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Abstract: Automated operations are widely used in harsh environments, in which position informa-
tion is essential. Although sensors can be equipped to obtain high-accuracy position information,
they are quite expensive and unsuitable for harsh environment applications. Therefore, a position
soft-sensing model based on a back propagation (BP) neural network is proposed for direct-driven
hydraulics (DDH) to protect against harsh environmental conditions. The proposed model obtains a
position by integrating velocity computed from the BP neural network, which trains the nonlinear
relationship between multi-input (speed of the electric motor and pressures in two chambers of the
cylinder) and single-output (the cylinder’s velocity). First, the model of a standalone crane with DDH
was established and verified by experiment. Second, the data from batch simulation with the verified
model was used for training and testing the BP neural network in the soft-sensing model. Finally,
position estimation with a typical cycle was performed using the created position soft-sensing model.
Compared with the experimental data, the maximum soft-sensing position error was about 7 mm,
and the error rate was within ±2.5%. Furthermore, position estimations were carried out with the
proposed soft-sensing model under differing working conditions and the errors were within 4 mm,
but the periodically cumulative error was observed. Hence, a reference point is proposed to minimize
the accumulative error, for example, a point at the middle of the cylinder. Therefore, the work can
be applied to acquire position information to facilitate automated operation of machines equipped
with DDH.

Keywords: direct-driven hydraulics; position soft-sensing; BP neural network; accumulative error
correction; virtual sensors

1. Introduction

In order to meet the increasing energy efficiency requirements and adapt to dangerous
and harsh environments, intelligent and autonomous have become the main development
trend of heavy-duty or construction machinery [1]. In hydraulic systems, pump-controlled
cylinder systems are increasingly proposed in academia and have attracted industry at-
tention due to high energy efficiency, compactness, and low cost compared with valve-
controlled systems. Therefore, this trend provides the opportunity to implement sensorless
position control systems for hydraulic cylinders using virtual sensors. The benefits of using
virtual sensors include increased redundancy and reduced reliance on expensive position
sensors typically used in hydraulic cylinders [2–4].
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Hydraulic system monitoring, fault diagnosis, position control dangerous, etc. are
inseparable from the displacement signal of the hydraulic cylinder. The current displace-
ment measurement technology can be divided into contact measurement and non-contact
measurement [5].

Contact measurement refers to the installation of displacement sensors on the actu-
ators. The installation position can be inside or outside the hydraulic cylinder such as
magnetostrictive displacement sensors, potentiometers, variable inductance sensors, draw-
wire sensors, grating displacement sensors, and other displacement sensors [6–8]. For
internal installation, it usually needs to drill holes in the cylinder rod, which will increase
the cost and difficulty of installation and maintenance. For external installation, the sensors
are equipped on the surface of the hydraulic cylinder, which is less expensive and easier
to install. However, the external sensors are more vulnerable to pollution and damage in
harsh environments, which would deteriorate their reliability and life span [9–11].

Non-contact measurement includes the methods based on photoelectric, electromag-
netic, and other technologies without contacting the measured object. Non-contact measure-
ment can be classified into visual measurement and non-visual measurement. Non-visual
measurement mainly includes inertial measurement, global positioning system, wireless
LAN, and other methods [12]. Vision measurement is a new non-contact measurement tech-
nology derived from computer vision. In this method, a camera is used to collect the image
of the manipulator, and the position information is computed through the algorithm [13,14].
However, the two main obstacles of using vision-based methods are resolution and limited
frame rate, both of which reduce the dynamic performance of displacement capture [15].

