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Abstract— This paper develops a resilient cooperative control
system for leader-follower consensus problems subject to false
data injection attacks. The attackers are assumed to inject un-
known bounded exogenous signals to the actuators of followers
and/or the communication networks of the leader and follower
states. In order to attenuate the effects of such attacks on the
consensus and stability of the system, we develop a cooper-
ative control system augmented with a virtual network and
interconnected with a leader and followers so that the leader-
follower consensus is guaranteed under unknown attacks. A
Lyapunov-based design framework is proposed to guarantee
stability and leader-follower consensus against attacks. The
effectiveness of the theoretical results is evaluated through a
simulation example.

I. INTRODUCTION

Cooperative control systems has recently received signifi-
cant attention due to their applicability in various problems
including smart grids and energy systems, DC microgrids,
intelligent transportation system, robotics, and sensor net-
works [1]–[5]. Despite the potential benefits of the coopera-
tive systems over centralized counterparts such as improved
scalability, reliability, resilience to a single point of failure,
and reduced cost, the use of communication network makes
cooperative systems vulnerable to cyber-physical attacks. A
real-world example of such cyber-attack is the coordinated
attack on the Ukraine power grid in 2015 which caused
several hours of blackout and affected hundred thousands
of customers [6].

To address the challenges associated with cyber-physical
attacks in cooperative control systems, a number of control
strategies have been proposed in the literature. The exist-
ing methods can be categorized as attack-detection-based
approaches and resilient control techniques.

The first category is mainly based on the identification
of malicious nodes and their removal. Examples of attack
detection approaches can be found in [7]–[10] and reference
therein. The main drawback of these approaches is that there
is usually restriction on the number of compromised nodes,
the local number of adversarial nodes in the neighborhood of
each intact node, or the connectivity of the communication
graph. More importantly, the system stability may already
have been compromised before the attack is detected. Since
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cyber-attacks cannot be foreseen in advance, it is thus
desirable to design cooperative control algorithms so that
the cooperative system becomes resilient against unknown
attacks.

To address the issues regarding the first category, re-
silient cooperative control systems have been developed (e.g.
[11]–[19]) that attenuate the adverse effects of malicious
agents/nodes and maintain an acceptable performance level
of the system against attacks, without detecting and removing
misbehaving agents. A distributed adaptive control strategy
for multi-agent systems in the presence of misbehaving
agents is developed in [16] and is extended to the case of di-
rected communication graphs in [17]. A resilient distributed
adaptive H∞ control for the leader-follower synchronization
under attacks on sensors and actuators is presented in [15].
A cooperative control method, based on a virtual layer,
for the leader-follower consensus has been proposed in
[11] which provides resilience against attacks on commu-
nication networks. In [19], a resilient distributed control
algorithm composed of four phases (detection, mitigation,
identification, and update) is developed for leader-following
consensus problems under some misbehaving followers. The
control approaches in [11]–[19] require the connectivity of
the communication graph, as well as the knowledge on
the neighboring agents. In summary, the existing results on
resilient cooperative control have limitations on the connec-
tivity requirement of the communication network, number of
compromised nodes, the local number of malicious nodes,
and the centralized design of the control parameters. Yet, a
systematic resilient cooperative control approach, which does
not rely on the above-mentioned limitations and guarantees
the stability and consensus while under unknown attacks, is
highly desirable.

Motivated by aforementioned challenges, this paper pro-
vides a theoretical framework for leader-follower consensus
problems with an emphasis on the resilience against false
data injection cyber-attacks. The attackers aim to destabi-
lize the consensus dynamics by intercepting the system’s
communication network and injecting false data to actuators
(control input channels). The main objective of this paper is
to develop a cooperative control strategy to ensure the leader-
follower consensus and guarantee the stability of the cooper-
ative system against potential unknown attacks. Inspired by
[11], our proposed cooperative control approach consists of
a virtual system with a hidden network where the communi-
cation between the virtual system and follower/leader nodes
are decentralized. By virtue of the Lyapunov stability theory,
we show that by an appropriate choice of control parameters,



the origin of the overall system, i.e., the interconnection of
the follower/leader nodes and the virtual system is globally
asymptotically stable.

