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Abstract

Modern text data is increasingly gathered in situations where it is paired with a high-
dimensional collection of covariates: then both the text, the covariates, and their relation-
ships are of interest to analyze. Despite the growing amount of such data, current topic
models are unable to take into account large amounts of covariates successfully: they fail
to model structure among covariates and distort findings of both text and covariates. This
paper presents a solution: a novel factor-topic model that enables researchers to analyze
latent structure in both text and sophisticated document-level covariates collectively. The
key innovation is that besides learning the underlying topical structure, the model also
learns the underlying factorial structure from the covariates and the interactions between
the two structures. A set of tailored variational inference algorithms for efficient compu-
tation are provided. Experiments on three different datasets show the model outperforms
comparable topic models in the ability to predict held-out document content. Two case
studies focusing on Finnish parliamentary election candidates and game players on Steam
demonstrate the model discovers semantically meaningful topics, factors, and their inter-
actions. The model both outperforms state-of-the-art models in predictive accuracy and
offers new factor-topic insights beyond other topic models.

Keywords: Probabilistic Modeling, Natural Language Processing, Topic Modeling

1. Introduction

In multiple domains, textual data is paired with accompanying numerical covariates. Ex-
amples include questionnaires where free-choice text fields are paired with a set of numerical
(continuous or discrete-choice) answers to different questions (often on a Likert scale); po-
litical discussion where statements of public figures are paired with their voting record;
product reviews where review text is paired with covariates either describing the reviewer
along different attributes or scoring the product by multiple criteria; and many others. Such
datasets contain structure both within the text content, often described as underlying top-
ics; structure within the set of covariates; and structure linking the text and the covariates.
The structures of the covariates and how they interplay with the text content play crucial
roles and offer valuable insights. However, current generative probabilistic models do not
work well in this setting: the models have overemphasized the text structure only with
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little attention to modeling structure in covariates. Available topic models either ignore
covariates or simplistically model only direct influence of individual covariates, which yields
poor overfitted performance when covariates are high-dimensional. Besides poor predictive
performance, such models are also unable to provide insight into the structure in covariates
and its relationship to topics. In this paper, we present a solution.

We introduce the Cross-structural Factor Topic Model (CFTM), a novel generative
probabilistic model which can model the structure of both the text and its high-dimensional
numerical covariates. We describe the generative structure of the model, and a parallelizable
inference algorithm based on variational approximation. We show in experiments on several
data sets that the method yields good performance in modeling held-out document content
and yields meaningful insights about structures of covariates and text content.

The rest of the paper is structured as follows. Section 2 discusses related work. Sections
3 and 4 present the proposed method: Section 3 describes the generative model and Section
4 presents the inference approach. Empirical analysis including quantitative and qualitative
evaluation is presented in Section 5. Conclusions are given in Section 6.

2. Related Work

For modeling text content of documents alone, topic models of multiple kinds have been
proposed. Among them, Latent Dirichlet Allocation (LDA, Blei et al. 2003) is the classical
method, which models document content as a bag of words whose word counts arise out
of a mixture of latent topics, each of which has its own multinomial word distribution.
Nonparametric topic models have been proposed, including Hierarchical Dirichlet Processes
(Teh et al. 2006) which aim to learn the number of topics from data. Nonparametric
modeling is a direction of future extension for our work.

The Entity topic model (ETM, Kim et al. 2012) models the influence of entities on word
content by generating entity mentions from topics and then words from entity-describing
word distributions. However, entity mentions are part of text content, no covariates are
considered. An Author Topic Model (Rosen-Zvi et al. 2004) was introduced to model
relationships between authors, documents, topics and words; however, such models only
consider author identity and do not consider author attributes as covariates.

Supervised LDA (sLDA, Mcauliffe and Blei 2008) was developed to model labeled doc-
uments. An extended approach called Dirichlet-multinomial regression (DMR, Mimno and
McCallum 2008) introduces regression model on topic mixture over covariates. The Sparse
additive generative text model (SAGE, Eisenstein et al. 2011) allows topic content to fluc-
tuate by the covariates. However, none of these models allows covariates to affect both
topic prevalence and content; our proposed model addresses this.