At present, the displacement signal in the hydraulic system is mainly obtained by
contact measurement. Due to the drawbacks of contact measurement, the research of
virtual sensors has attracted more and more attention. In 2010, Minav et al. [16] used
the designed algorithm to estimate the load and height of the moving target on a forklift
and then calculated the required rotational number of the electric motor. In the research,
the displacement of the hydraulic cylinder was obtained by estimating the cumulative
flow output from the pump to the hydraulic cylinder. Therefore, only the motor speed
signal is required to realize the position control of the hydraulic cylinder. The research
results showed that the maximum position error was 1.8%. In 2014, Minav et al. [17]
researched the sensorless position control of a direct-driven hydraulic system. Taking
a micro-crane as a test case, the maximum error was 3% under varying loads, speeds,
and cycles. In 2017, Sourander, Minav et al. [4] established a two-dimensional table of
temperature, speed, and displacement, and estimated the position of the boom and bucket
hydraulic cylinder of a mining loader by combining table lookup and calculation. In 2018,
Siavash et al. [18] performed a preliminary study on the position control of a multi-actuator
without a displacement sensor on an excavator, with a maximum error of about 5 cm.
Gradl and Plockinger et al. [19,20] carried out a study on position or speed control without
displacement sensors and proposed a stepping hydraulic cylinder, which controlled the
oil intake and discharge of two small driven cylinders by switching valves to realize the
stepping of the main hydraulic cylinder, with a position accuracy of 0.17%. However, this
needs to redesign the loop, and more valve sets are required. In 2021, Zhang et al. [21]
developed the displacement soft-sensing method of a pump-controlled cylinder driven by a
servo motor, realized indirect measurement of hydraulic cylinder displacement using motor
speed and torque signals, and corrected the leakage coefficient to improve the accuracy.

In light of the fact that sensorless rotor position control has been widely studied in
electric drives, in particular, the back propagation (BP) neural network is widely used in
electric motors [22–24]. Both electric motor and hydraulic systems are nonlinear systems,
thus using the BP neural network with arbitrary nonlinear mapping ability can realize
multi-input single-output operations. Hence, this research proposed a position soft-sensing
model based on the BP neural network for direct-driven hydraulics (DDH).

The rest of this paper is divided into five sections. In Section 2, modeling and verifica-
tion of a crane with DDH are presented. Section 3 describes the soft-sensing model based
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on a BP neural network, where Section 3.1 depicts the principle of position soft-sensing,
Section 3.2 obtains the training and test data, and Section 3.3 trains and tests the BP neural
network. Section 4 verifies the position soft-sensing model by the measured data. In
Section 5, simulations are carried out with the verified model, where Sections 5.1 and 5.2
present a simulation of two cycles with varying loads and demonstrate the cumulative
error under multi-cycles, and Section 5.3 proposes a method to eliminate the cumulative
error. Section 6 draws the conclusions.

2. Modelling and Verification of a Crane with DDH

Section 2.1 illustrates the modeling of a crane with DDH. Section 2.2 validates the
created model by measurement.

2.1. Modeling

In this research, a standalone crane was chosen as the test case. The crane was
equipped with a direct-driven hydraulic system as shown in Figure 1. Figure 2 shows
the schematic diagram of the direct-driven hydraulic system. In the system, two external
gear motors driven by a permanent magnet synchronous motor coaxially are used as
bi-directional pump/motors. One of the hydraulic accumulators is used as a tank and the
other is not in use (cut off by a ball valve). Two pressure sensors and one position sensor
were utilized to collect data to validate the simulation in the next step. Additionally, two
check-valves were installed for anti-cavitation and two pressure relief valves for safety.
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Table 1. Parameters of the main components of the DDH.

NO. Component Parameters Value Description

1 Synchronous Motor Rated Torque [N·m]
Rated Speed [rpm]

4.5
2500

Rexroth IndraDyn T
Synchronous Torque

Motor

2 A-Side
Pump/Motor

Volumetric
Displacement

[cm3/rev]

13.03 Rexroth External Gear
motor AZMF Series3 B-Side Pump/Motor 9.35

4 Hydraulic
Accumulator Rated Volume [L] 0.7 Rexroth Diaphragm

Type

5 Cylinder
Dimensions [mm]

Rated Pressure
[MPa]

60/30 × 40,019.0 MIRO C-10

6 Pressure Sensor
Pressure Range

[MPa]
Accuracy

0–20
0.25% FS GEMS 3100 Series

7 Position Sensor Resolution [mm] 0.1
SIKO SGI Wire

Incremental
Encoder

Figure 3 illustrates the load force of the crane and Table 2 presents the structural
parameters.
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Table 2. Mechanical structure parameters of the crane [25].