The proposed resilient cooperative control mechanism
offers the following main features: (i) The proposed con-
trol strategy does not require any information about the
nature and/or location of cyber-attacks and does not have
any restriction on the number of malicious nodes. (ii) The
controller design for each follower is decentralized without
requiring any knowledge on neighboring nodes. (iii) In
contrast to the virtual system proposed in [11]–[14], the
communication graph in the virtual network does not need
to be necessarily connected. Instead, it is assumed that the
communication digraph contains a rooted-out tree. These
important features as well as the decentralized design of con-
trol variables facilitate creating a plug-and-play environment,
where follower nodes can be easily plugged in/out as long
as the updated digraph has a rooted-out tree. Furthermore,
the physical states of cooperative systems are not being
exchanged with other nodes in the virtual system. As a result,
the risk of the virtual system being exposed to the adversary
might be minimized. (iv) By means of the proposed coopera-
tive control system, leader-follower consensus is guaranteed
in the presence of the aforementioned attack types.

Throughout this paper, 1n is an n× 1 vector of ones,
0n is an n× 1 zero vector, In is an n× n Identity matrix,
and 0n×m is a zero matrix of dimension n×m. Through-
out the paper, col(x) =

[
xT

1 xT
2 . . . xT

n
]T and [a] =

diag(a1,a2, . . . ,an). For a symmetric matrix X , the positive
definite and positive semidefinite operators are respectively
shown by X � 0 and X � 0. We define R+ := {x∈R |x > 0}
and R≥0 := {x ∈ R |x≥ 0}.

II. PROBLEM STATEMENT

Consider a cooperative system consisting of n+1 nodes,
where a leader node is labeled by 0 and the follower nodes
are labeled by i, i= 1, . . . ,n. The information flow among the
nodes is modeled by a directed graph G = (V (G ),E (G )),
where the node set V (G ) and the edge set E (G ) represent
nodes and integrant information exchange links, respectively.
Let xi(t)∈R denotes the state of node i whose dynamics are
given by

ẋi(t) = ui(t), (1)

for i ∈ V (G ), where ui(t) ∈R is the control input of node i.
The main objective is to design the control input ui(t) such
that

• The cooperative system in (1) reaches a consensus, i.e.

lim
t→∞

(xi(t)− x j(t)) = 0, i, j ∈ V (G ), (2)

• The follower nodes track the leader node, i.e.

lim
t→∞

xi(t) = x0, i ∈ V (G ), (3)

where x0 ∈ R is the state of the leader node.

A. Leader–Following Consensus

Consider the following distributed control protocol [20]:

ui(t) = ai0 (x0− xi(t))+
n

∑
j=1

ai j (x j(t)− xi(t)) , (4)

for i ∈ V (G ), ai j ∈ {0,1}, and ai j = 1 if the follower node i
receives information from node j including the leader node
0; otherwise, ai j = 0. The cooperative system with the control
protocol (4) can be written in a compact form as

ẋ(t) =−(L +A )x(t)+(L +A )1nx0, (5)

where x(t) = col(x(t)), A = diag(a10, . . . ,an0), and L is the
Laplacian matrix associated with the digraph G . Defining
the error state e(t) = x(t)−1nx0, the error dynamics of the
closed-loop system (5) can be written as

ė(t) =−(L +A )e(t). (6)

If there exists a node which has access to the state infor-
mation of its neighbours and the leader node and the graph
contains a directed spanning tree with the leader node as
the root node, it can be shown that −(L +A ) in (6) is
Hurwitz [21]. As a result, we have limt→∞ x(t) = 1nx0, that
is the consensus and the tracking objectives in (2) and (3)
are achieved [20].

B. Cyber-Attack Modeling

In practice, malicious attackers might inject unknown
exogenous signals to the control input channels of con-
trol nodes and/or the communication links of the physical
states. Note that in this paper, we assume that sensors are
secured and are not attacked. Without loss of generality,
it is assumed that cyber-attacks are bounded. This is a
reasonable assumption since from the attacker’s perspective
any intelligent attacker would aim at destabilizing the system
with a bounded injection to avoid the attack detection [11].
On the other hand, from the defender’s perspective, in the
case of unbounded injection, simple filtering can be applied
to each node in order to remove excessively large signals
received from its neighbors [11]. Similarly, excessively large
signals observed in actuators or can be also ignored. To this
end, a filtering and bad-date rejection technique based on a
thresholding mechanism has been proposed in [11].