MetaLDA (Zhao et al. 2017) and Structural topic model (STM, Roberts et al. 2016)
both allow covariates to influence topic prevalence and content. However, MetaLDA does
not provide a generative model of covariates, and only takes into account simple binary
label covariates in modeling topics. STM was recently developed based on SAGE. It is an
integrated solution to model covariates (both categorical and continuous) and text. How-
ever, the covariates that affect topic content have a limitation, as they allow discrete values
only. Thus STM cannot handle sophisticated covariates. We will show in our experiments
that STM performance is drastically worsened when the dimension of covariates is high.
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Figure 1: Proposed model. Plates denote top-
ics, factors, documents, and words.
The top row of latent variables (cir-
cles) describe topics, factors, and
their interaction; the 2nd row (θ
and Λ) describe prevalence of topics
and factors in a document; the bot-
tom part describes document content
(gray boxes). Factor-loading prior pa-
rameter α and noise variances σ, σγ ,
Ση, Στ , σφ, σβ omitted for clarity.

Distributed Multinomial Regression (Taddy 2015) is an alternative approach which directly
models the relationship between the word occurrences and the covariates, but it does not
model any structure among the covariates.

Another group of works focuses on combining neural models and topic modeling (Sri-
vastava and Sutton 2017; Card et al. 2018; Gui et al. 2019; Wang and Yang 2020). Among
them, SCHOLAR (Card et al. 2018) can be seen as a similar work to STM which incor-
porates covariates with a variational autoencoder (Kingma and Welling 2014). However,
despite their flexibility these models do not generate structure within covariates, they only
use covariate values as additional inputs in document content generation. Besides topic
models, Non-negative Matrix Factorization (NMF) models are also used for text analysis.
In general, a Poisson likelihood is employed to model the observed text whereas multino-
mial distributed likelihood are typically used by topic models. Many NMF-style works have
been proposed (Hu et al. 2016; Acharya et al. 2015; da Silva et al. 2017; Zhao et al. 2018);
among such works the most relevant is CTPF (Gopalan et al. 2014) which incorporates a
multivariate user-rating matrix into account as covariates, and we will compare to it.

3. Proposed Method

We model a collection of documents indexed by d ∈ {1, . . . , D} with text content and co-
variates jointly by a probabilistic model. Word content is distributed over a vocabulary of
V unique words indexed by v ∈ {1, . . . , V } and covariates are indexed by p ∈ {1, . . . , P}.
Word content arises from K underlying latent topics indexed by k ∈ {1, . . . ,K}, and co-
variates from L < P underlying latent factors indexed by l ∈ {1, . . . , L}. Topics and factors
interact: the strength of the latent factors affects the prevalence of topics and content (word
distribution) in each topic. Figure 1 shows the plate model representation of the overall
model. We next describe the generative model of the covariates and text content.

3.1. Document-level Latent Variables

Factor Loadings. Each document d is attached with a loading vector over L factors,

Λd= [λd,1, . . . λd,L]> ∼ Dir(α) . (1)
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Interaction Coefficients. For each topic k ∈ {1, ...K − 1} a L-length coefficient
vector is generated as

Γk ∼N(0, σ2γIL) (2)

to model the relation between the factors and the prevalence of the topic. Note that
coefficient vectors for the first K − 1 topics suffice since topic prevalences sum to 1.

Topic Prevalence. For each document d, the topic prevalence vector θd = [θd,1, . . . , θd,K ]
is generated as θd = softmax(ηd) where the auxiliary variables are generated as

ηd,1:(K−1) ∼N(Γ>Λd,Ση) (3)

and the ηd,K is fixed to 0.

3.2. Structure of the Covariates

We assume the text content in each document is paired with a set of covariates. Different
covariates in the set may require different model types to properly model their structure.

Let x
(p)
d denote the p:th covariate of document d. We model covariates with two kinds of

structure: mixture model and factorization model. The former is suitable especially for
discrete covariates, such as multiple-choice values, and the latter for continuous covariates.
In both cases the covariate generation depends on a vector Λd of L latent parameters. We
describe both types of covariate generation next.

Mixture Model. In this structure the p:th covariate is generated from a mixture. The
mixture component membership label of the p:th covariate in document d is first generated
from a categorical distribution

s
(p)
d ∼ Cat(Λd) (4)

and the covariate x
(p)
d corresponding to the label s

(p)
d is then generated as x

(p)
d ∼ p(x

(p)
d |ξ

(p)

s
(p)
d

)

with parameter ξ
(p)

s
(p)
d

. We model the distribution in each mixture component as a Poisson

distribution for covariates that are a count of rare events and as a multinomial distribution
for categorical covariates.