Parameters Value Unit

d1 0.983 m
d2 0.637 m
m1 25.11 kg
m2 21.40 kg

mload 50 kg
r1 0.693 m
r2 0.977 m

rload 1.674 m
γ0 80 degree

θm10 0.1169 rad
θm20 0.1572 rad

θmload 0.1775 rad

The simulation model of the crane with DDH including the DDH model and load
model was built in MATLAB/Simulink. Figure 4 demonstrates the simulation model of
the crane with DDH. Most of their detailed explanations refer to work in [25,26].
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2.2. Model Verification

To verify the feasibility of the built crane model with DDH, a test was performed
with a load of 40 kg. In the test, the cylinder extended and retracted two times with a
displacement of about 300 mm using open-loop position control. In addition, the measured
rotational speed of the electric motor in Figure 5 was used as the reference input to
the model in Figure 4. Moreover, the displacement and two pressures of the cylinder
from measurement and simulation are presented and compared. Figure 6 shows the
simulated and measured displacement curves and Figure 7 shows the error of displacement.
Figures 8 and 9 illustrate the pressures of the two sides of the cylinder.

In Figure 7, it can be seen that the maximum position error was 6 mm (about 2%),
occurring at the maximum displacement point. Additionally, Figures 8 and 9 illustrate
that the simulated and measured pressure levels are acceptable. Hence, the comparison
result between the simulation and measurement demonstrates that the accuracy of the
crane model is acceptable. In this case, the built model can be used to produce batch data
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under differing working conditions for the training of the BP neural network and test the
performance of the proposed soft-sensing model in the next step.
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3. Position Soft-Sensing Model Based on BP Neural Network

Section 3.1 illustrates the principle of the proposed position soft-sensing method.
Section 3.2 demonstrates the preparation of the data for training and testing of the BP neural
network. Furthermore, Section 3.3 presents the training and testing of the neural network.

3.1. Principle of Position Soft-Sensing

The proposed position sensing model computes the velocity using BP neural network
and integrates the velocity to obtain the position, as shown in Figure 10.
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Figure 10. Schematic diagram of position soft-sensing.

In the DDH, the velocity of the cylinder depends on its in- and out-flow rates. Ad-
ditionally, these flowrates are determined by the flowrates from or to the pumps, the
nonlinear leakages of pumps and cylinder, and volume changes of the oil due to pressure
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change, temperature, and rotational speed [27]. In this research, the temperature of the
system was assumed to be constant, namely, the viscosity of the fluid was unvaried and
did not affect the leakage of the system. Hence, the velocity of the cylinder had a nonlinear
relationship with the pressures of the cylinder and the speed of the electric motor. The
neural network simulates the processing of information by the human brain and has a
strong self-learning ability. In various industrial application scenarios, for nonlinear prob-
lems, the neural network is an effective solution to such problems [28]. The development
of a neural network provides new ideas and methods for hydraulic cylinder displacement
estimation [29]. Therefore, a position soft-sensing model using the BP neural network was
proposed for DDH and its principle diagram is shown in Figure 11.
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The structure of the BP neural network for velocity estimation is shown in Figure 12.
This research adopted a 3-layer BP neural network including three input nodes, 10 hidden
layer nodes, and one output node. The training function is traingdx, the hidden layer
neuron transfer function is tansig, and the output layer neuron transfer function is logsig.
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3.2. Training and Testing Data Preparation