Under the potential attack δui(t) on the control input
channel i (actuator), the false data injection cyber-attack can
be modeled as follows:

ûi(t) = ui(t)+λuiδui(t), (7)

where ûi(t) is the corrupted control input and λui ∈ {0,1},
where λui = 1 indicates the presence of an attack on the con-
trol input of the follower node i. Moreover, the measurement
state xi(t) communicated from node i (including the leader
node) to the follower node j in the presence of the attack is
modeled as

x̂[i, j](t) = xi(t)+λx[i, j]δx[i, j](t), (8)



for i = 0,1, . . . ,n, where xi(t) is the unattacked measurement
of state of node i, x̂[i, j] is the disrupted state measurement sent
to node j, λx[i, j] = 1 if there is an attack on the communication
of xi(t) from node i to node j, and 0 otherwise.

Cooperative system in (5) is not resilient against attacks on
actuators and/or communication links and does not guarantee
the consensus and tracking objectives in (2) and (3) in the
presence of false data injection attacks in (7) [11], as will
be shown in Fig. 2 (b) in Section IV. The main objective of
this paper is to develop an attack-resilient distributed control
strategy such that the objectives given in (2) and (3) are
guaranteed in the presence of the unknown potential attacks
in (7) and (8).

III. RESILIENCE COOPERATIVE CONTROL

This section is devoted to the development of a new
resilient cooperative control system. The equilibria and sta-
bility analysis are then presented.

A. Proposed Attack-Resilient Distributed Control Strategy

In order to guarantee the consensus and the tracking in
the presence of cyber-attacks, a control layer with a virtual
(and possibly hidden) distributed network (also called as
virtual system) is introduced in addition to the (peer-to-peer)
communication network utilized to implement cooperative
control (5). The number of nodes in the virtual network is
equal to n. The dynamics of the virtual layer are given as
follows:

Tvi v̇i =−αi (vi− xi)−K
n

∑
j=1

γ j,i
(
θi−θ j

)
−βγi0 (vi− x0) ,

Tθi θ̇i =−ηiθi +
n

∑
j=1

γi, j
(
vi− v j

)
,

Twi ẇi =αi (vi− xi) ,

ui =k1,iαi (vi− xi)+ k2,ixi + k3,iwi,

(9)

for i = 1, . . . ,n. The parameters Twi ∈ R+, Tvi ∈ R+, Tθi ∈
R+, K ∈ R+, ηi ∈ R+, γi j ∈ R≥0, αi ∈ R+, β ∈ R+, and
(k1,i,k2,i,k3,i) are the design parameters of the distributed
control protocol (virtual system) that can be used to guar-
antee the closed-loop stability in the presence of unknown
attacks. Scalar γi0 ∈ {0,1}, where γi0 = 1 if the virtual
node i receives information from the leader; otherwise, we
set γi0 = 0.

The schematic diagram of the closed-loop system and the
interconnection between the control layer and the agents is
depicted in Fig. 1. Interpretation and rationale of the virtual
system proposed in (9) are described below. The virtual
network can be realized by using the cloud computing and
communication technologies while the information flow in
the virtual network can be directed by taking advantage of
the flexibility offered by software-defined networking [22].
Each follower node has a corresponding virtual node in cloud
which can perform computation and send back the signal
used for resilient control. Moreover, each follower node and
the leader publish its state xi(t) and x0 to the cloud (see
Fig. 1). The resilient control ui(t) in (9) implemented by
local controller of each node can also be written as

ui(t) =µ(ai0 (x0− xi(t))+
n

∑
j=1

ai j (x j(t)− xi(t)))

+ k1,iαi (vi(t)− xi(t))+ k2,ixi(t)+ k3,iwi(t),

with scalar µ = 0 which means that each follower node
ignores the information that it receives via peer-to-peer
communication network used to implement (4) from the
leader node and its neighbors. In other words, instead of
using the information that they receive over the peer-to-peer
network, the virtual nodes first try to “randomize” the local
states xi(t) using the dynamics of the auxiliary variables vi(t),
wi(t), and θi(t) in (9) before exchanging these values with
other virtual nodes in the virtual network (which can be
randomly chosen as will be shown later).