Factorization Model. The covariate is directly generated from an exponential family
distribution as

x
(p)
d |Λd,φ

(p) ∼ ExpFam
(
ζ
(
Λd,φ

(p)
)
, T
(
x
(p)
d

))
(5)

in which the natural parameter ζ is a weighted average of factor-wise parameters φ
(p)
l ∼

N(0, σ2φ) weighted by the document-specific factor loadings Λd, so that

ζ
(
Λd,φ

(p)
)

= g(p)

(
L∑
l=1

φ
(p)
l λd,l

)
(6)

where g is the link function of the exponential-family model. For example, if a Gaussian

with a known variance σ2 is taken as the distribution, we have x
(p)
d ∼ N(

∑L
l=1 φ

(p)
l , σ2).
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3.3. Structure of Text

Topic Content. We model the word generation process with a SAGE-inspired structure
in which each document is attached with a latent vector βd of length V . The v:th element
of the latent vector is generated as

βd,v = κ(w)v +
∑
k

θd,kκ
(t)
v,k +

∑
l

λd,lκ
(f)
v,l +

∑
k

∑
l

θd,kλd,lκ
(i)
v,l,k + εβ (7)

where εβ ∼ N(0, σ2β). The κ(w) is a vector of length V controlling the overall word preva-

lence. The overall topic content κ(t) is a V × K matrix, factor influence κ(f) is a V × L
matrix, and κ(i) is a V × L×K array which governs factor-topic interactions on the topic

content level, that is, the value of κ
(i)
v,l,k reflects the strength of how much the factor l alters

the word probability of v in topic k.
To generate the observed words in the document, for the nth word in document d, the

word w
(d)
n is sampled from a multinomial distribution

w(d)
n ∼MN (softmax (βd)) . (8)

This model design allows the latent factors and topics to interact on both topic preva-
lence and topic content levels.

4. Variational Inference

We carry out variational inference for the model; variational inference aims to approxi-
mate the posterior distribution of model parameters by a factorized distribution q whose
components are from known families. Unlike point estimate methods such as maximum a
posteriori (MAP), variational inference is able to model a full distribution for parameters
based on observations. The parameters of the factorized distribution are optimized by min-
imizing Kullback-Leibler divergence from the factorized distribution to the true parameter
posterior, which becomes equivalent to maximizing the Evidence Lower Bound (ELBO).
Iterative optimization optimizes each component distribution given the others; depending
on the form of the observation probability and parameter priors, the optimum is obtained
analytically for some parameters and by optimization techniques for others. In particular
it turns out a crucial part, inference of the topic content, is nontrivial to do computation-
ally efficiently–naive inference is slow; we solve this by a distributed multinomial regression
approach with a kernel trick.

Topic Prevalence. Using Laplace Variational Inference (Braun and McAuliffe 2010;
Wang and Blei 2013), the variational distribution of ηd is obtained as

q(ηd) ≈ N(η̂d,−∇2L(η̂d)
−1) (9)

where the mean η̂d is the MAP solution, i.e., optimum of

L(ηd) ∝ −
1

2
η>d Σ−1η ηd + η>d Σ−1η Γ>Λd +

∑
v

cd,v log
∑
k

ud,k,v exp(ηd,k)

−Wd log
∑
k

exp(ηd,k) (10)
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and ud,k,v is an auxiliary variable

ud,k,v =
exp

(
κ
(w)
v + κ

(t)
v,k + E[Λd]

>κ
(f)
v + E[Λd]

>κ
(i)
v,k

)
∑

v exp
(
κ
(w)
v + κ

(t)
v,k + E[Λd]>κ

(f)
v + E[Λd]>κ

(i)
v,k

) . (11)

The ∇2L(η̂d) is a Hessian matrix of L(ηd) at η̂d. We find η̂d with the “L-BFGS” optimizer.
Mixture Covariates Model. We infer the component parameters for each member-

ship label l = 1, . . . , L. We present separately the cases for count data and for categorical
data. We also infer the distribution of the membership labels.

When the p:th covariate is Count Data (with a Poisson model), we consider the Poisson

parameter ξ
(p)
l for each membership label l = 1, . . . , L. The optimum of the variational

distribution has an analytical form and becomes

q(ξ
(p)
l ) = Gamma(a(p) + E[Λl]

>X
(p)
d , b(p) +

∑
d

(E[Λl])) (12)

When the p:th covariate is Categorical Data (with a Multinomial model), we consider

for each membership label l = 1, . . . , L the multinomial parameter ξ
(p)
l , i.e., the vector of

category probabilities. The solution has an analytical form q(ξ
(p)
l ) = Dir(a(p)+

∑
dE[s

(p)
d =

l]X
(p)
d ) where s

(p)
d is the current membership label for covariate p of document d.