In order to produce enough data for BP neural network training and testing, a batch
simulation was performed using the created crane model. Figure 13 displays the reference
speed for the electric motor, a sinusoidal signal f1(t) = 550 sin(2πt/15)t. Meanwhile,
according to the capability of the crane, 11 loads were used for the batch simulation (from 0
to 250 kg with an interval of 25 kg). In this way, the simulation can generate data covering
a wide range of velocities under varying loads and rotational speeds.
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Furthermore, the data required for the neural network training and testing were
obtained by batch simulation. Pressures of the cylinder chambers pA and pB are shown in
Figures 14 and 15, and the corresponding velocities in Figure 16.
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Figure 16. Cylinder velocities of the sinusoidal reference signal f 1(t) under a load of 0–250 kg.

The effect of load on the pressures of the two chambers can be observed in
Figures 14 and 15, where the pressures increased with the heavier loads. The three local
magnifications in Figure 16 show that the heavier load, the greater the speed fluctuation.
Finally, 33,000 groups of data were obtained from the simulation for the training and testing
of the BP neural network.

3.3. Training and Testing the BP Neural Network

The 33,000 groups of data were randomly classified into a training set (25,000 groups)
and a testing set (8000 groups). A five-point numerical differentiation and normalization of
the sample data were performed, and then the offline training of the BP neural network
was conducted. Since the velocity was in the order of 1 mm/s, to ensure accuracy, the
training accuracy was set to 10−3 mm/s and the number of training was 10,000 times. The
predicted and expected values of each point of the BP neural network and errors are shown
in Figure 17.

To evaluate the training results of the BP neural network, the coefficient of determina-
tion (R2), mean square error (MSE), and root mean square error (RMSE) were used as the
evaluation indexes. R2 represents the goodness-of-fit of the regression fitting curve, and the
value was between 0 and 1 (the closer to 1 the greater goodness-of-fit). MSE represents the
Euclidean distance between the predicted value and the true value. Smaller MSE means
that the predicted value is closer to the true value. RMSE represents the stability of the
prediction error and can be used to investigate whether the prediction model can make
stable and accurate predictions, where the smaller the better.

R2, MSE, and RMSE are defined as follows:

R2 = 1− ∑z
i=1(yi −Yi)

2

∑z
i=1
(
Yi −Y

)2 , (1)

MSE =
1
z ∑z

i=1(Yi − yi)
2, (2)

RMSE =
√

MSE, (3)

where Yi is the expected value; yi is the predicted value; and Y is the average of the expected
value. z is the number of test data groups.
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Figure 17. Training results with the testing set.

The training results in Figure 17 illustrate that small errors occurred about every
1500 groups. The pressure fluctuated when the hydraulic cylinder was around the zero
position. The motor speed signal was set according to the expected displacement, which is
a sinusoidal signal. Hence, the velocity of the cylinder computed by the neural network
is similar to a harmonic signal, the derivative of the expected displacement. Three sets of
velocity were computed respectively including groups 0–2000 with a load of 200 kg during
10–30 s, 2001–5000 with a load of 225 kg during 0–30 s, and 5001–8000 with a load of 250 kg
during 0–30 s. Finally, the data of the three sets were put together to form a curve, similar
to a sinusoidal, as shown in Figure 17. This phenomenon affects the training, but, from an
overall point of view, the index (R2 = 0.99986, MSE = 6.3886 × 10−5, and RMSE = 0.0080,
calculated in mm) demonstrates that the performance of the trained BP neural network
was good.

The mean square errors of the training set, validation set, test set, and the overall set
varied with the number of training images, as shown in Figure 18. Each stage of BP neural
network training is demonstrated in Figure 19. The correlation analyses of each sample set
and the whole are presented in Figure 20.
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It can be seen from Figures 18–20 that the target value of MSE was quite different 
from the best value, but it can be seen from other parameters that the neural network was 
well trained. Additionally, the weights of the trained BP neural network are listed as fol-
lows: 
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Figure 19. Neural network training state (plot–train–state), epoch 113, validation stop.
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Figure 20. Neural network training regression (plot–train–state), epoch 113, validation stop.