Remark 1: Note that the virtual variables vi, wi, and θi
in (9) do not have any physical meaning and their initial
values can be set to any values. Furthermore, the virtual
network might be secured; however, this is not a must. Even
though the virtual network is not secured, the adversary
might find it hard to destabilize the system since it would
be very difficult for the adversary to recognize the auxiliary
variables among the huge amount of other variables. The
adversary might corrupt the information exchange from the
follower i and/or the leader to j (x[i, j](t)); however, according
to (9) x[i, j](t) is not exchanged in the cloud or utilized in
(9). Hence, the existence of cyber-attacks on communication
channels used for cooperative control (5) does not affect the
proposed resilient control. This is one of the main advantages
of virtual system proposed in this work compared to the ones
presented in [11]–[14], as it does not require x[i, j](t) to be
exchanged in the virtual layer. As a result, the hidden layer
might be secured with a high probability.

Dynamics of the virtual system including its interconnec-
tion with the original cooperative system are designed to
satisfy the following properties: (i) its interconnection with
the cooperative system does not impact the convergence
of the states of cooperative systems to the leader’s value
x0; (ii) the robustification strategy is automatically activated
when attacks appear anywhere in the cooperative system; (iii)
the virtual system maintains tracking objectives in (2) and
(3) in the presence of unknown cyber-attacks (see Theorem
1 in Section III). In Proposition 1 given in Section III-
C, conditions on the decentralized design of the control
parameters are proposed.

The overall system, i.e., the interconnection of the follower
nodes, the leader, and the cooperative control system with
virtual network in (9) in the presence of unknown false data
injection attacks can be described as follows:

[Tv] v̇(t) =− [α] (v(t)−x(t))−KL T
h θ(t)−βAh (v(t)−1nx0)

[Tθ ] θ̇(t) =− [η ]θ(t)+Lhv(t),
ẋ(t) = [k1] [α] (v(t)−x(t))+ [k2]x(t)+ [k3]w(t)+δ (t),

[Tw] ẇ(t) = [α] (v(t)−x(t)),
(10)

where w(t) = col(w(t)), v(t) = col(v(t)), θ(t) =
col(θ(t)), and δ (t) = col(δ (t)), where δi(t) =

λuiδui(t) + µ

(
ai0λx[0,i]δx[0,i](t)−∑

n
j=1 ai jλx[ j,i]δx[ j,i](t)

)
.
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Fig. 1. Resilient design of cooperative systems with the proposed
virtual layer in (9). The solid black lines represent the information
flow from the leader to the follower nodes, while the dashed blue
lines denote the communication links between the agents (physical
layer) and the control layer as well as the communication amongst
the virtual nodes in the control layer.

Ah = diag(γ10, . . . ,γn0), and Lh ∈ Rn×n is the Laplacian
matrix associated with the communication digraph in
the virtual node which is not necessarily equal to L .
Recall again that in the above cooperative system, there
are two types of communication networks: physical and
virtual communication. The physical uses a peer-to-peer
communication network, while the virtual layer uses a
cloud-based communication.

Assumption 1: It is assumed that the communication di-
graph in the virtual layer contains a rooted-out tree. As a
result, rank(Lh) = n−1.