Membership Labels. The variational distribution of the mixture membership label

s
(p)
d for covariate p of document d is multinomial and the optimum has an analytical form

log q(s
(p)
d = l) ∝ logE[λd,l] +

∑
p logE[p(x

(p)
d |ξ

(p)
l )].

Factorization Covariates Model. Taking advantage of conjugacy, the variational

posterior of the factor-wise natural parameters φ
(A)
p is q(φ(p)) = N(µ̂φ(p) , Σ̂φ(p)) where the

covariance matrix Σ̂φ and the mean µ̂φ(p) are

Σ̂φ =

(
Σσ
−1 +

1

σ2φ

∑
d

Eq

[
ΛdΛ

>
d

])−1
, µ̂φ(p) = Σ̂φ

∑
dEq [Λd]x

(A)
d,p

σφ2
(13)

where Σσ = Diag(σ2, . . . , σ2).
Factor Loading. The variational posterior of Λd is a Dirichlet distribution parame-

terized by pseudocount vector αΛd
. To derive the variational posterior (i.e. find the αΛd

),
we set up an objective function proportional to the ELBO; the objective function is

Eq[(a + sd − 1)> log Λd +
1

2
(2b>Λd −Λd

>AΛd)]−H(Λd) (14)

where we have

b = Eq

[
ηd
>Σ−1η Γ> +

∑
k

θd,k(wd
>κ

(i)
k )

]
+ Eq

[
X

(A)
d

>
Σ−1(A)φ

>
]

and (15)

A = Eq

[
ΓΣ−1η Γ> + φΣ−1(A)φ

>
]
, (16)
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and H(Λd) is the entropy of the Dirichlet distribution. Using a Taylor approximation to
simplify the computation, denote

f(Λd) = (a + sd − 1)> log Λd +
1

2
(2bΛd −ΛdAΛd) . (17)

Then the objective function becomes

Eq[f(Λd)]−H(Λd) ≈ f(Λ̂d) +
1

2
tr(∇2f(Λ̂d)Covq(Λ̂d))−H(Λd) (18)

where Λ̂d =
αΛd∑
l αΛd l

is the mean of Λd and ∇2f(Λ̂d) = Diag( (1−a−sd)
Λ̂
−2
d

)−A is the Hessian

matrix. The L-BFGS optimizer is used to optimize (18) with respect to αΛd
.

Topic-Factor Interaction. For k ∈ {1, . . . ,K−1}, we derive the variational posterior
of the interaction coefficient vector Γk which defines the effect of factor loadings on the topic
prevalence. As the prior of the coefficients and the likelihood are both normal, taking the
advantage of the conjugacy we have the analytical posterior q(Γk) = N(µ̂Γk

, Σ̂Γk
) where

the covariance matrix Σ̂Γk
and mean µ̂Γk

are

Σ̂Γk
=

(
Ση
−1
∑
d

Eq

[
ΛdΛ

>
d

]
+ Σγ

−1

)−1
and (19)

µ̂Γk
=
(
Eq [Λ]Eq [Λ]> + Σγ

−1
)−1

Eq [Λd]
>Eq [η] . (20)

Topic Content. The complexity of topic content β and κ leads to challenges of ef-
ficiency and accuracy. A naive derivation of a variational posterior would yield computa-
tionally inefficient and non-scalable equations involving inverses of huge matrices and other
expensive computations. Instead, we develop a set of tailored inference algorithms based on
distributed multinomial regression (Taddy 2015) and a kernel trick (Agrawal et al. 2019),
as described next in Proposition 1, Proposition 2, and Theorem 1. The propositions and
theorem show how the text structure inference algorithm can be implemented with parallel
computation (each vocabulary term can be run in parallel) to enhance efficiency.