It can be seen from Figures 18–20 that the target value of MSE was quite different from
the best value, but it can be seen from other parameters that the neural network was well
trained. Additionally, the weights of the trained BP neural network are listed as follows:

w1 =



−2.351 1.0555 −1.5611
−1.7687 −1.2202 2.1167
2.0790 0.6138 2.0973
−0.6005 2.9549 −0.0759
0.3424 −2.7280 1.2403
0.5910 2.2368 1.9352
−2.3423 −0.9101 1.6682
0.7795 2.0135 2.1061
1.8576 −2.1578 −0.9955
−0.5358 −1.8104 2.3522


, w2 =



−0.7444
0.1267
0.9100
−0.9280
−0.1829
−0.3372
0.9807
−0.6676
0.9215
−0.2103



T

, b1 =



3.0162
2.3459
−1.6757
1.0054
−0.3351
0.3351
−1.0054
1.6757
2.3459
−3.0162


, b2 = [−0.0213]
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4. Verification of Position Soft-Sensing Model

To verify the position soft-sensing model, the measured data from the previous
experiment were utilized as inputs to the model including the measured pressures of
the cylinder chambers, the rotational speed of the electric motor, and the initial position
of the cylinder. Figures 21 and 22 illustrate the positions from the soft-sensing model and
measurement and the errors after comparison.
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The training data for the BP neural network from thee simulation but not the measure-
ment affects the accuracy of the proposed position soft-sensing model. It can be seen from
Figure 22 that soft-sensing errors were within ±2.5% and the maximum error was 7 mm,
occurring at 45 s. The comparison results show that the proposed soft-sensing model is
feasible and has acceptable accuracy for further simulations.

5. Simulation and Accumulative Error Correction

To further verify the feasibility and accuracy of the proposed model, simulations
and comparisons were performed. Considering the influence of different loads and motor
speeds on the soft-sensing, three loads (50 kg, 120 kg, and 200 kg) and two types of reference
speed (sinusoidal and typical working cycle) were utilized for the simulations.

5.1. Sinusoidal Working Cycle with Varying Loads

Figure 23 displays the sinusoidal cycle f2(t) = 410 sin(2πt/30)t under three loads (50 kg,
120 kg, and 200 kg). The given motor speed signal and load were input into the simulation
model of the crane. At the same time, the pressure of two chambers and motor speed were
extracted and then used as input to the position soft-sensing model. Figure 24 shows the
soft-sensing positions and simulated positions. Furthermore, Figure 25 shows that the
soft-sensing error was within ±3 mm.
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Additionally, the error curves shifted downward with the increase in load, caused by
the greater leakage under heavier load. It can be seen that the error trend in the first cycle
(0~30 s) was basically the same as the second one (30~60 s), but accumulated errors can be
observed at 30 s and at 60 s (the end of each cycle).

5.2. Typical Cycle with Varying Loads

Figure 26 displays the typical motor speed signal (similar to the reference speed in
the experiment) under three loads (50 kg, 120 kg, and 200 kg) [30]. After simulation and
position soft-sensing, Figures 27 and 28 present the positions of soft-sensing and simulation
and error. The comparison results demonstrate that the errors were within ±3 mm.
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In Figure 28, the phenomenon of error accumulation was also observed at the end
of each cycle. This is because the soft-sensing method first predicts the velocity and then
integrates it. In the prediction process, there is a velocity prediction error first, and then
there is a cumulative error in the integration process. Such a double-layer error will result
in a cumulative error, as shown in Figures 25 and 28. Hence, it is necessary to eliminate or
minimize the accumulative error.
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5.3. Accumulative Error Correction

Since the accumulative error will inevitably occur in the integration process, this
research proposes setting reference points using proximity sensors, for example, at the
middle of the cylinder [16]. Hence, when the displacement of the hydraulic rod reaches the
midpoint, the accumulative error will be reset to zero.