Next, let us define xcl(t) =
[

eT
v eT

θ
eT

x eT
w
]T , where

ev(t) = v(t)− v̄, eθ (t) = θ(t)− θ̄ , ex(t) = x(t)− x̄, ew(t) =
w(t)− w̄, and (v̄, θ̄ , x̄, w̄) are the equilibria of (10) in the
absence of δ (t). Then, the cooperative system in (10) can be
rewritten in the new coordinates as follows:

ẋcl(t) = Aclxcl(t)+Bclδ (t), (11)

where (Acl,Bcl) are defined as follows:

Acl=


− [Tv]

−1 ([α]+βAh) −K [Tv]
−1 L T

h [Tv]
−1 [α] 0n×n

[Tθ ]
−1 Lh − [Tθ ]

−1 [η ] 0n×n 0n×n
[k1] [α] 0n×n [k2]− [k1] [α] [k3]

[Tw]
−1 [α] 0n×n − [Tw]

−1 [α] 0n×n


Bcl =

[
0n×n 0n×n In 0n×n

]T
.

(12)

In the following, we discuss the existence of the equilibria
(v̄, θ̄ , x̄, w̄) and the stability analysis of the cooperative
system in (11).

B. Existence and Uniqueness of Equilibria

First, the following lemma discusses the existence of the
equilibrium points (v̄, θ̄ , x̄, w̄) of the cooperative system (10)
in the absence of the attack vector δ (t).

Lemma 1: Consider the cooperative system in (11) with
the proposed control scheme in (9) in the absence of the

attack δ (t). Let Assumption 1 hold. If k3,i 6= 0 for i∈ V (G ),
there exists a unique equilibrium (v̄, θ̄ , x̄, w̄) satisfying

v̄ = 1nx0, θ̄ = 0n, x̄ = 1nx0, w̄ =− [k3]
−1 [k2] x̄. (13)

Proof: See Appendix V-A.

C. Stability Analysis

The following results illustrate that for appropriately cho-
sen parameters in (10) and in the absence of cyber-attacks,
the interconnected system (11) is globally stable, that is the
virtual system does not impact the convergence of the state
xi to the leader’s value x0.

Proposition 1: Let Assumption 1 hold. If Ah � 0 has at
least one positive diagonal element and K ∈ R+, β ∈ R+,
[α]� 0, [η ]� 0, [Tv]� 0, [Tθ ]� 0, [Tw]� 0, and (k1,i,k2,i,k3,i)
belongs to the set

Z[i] =

{
k1,i > 0, k2,i < 0, 0 <

k3,i

Twi

<−k1,ik2,i

}
, i ∈ V (G )

(14)

then, Acl given in (12) is a Hurwitz matrix.
Proof: See Appendix V-B.

Finally, the following theorem shows that using the pro-
posed method, the objectives (2) and (3) are achieved in the
presence of bounded attacks.

Theorem 1: Let Assumption 1 hold. Moreover, let us
choose Ah� 0 to have at least one positive diagonal element,
K ∈ R+, β ∈ R+, [α] � 0, [Tv] � 0, [Tθ ] � 0, [Tw] � 0,
and (k1,i,k2,i,k3,i) belongs to the set (14). The states of the
cooperative system in (10) are then bounded for any bounded
adversary attack δ (t). Furthermore, for a sufficiently large
value of k3,i, ∀i ∈ V (G ), limt→∞ xi(t) = x0, i ∈ V (G ).

Proof: Since Acl in (12) is a Hurwitz matrix as shown
in Proposition 1, the cooperative system in (10) is input-to-
state stable. This implies that if δ (t) is bounded, the states
of the cooperative system are bounded too.

From the closed-loop system in (11), the closed-loop state
vector xcl(t) can be obtained as follows:

xcl(t) = eAcltxcl(0)+
∫ t

0
eAcl(t−τ)Bclδ (τ)dτ. (15)

Since δ (t) is uniformly bounded, there exists a con-
stant vector δ̄ ∈ Rn such that

∥∥∥∫ t
0 eAcl(t−τ)Bclδ (τ)dτ

∥∥∥ ≤∥∥∥∫ t
0 eAcl(t−τ)Bclδ̄dτ

∥∥∥. Hence,

lim
t→∞
‖xcl(t)‖ ≤ lim

t→∞

∥∥∥∥∫ t

0
eAcl(t−τ)Bclδ̄dτ

∥∥∥∥= ∥∥−Acl
−1Bclδ̄

∥∥ .
(16)

It can be shown that Acl
−1Bclδ̄ can be obtained as follows:

Acl
−1Bclδ̄ =


0n×n
[k3]
−1

0n×n
0n×n

 δ̄ , (17)

From the above equation, it follows that for a sufficiently
large value of k3,i, ∀i ∈ V (G ),

∥∥−Acl
−1Bclδ̄

∥∥ ≈ 0. As a
result, limt→∞ ‖xcl(t)‖≈ 0. This implies that limt→∞ x(t)≈ x̄.
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Fig. 2. Trajectories of the states of the followers in the presence
of the cyber-attack δ (t): (a) with the proposed attack-resilient
cooperative system in (10) and (b) without using the virtual layer.