Proposition 1 (Distributed Multinomial Regression) The inference of the β in (8)
can be performed through conducting inference on independent Poisson models for each
word, where each word v has the following generative model:

κv ∼ N(0,Στ ) , βd,v = κv
>Ψd + εβ , wd,v ∼ Poisson

(
eβd,v+κ

(w)
v +logmd

)
(21)

where εβ ∼ N(0, σ2β) is the random noise. The notation κv = [κ
(t)
v,1, . . . κ

(t)
v,K , κ

(i)
v,1,1, . . . , κ

(i)
v,L,K ]

joins together the topic and topic-factor interaction coefficients affecting word v. Corre-
spondingly, Ψd is a mapping function that represents the combined influence terms of both
topic prevalences and factor loadings and is defined as

Ψd , Ψ (θd,Λd) := [θd,1, . . . , θd,K ,Λd,1, . . . ,Λd,L,Λd,1θd,1, . . . ,Λd,Lθd,K ] (22)
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where the first K elements in the vector are the topic prevalence, the positions are cor-

responding to the κ
(t)
v and the rest are topic-factor interactions, their position are corre-

sponding to vec(κ
(i)
v ). In the following, for simplicity we abuse the notation, using zd to

denote the collection of {θd,Λd}. The logarithm of the document length logmd is plugged
in to serve as the fixed effect (exposure) in the Poisson model.

This framework was proposed by Taddy (2015) to transform the multinomial logistic
model into a collection of independent Poisson models to circumvent expensive compu-
tations resulting from softmax transformation. Moreover, since the Poisson models are
independent of each other, one can easily introduce parallel computation techniques (e.g.
map-reduce, Dean and Ghemawat 2008) to speed up the computation. STM also adopted
this approach; we apply the framework in a novel factor-topic modeling context. By adapt-
ing the framework, the likelihood model (8) is factorized into V independent term-wise
Poisson models with a plug-in fixed effect (exposure) shared across terms.

Proposition 2 (Gaussian Process Reparametrization) The generative model in Propo-
sition 1 can be reparameterized as

gv ∼ GP (0, kτ ) , βd,v = gv(zd) , wd,v ∼ Poisson
(
eβd,v+κ

(w)
v +logmd

)
(23)

where the equation of βd,v in (21) is seen as a function with inputs θd and λd and is then
presented as the equation of βd,v in (23), and with a Gaussian process prior .

Combining the propositions 1 and 2, taking the weight-space view (see Rasmussen and
Williams 2006), the prior of βv becomes

βv ∼ N(0,Kτ + σ2βID) (24)

where Kτ is a D×D matrix with kτ (zd, zd′) , Ψ>d ΣτΨd′ . We first find the point estimate
βv
∗ , argmax

β
f(β) with the objective function

f(β) =
∑
d

log p(wd,v|βd,md)− logβ>Rτβ (25)

where Rτ =
(
Kτ + σ2βID

)−1
. We use “L-BFGS” to get the fixed κ

(w)
v value by κ

(w)
v =

1
D

∑
d β
∗
d,v, the margin β(m) =

[
β∗1 − κ

(w)
1 . . . ,β∗V − κ

(w)
V

]
is then the posterior mode of

β. These equations infer the posterior of the word distribution parameters β which are

combinations of topic and factor influences. Next we infer the influence variables κ
(t)
v of

topics to each word and κ
(i)
v,,k of factors to each word and topic, with the following theorem.

Theorem 1 (Kappa Recovery) Let θk be a k-th unit vector with length K, Λl be a l-th
unit vector with length L, zk denote the collection {θk,Λ0}, zl denote the collection {θ0,Λl},
and zk,l denote the collection {θk,Λl}. Then the posterior of κ

(t)
v,k is N(µ

κ
(t)
v,k

, σ2
κ
(t)
v,k

), and

the posterior of κ
(f)
v,l is N(µ

κ
(f)
v,l

, σ2
κ
(f)
v,l

) where

µ
κ
(t)
v,k

= Kτ

(
zk, {zd}Dd=1

)
Rτβ

(m)
v , µ

κ
(f)
v,l

= Kτ

(
zl, {zd}Dd=1

)
Rτβ

(m)
v , (26)
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σ2
κ
(t)
v,k

= kτ (zk, zk) +Kτ

(
zk, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk

)
, (27)

σ2
κ
(f)
v,l

= kτ (zl, zl) +Kτ

(
zl, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zl

)
(28)

and Kτ and Rτ are defined in Proposition 2. The posterior of κ
(i)
v,k,l is N(µ

κ
(i)
v,k,l

, σ
κ
(i)
v,k,l

) with

µ
κ
(i)
v,k,l

= [−1,−1, 1]Kτ

(
{zk, zl, zk,l}, {zd}Dd=1

)
Rτβ

(m)
v (29)

where [−1, 1, 1] is simply the 1× 3 matrix with elements 1 and −1, and the variance is