The hydraulic cylinder stroke is 400 mm, so the reference point was set at 200 mm,
which means that the hydraulic cylinder rod position will be reset when it reaches 200 mm.
Using the proposed accumulative error correction, the soft-sensing errors of the sinusoidal
and the typical cycle in Section 4 decreased significantly, as shown in Figures 29 and 30.
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It can be seen from Figure 29 that after the minimization of cumulative error, a whole 
cycle was observed from 9.12 to 39.12 s, and the trend of the previous cycle is repeated in 
39.12–60 s. The error is approximately periodic and within 3 mm. Similarly, it can be seen 
from Figure 30 that the period from 8.51 to 38.51 s was a whole cycle, and the trend of the 
previous cycle was repeated in the period from 38.51 to 60 s. In addition, the error was 
within 4 mm. This method showed an error far less than the error of the soft measurement 
method in reference [4]. 

To further verify the performance of using a middle reference point, simulation and 
position soft-sensing were carried out under a multi-cycle sinusoidal signal with a load of 
40 kg, as shown in Figure 31. The soft-sensing position with and without correction are 
shown in Figure 32. Figure 33 presents the errors. 
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It can be seen from Figure 29 that after the minimization of cumulative error, a whole 
cycle was observed from 9.12 to 39.12 s, and the trend of the previous cycle is repeated in 
39.12–60 s. The error is approximately periodic and within 3 mm. Similarly, it can be seen 
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Figure 30. Soft-sensing errors with a middle reference point under a typical cycle.

It can be seen from Figure 29 that after the minimization of cumulative error, a whole
cycle was observed from 9.12 to 39.12 s, and the trend of the previous cycle is repeated in
39.12–60 s. The error is approximately periodic and within 3 mm. Similarly, it can be seen
from Figure 30 that the period from 8.51 to 38.51 s was a whole cycle, and the trend of the
previous cycle was repeated in the period from 38.51 to 60 s. In addition, the error was
within 4 mm. This method showed an error far less than the error of the soft measurement
method in reference [4].

To further verify the performance of using a middle reference point, simulation and
position soft-sensing were carried out under a multi-cycle sinusoidal signal with a load of
40 kg, as shown in Figure 31. The soft-sensing position with and without correction are
shown in Figure 32. Figure 33 presents the errors.
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It can be seen from Figure 33 that after correcting the accumulated error, the error
curve becomes periodic and the error remains stable with high accuracy. This is because
a proximity switch is set at the midpoint of the stroke. Therefore, the integration process
will restart whenever the midpoint is reached, which limits the infinite amplification of the
accumulated error and the max error rate drops to 1%.

6. Conclusions

Aiming at addressing the disadvantages of the physical position sensor of utilization
in automation, a position soft-sensing model based on BP neural network was proposed to
estimate the cylinder position. DDH was selected as a test case. The simulation model of a
crane with DDH was established and validated by experiment. The BP neural network was
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created and trained with the data from batch simulation using the validated crane model.
Furthermore, the viability of the proposed soft-sensing model was verified by experiments
and simulations under varying reference signals and loads. As the accumulative error
occurs, a reference point was proposed to minimize the accumulative error under multi-
cycle operation.

1. The verification and simulations results show that the proposed position soft-sensing
model for DDH had an accuracy within 7 mm and 4 mm, respectively, and the error
rate was within 2.5%.

2. Due to the notable accumulative error under multi-cycle, setting reference points can
minimize the error accumulation. For example, when applying a middle reference
point, the max error rate drops to 1%.

Further steps will entail an experimental validation of the proposed method for
position control. In order to improve the accuracy of the proposed virtual sensor, more
information from sensors can be utilized such as fluid temperature and additional pressure.
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