As a result, the leader-follower consensus is guaranteed as
illustrated by x̄ in (13).

As can be seen from Theorem 1, the Laplacian matrix
Lh associated with the communication graph in the virtual
layer is not necessarily connected. Moreover, the controller
design for each follower is decentralized without requiring
any knowledge on the neighboring nodes.

IV. SIMULATION RESULTS

In this section, the performance of the proposed resilient
distributed control approach is verified through the following
example.

Example. Consider the following multi-agent system:

ẋi(t) = ui(t), x0 = 1, (18)

for i= 1, . . . ,4, where xi(t)∈R and ui(t)∈R. The parameters
of the cooperative system in (10) are given as follows:

Lh =

 1 −1 0 0
0 1 0 −1
−1 −1 2 0
0 0 −1 1

 , Ah =

 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
(19)

[Tθ ] = 10−3 × I4, [Tv] = 10−3 × I4, [Tw] = 10−1I4, [η ] =
10−1I4, K = 10, [α] = 10× I4, β = 1, [k1] = 11× I4, [k2] =
−120× I4, and [k3] = 120× I4.

The performance of the proposed control technique in (9)
is assessed under the following the dynamic cyber-attacks,
launched at t = 5 s:

δ̇ (t) = Adδ (t)+Bdδ0(t), (20)

where

δ0(t) = 4×14, Ad =−I4, Bd =

 1 2 4 2
−9 4 1 3
−4 3 1 2
2 1 4 3

 . (21)

Note that the above attack dynamics are not known to
agents. Fig. 2 shows the states of the follower nodes and

illustrates that the effects of the cyber-attack δ (t) on x(t)
are compensated by means of the attack-resilient cooperative
system in (10). As expected from Theorem 1, the proposed
control framework achieves consensus; moreover, the fol-
lowers track the leader node with a zero steady-state error.
We also compare our results with the performance of the
cooperative system (5) with L =Lh and η = 1, as depicted
in Fig. 2 (b). The results reveal that without the virtual layer
the consensus and tracking objectives in (2) and (3) are no
longer achieved.

V. CONCLUSION

In this paper, a resilient cooperation control strategy for
the leader-follower consensus problem in the presence of
cyber-attacks is proposed. The attackers are assumed to
infiltrate actuators and affect the communication networks
of the leader and follower states by injecting false data. An
attack-resilient cooperative control framework consisting of
a virtual layer is developed and investigated under unknown
bounded attacks. In contrast to the existing literature, our
proposed solution does not require the connectivity of the
communication graph. By virtue of the Lyapunov stabil-
ity method and network control theory, a concise stability
certificate is derived and the leader-follower consensus is
guaranteed against attacks. An illustrative example verifies
the effectiveness of the proposed cooperative control strategy.

APPENDICES

A. Proof of Lemma 1

Consider the cooperative system in (10). The equilibrium
points of (10) in the absence of attack, i.e. δ (t) = 0, can be
found by solving the following equations:

0n =− [η ] θ̄ +Lhv̄, (22a)
0n = [α] (v̄− x̄), (22b)

0n =− [α] (v̄− x̄)−KL T
h θ̄ −βAh (v̄−1nx0) , (22c)

0 = [k1] [α] (v̄− x̄)+ [k2] x̄+[k3] w̄+ δ̄ . (22d)

From (22a), one obtains that θ̄ = [η ]−1 Lhv̄. Since [α] is a
non-singular matrix, from (22b) we have x̄ = v̄. By replacing
x̄ = v̄ and θ̄ = [η ]−1 Lhv̄ in (22c), one obtains that