σ2
κ
(i)
v,k,l

= kτ (zk, zk) + kτ (zl, zl) + kτ (zk,l, zk,l) +Kτ

(
zk, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk

)
+

Kτ

(
zl, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zl

)
+Kτ

(
zk,l, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk,l

)
. (30)

Proof By Proposition 2, g(zk) = κ
(t)
v,k, thus, given the multivariate normal distribution[

β
(m)
v

g(zk)

]
∼ N

(
0,

[
Kτ + σ2βID Kτ

(
{zd}Dd=1, zk

)
Kτ

(
zk, {zd}Dd=1

)
kτ (zk, zk)

])
(31)

the posterior mean and variance of κ
(t)
v,k can be obtained as

µ
κ
(t)
v,k

= E
[
g(zk)|{zd}Dd=1,β

∗
v

]
= Kτ

(
zk, {zd}Dd=1

)
Rτβ

(m)
v and (32)

σ2
κ
(t)
v,k

= V ar
(
g(zk)|{zd}Dd=1,β

∗
v

)
= kτ (zk, zk) +Kτ

(
zk, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk

)
.

(33)

Similarly, the posterior mean and variance of κ
(f)
v,l are

µ
κ
(t)
v,k

= Kτ

(
zk, {zd}Dd=1

)
Rτβ

(m)
v , σ2

κ
(f)
l,k

= kτ (zl, zl)+Kτ

(
zl, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zl

)
.

(34)

Since we have g(zk,l) = κ
(t)
v,k + κ

(f)
v,l + κ

(i)
v,k,l, given the multivariate normal distribution[

β
(m)
v

g(zk,l)

]
∼ N

(
0,

[
Kτ + σ2βID Kτ

(
{zd}Dd=1, zk,l

)
Kτ

(
{zk,l, zd}Dd=1

)
kτ (zk,l, zk,l)

])
(35)

the posterior mean and variance of κ
(i)
v,k,l can be obtained accordingly via

µ
κ
(i)
v,k,l

= E[g(zk,l)− g(zk)− g(zl)|{zd}Dd=1,β
(m)
v ] and (36)

σ2
κ
(t)
v,k

= V ar
(
g(zk,l)− g(zk)− g(zl)|{zd}Dd=1,β

(m)
v

)
. (37)
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The process for the inference of text structure is summarized in Algorithm 1 and the
entire inference process is shown in Algorithm 2, where the update steps correspond to the
equations described in this section for each parameter.

Algorithm 1: Text Structure Inference Algorithm 2: Variational Inference

Data: Term-document Matrix
Hyper-parameters: σβ, Στ

Result: {β(m), κ(w), κ(t), κ(i)}
for v in 1, . . . , V do

Obtain β∗v with (25)

Obtain κ
(w)
v with (4)

Obtain β
(m)
v = β∗v − κ

(w)
v

Recover κv with Theorem 1
end

Data: Term-document Matrix W,
Covariates X

Model Setting: K, L
Hyper-parameters: σβ, Στ , Ση, σγ , σφ
Result: {β, κ, η, Γ,Λ, s,φ,ξ}
for t in 1, . . . ,maxit do

Update β, κ (Text Structure)
Update η, Γ, Λ, s (Local Variables)
Update φ, ξ (Covariate Structure)

end

5. Empirical Study

The empirical study comprises two parts. In the first part we compare our model quanti-
tatively with other state-of-the-art approaches. We will show that it outperforms the other
methods with regard to predictive performance on held-out data. The second part contains
qualitative evaluations on case studies which demonstrate the usability of CFTM for gain-
ing insight into text data and their covariates. The fitted CFTM model is used to extract
underlying topics, structure among the covariates, and their interactions.

5.1. Datasets

We perform the empirical study using three real-world datasets.
Yle Election Compass 2019 is a survey directed to candidates for Finnish parliamentary

elections with results open to the public.1 It collects each candidate’s basic information
and agreement with different statements about ideological viewpoints, societal issues and
policies, measured by 29 Likert scale questions (score 1-5). Candidates can elaborate their
answers to advertise or communicate to voters; We take the written content of each candi-
date as the text document, the Likert scale questions as continuous variables, and gender
and native languages as categorical variables. Text is lemmatized, numbers, punctuation
and stop-words are removed. Texts with more than 40 words are taken for analysis, the
final dataset contains 1937 documents and 1764 vocabulary terms. The original text is in
Finnish, in the case study shown in Section 5.3 we provide an English translation.

