness value indicates
how many other players agree with the statement and evaluation in a particular review, i.e.,
the perceived trustworthiness. According to our review data, among the players who wrote
the reviews, the longest playtime of one player is 645,618 min (≈10,760 h) with the shortest
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being 1 min. The average playtime is 5791.70 min (≈96.53 h). Meanwhile, the highest
helpfulness score received by a single review is 12,236 with the lowest being zero. The
average helpfulness score is 6.42. By adding the normalized “playtime” and “voted help-
fulness” values as weights to the sentiment score of each review sentence, we can obtain
the weighted playability score for each perspective as follows: Functionality of −0.1985,
Gameplay of −0.1815, and Usability of −0.1983 with the scale of (−1, 1). This result shows
that the overall playability of this game is slightly under mediocre. Furthermore, similar
experiments with the reviews between updates show that the playability of the game is
still increasing through updates, but the values are slightly negative. This phenomenon
shows that experienced players and popular reviews can have obvious influence on the
playability analysis result when their opinions are credited with more value. However,
how to verify the influence of the players’ experience and the credibility of their reviews
towards the analysis result of playability shall be further investigated in future studies.

On the other hand, as shown in Table 4, the majority (61.2%) of the reviews are
given before the first update of the game. Thus, the playability of Release 1.0 likely has a
greater influence on the overall score than that of the rest. Therefore, it is reasonable such
unevenness is also taken into account. Comparatively, for a similar situation in review-
based analysis, the time sequence factor was considered by Chen et al. when evaluating the
informativeness of mobile application reviews [26]. However, we are unable to conclude
that the newest reviews accurately reflect the current playability of the game without
further investigation on the content of such reviews compared to the older ones. A study
on the changes of reviewers’ opinions regarding the evolution of the target system (similar
to the one in [27]) shall be conducted towards tackling such issues.

It is worth emphasizing that the proposed approach can be adapted by considering
any proposed playability heuristics when such heuristic-oriented issues are sufficiently
mentioned by the players. Due to the nature of heuristics being a checklist of principles [11],
it is thus possible to extract players’ opinions according to different heuristics via labeling
training data accordingly. Although the outcome of applying different heuristics could
certainly differ, it is a potentially good practice towards detecting more playability issues.
Thus, a comparative study on applying this approach with different playability heuristics
shall be conducted in the future work.

Furthermore, an obvious limitation of this approach is the requirement of a large
number of player reviews, which is impossible before the release of the game. Heuristic
evaluation of playability is an effective way to target such a situation. Comparatively, our
approach aims for the continuous maintenance and evolution of games after their releases,
where playability evaluation can be conveniently automated through this data mining
pipeline with sufficient review data collected. The gap between experts’ and end players’
opinions is, to a certain extend, inevitable [52]. Hence, our approach can contribute to
helping the developers better understand the needs and complaints of the players. Based
on that, they can improve the games continuously and effectively.

6. Conclusions

In this paper, we propose a data-driven approach for analyzing the playability of
video games based on the players’ reviews. Focusing on the collective opinions of a large
number of players, this approach provides an effective solution for understanding the
overall playability of a particular video game as well as the detailed merits and defects
within each pre-defined playability perspective. The results of this study show that the
proposed approach can provide fair evaluation and analysis in terms of video game
playability with satisfactory accuracy. Compared to the mainstream heuristic evaluation
method, our approach contributes specifically to the maintenance and evolution of video
games by helping game developers understand the collective needs and complaints of real
players. The approach can be improved by taking into account other factors that influence
the playability analysis: the playtime, voted helpfulness, player preferences, etc. The
different evaluation results by selecting different playability frameworks or using different
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playability heuristics shall be further investigated comparatively. Furthermore, more video
game cases, especially from different genres, shall be used for verification and comparison.
We shall also further investigate the credibility of game players as reviewers based on their
reviewing behaviors and gaming profiles via computational methods. Such studies shall
contribute to the enrichment of the playability and player behavior analysis methodologies.
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