Doom Eternal Game Reviews were collected from Steam2, a popular gaming plat-
form with an abundance of player-written game reviews. We focused on a first-person
shooter game “Doom Eternal”. Review texts and corresponding metadata were collected
via SteamAPI and profile data was crawled from public profile pages linked with collected
Steam IDs. The positivity/negativity (if the reviewer recommends the game or not) is taken

1. https://vaalikone.yle.fi/eduskuntavaali2019 ; https://yle.fi/uutiset/3-1072538.
2. https://store.steampowered.com/
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as a categorical variable. The number of submissions and guides of users are rare events so
they are considered count variables. We identified 22 continuous variables such as number
of achievements, and played time, etc. For text content, numbers, punctuations and stop
words were removed and the text was lemmatized. Reviews with more than 40 words after
processing were kept. Finally, a collection of 1144 reviews and 2377 terms remained.

Airport Lounge User Reviews were collected from Skytrax3, in which customers can
give numerical ratings (score 1-5, including aspects such as comfort and staff) to the air-
port lounges together with written reviews. Again, we keep reviews with more than 40
words, numbers, punctuations and stop words were removed, and texts are lemmatized.
The processed data set contains 1311 reviews with 2799 vocabulary terms, paired with 8
numerical ratings, and 2 categorical ratings (recommend or not).

5.2. Quantitative Evaluation

We compare our model with four state-of-the-art models: LDA, STM, MetaLDA, and
SCHOLAR. The performance comparison focuses on held-out prediction using the above-
mentioned datasets. Details are described as follows.

Evaluation Metric. The held-out likelihood is used to evaluate model performance.
The text content is randomly divided into training and held-out sets, each containing 50%
of the original content 4. The training set is used to fit the models. The fitted model is then
used to predict the held-out text content and the held-out likelihood values are computed.
Note that another typical metric, perplexity on the test set, is an exponential transformation
of the held-out likelihood: higher held-out likelihood means lower perplexity.

Experimental Settings. CFTM is run with simple unoptimized prior settings α =
10 · 1, Σγ = Στ = 10 · I, ση = σφ = 0.1, σβ = 0.01. Other methods are run with their
default values. We evaluate the model performance on different settings (combinations
of the number of topics K ∈ {5, 10, 15, 20} and number of factors L ∈ {5, 10}). To assess
robustness of the methods to limited data, we run experiments both on the full data sets and
on a random draw of 500 documents. The document subset sampling (in the limited-data
case), train-test division, and model fitting are repeated 10 times for each setting.

Running time. We implemented our algorithms in R 5. Using the parallel implemen-
tation, on average our model takes around 8 minutes and 13 minutes to converge using 8
and 4 cores respectively. In contrast, the R implementation of STM (a method also having
covariates) takes 18 minutes to converge, clearly longer than our model.

Results. The result is shown in Figure 2. In most settings (Yle Compass with 500 sam-
ples, Doom Eternal full data set and 500-samples, Lounge reviews full) CFTM clearly and
statistically significantly outperforms all other methods. In two settings results were closer:
for Lounge reviews with 500 samples, CFTM with L = 5 is statistically significantly better
than the closest competitor SCHOLAR for 5 and 10 topics and not significantly different
for 15 and 20; for the Yle Compass full data set the difference to the closest competitor
LDA is not statistically significant. Overall, CFTM has consistently good performance.

3. www.airlinequality.com, we use the collection https://github.com/quankiquanki/skytrax-reviews-dataset
4. Note that the 50%-50% division is chosen according the practice used in STM(Roberts et al. 2016).
5. source code and data sets used in this work can be found in supplementary material
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Figure 2: Quantitative evaluation, performance comparison with held-out likelihood (per
word), higher is better. CFTM is compared to LDALDA, MetaLDA, SCHOLAR,
STM, MetaLDA, and CTPF. (a)-(c): Comparison on the full dataset. (d)-(f):
Comparison on 500 random samples. The box plots show variation of performance
over random simulations or random divisions of data.

5.3. Case Studies

We conduct empirical analyses using CFTM on Yle Election Compass 2019 and Doom
Eternal Game Reviews datasets. The hyper-parameter setting is the same as above but the
model is trained with the full datasets. Among multiple choices of the number of topics and
factors, we use semantic coherence (Mimno et al. 2011) as the model selection criterion to
choose the best CFTM model for inspection.

Spectrum of political positions. When fitting the Yle Election Compass 2019
dataset, the CFTM model with 9 topics and 5 factors was selected. Figure 3(a) shows
the top words for the 9 extracted topics. Topic names are assigned by authors by analy-
sis of the topic words. CFTM has found clear topical content appropriate in the domain:
each topic uncovers different aspects of political interests ranging from local politics (Local
Politics of Pirkanmaa) to climate issues (Climate Change and Costs).

Figure 3 (b) displays the factor structures of three factors: Eurosceptic, Green, and Pro-
global 6 and Figure 3 (c) presents their influences on topic content. Similarly to the topics,
factor labels can be assigned by analyzing their feature weights (posterior mean of φ). For
example, the factor Green supports environmental protection, having high agreement with
statements such as “Climate is worth the cost”, “Discourage eating meat”, and “Reduce tree
cutting”. The factor Eurosceptic agrees with statements “Leave eurozone” and “Immigrants

6. The feature weights of all the 5 factors are provided in supplementary material
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Figure 3: CFTM results for Yle Election Compass. (a) Extracted topics. Top words are
shown in order of frequency in the topic. (b) Feature weights of factors Euroscep-
tic, Green and Pro-global. (c) Wording difference of Eurosceptic vs. Green on
the topic Climate Change and Costs, and wording difference of Eurosceptic vs.
Pro-global on topics Young Immigrants. Horizontal position of a term v shows

the difference κ
(i)
v,l,k − κ

(i)
v,l′,k in topic k of factors l and l′.

cause insecurities”, and disagrees with “Join NATO”; and the factor Pro-global holds an
opposite position on the above statements and supports “More work-based Immigrants”.

The impact of factors on wordings of a topic can be explored with the posterior of κ(i).
Figure 3 (c) examines factor influence on wordings, showing the comparison of Eurosceptic
vs. Green on the topic Climate Change and Costs and the comparison of Eurosceptic vs.
Pro-global on the topic Young Immigrants. The horizontal axis reveals the difference of
influence between two factors on prominence of words. Candidates with high loading along
the Eurosceptic factor use more words ‘let alone’ and ‘make time’ when discussing the topic
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Climate Change and Costs whereas candidates aligned along the factor Green emphasize
‘claims’, and ‘personally’. On the other hand, when it comes to the topic emphasize Young
Immigrants, candidates aligned along the factor Eurosceptic use more words such as ‘vic-
tim’, and ‘consumption’, whereas candidates aligned along the factor Pro-global use more
words such as ‘compete’ and ‘result’. The differing wording preferences among the factors
corresponding to competing political orientations shows how the same issues (topics) are
approached from very different perspectives by candidates aligned along those factors.

Exploring player experiences. The CFTM model of 6 topics and 7 factors was
selected when fitting the Doom Eternal Game Reviews dataset. Figure 4 (a) displays the
topic words of the extracted topics. The topics cover game mechanics (e.g. Fighting, Damage
and Survival) and more general views on the game (Feelings and Experiences) and issues
external to the play experience (Support and Services). Figure 4 (b) 7 and (c) further present
the feature weights of factors Doom-focused Player, Game Collector, and their influences
on topics Support and Services and Feelings and Experiences. Players with high loading
of the factor Doom-focused Player are more likely to use words like ‘doom’ and ‘account’
in the topic Support and Services and ‘feel’, ‘weapon’ in topic Feelings and Experiences,
whereas players with a high loading of the factor Game Collector prefer words ‘rip’, ‘tear’
in both topics Support and Services and Feelings and Experiences. The topics, factors and
interactions are well-suited for the domain.

6. Conclusions

We presented the Cross-structural Factor-Topic Model (CFTM), a novel generative prob-
abilistic model for text documents occurring with sophisticated covariates. It represents
latent topical structure in text, factor structure in covariates, and influence of the factors
on both topic prevalence and content. The model is flexible, allowing both discrete covari-
ates with a mixture structure and continuous covariates with a factorized structure in the
same model. We proposed an efficient inference scheme coupling variational inference to
efficient distributed inference. In experiments the model outperformed LDA, STM, Met-
aLDA, and SCHOLAR; moreover, CFTM discovered meaningful topics, factors, and factor
influences in case studies investigating a political survey and reviews of a computer game.
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