−
(

KL T
h [η ]−1 Lhv̄+βAh (v̄−1nx0)

)
= 0n. (23)

Invoking the properties of the Laplacian matrix Lh as
Lh1n = 0n, from the above equation, it follows that(

KL T
h [η ]−1 Lh +βAh

)
︸ ︷︷ ︸

X

(v̄−1nx0) = 0n. (24)

Since L T
h [η ]−1 Lh � 0, Ah � 0, and rank(L T

h [η ]−1 Lh) =
n−1, it can be shown that X � 0; hence, it is invertible. As
a result, the above equality leads to v̄ = 1nx0. As a result,
x̄ = v̄ = 1nx0. By replacing x̄ and v̄ in (22d), it follows that
w̄ = − [k3]

−1 [k2] x̄. Furthermore, from θ̄ = [η ]−1 Lhv̄ and
v̄ = 1nx0, one obtains that θ̄ = 0n.



B. Proof of Proposition 1
Let d(t) = 0n in (11). Then, it suffices to show that the ori-

gin in (11) is globally asymptotically stable. To this end, the
following quadratic-type Lyapunov function is considered:

V (xcl) =
1
2

eT
v (t) [Tv]ev(t)+

K
2

eT
θ (t) [Tθ ]eθ (t)

+
1
2

n

∑
i=1

[exi(t) ewi(t)]Pi [exi(t) ewi(t)]
T ,

(25)

where Pi ∈ R2×2 is defined as follows:

Pi =

 ρi − 1
Twi

ρiνi

− 1
Twi

ρiνi νi

(
1+ 1

T 2
wi

ρiνi

)  , (26)

where ρi > 0 and νi > 0 are determined based on any values
of (k1,i,k2,i,k3,i,Twi) in Z[i] given in (14) as follows:

ρi =
k2,i

k2,ik1,i +
1

Twi
k3,i

, νi =−Twi

k3,i

k2,i
. (27)

Note that trace(Pi) > 0 and det(Pi) > 0, hence Pi � 0. The
time derivative of V (xcl) in (25) along the trajectories (11)
is expressed as

V̇ (xcl) =−
1
2

(
eT

v [α] (ev− ex)− (ev− ex)
T [α]ev

)
−KeT

θ [η ]eθ −
K
2

(
eT

v L T
h eθ + eT

θ Lhev

)
− βK

2
eT

v

(
Ah +A T

h

)
ev

+
K
2

(
eθ Lhev + eT

v L T
h eθ

)
+

1
2

n

∑
i=1

[exi ewi ]Qi [exi ewi ]
T

+
1
2

n

∑
i=1

αi

(
[exi ewi ]PiHi(evi − exi)+(evi − exi)

T HT
i Pi [exi ewi ]

T
)
,

(28)

where

Qi = Pi

[
k2,i k3,i
0 0

]
+

[
k2,i k3,i
0 0

]T
Pi, Hi =

[
k1,i

1
Twi

]
. (29)

Taking into account (26)-(27), it follows that

ρi

(
k1,i−

1
T 2

wi

νi

)
= 1, Qi = 2ρi

 k2,i − k2,i
Twi

νi

− k2,i
Twi

νi
ν2

i
T 2

wi
k2,i

 ,
PiHi =

[
1 0

]T
.

(30)

Therefore, considering (30), V̇ (x) can be rewritten as

V̇ (xcl) =−β
K
2

eT
v

(
Ah +A T

h

)
ev +

1
2

n

∑
i=1

[exi ewi ]Qi [exi ewi ]
T

−KeT
θ [η ]eθ − (ev− ex)

T [α] (ev− ex) .
(31)

In can be shown that trace(Qi) = 2ρik2,i(1+
ν2

i
T 2

wi
) < 0 and

det(Qi) = 0; therefore, Qi � 0. Since Qi � 0, [α] � 0,
and A + A T � 0, V̇ (xcl) ≤ 0. Now, let define S ={

xcl(t) : V̇ (xcl) = 0n
}

. If V̇ (x) = 0, then ev = ex, eθ = 0n,
A ev = 0, and [exi ewi ]

T ∈ ker(Qi), i ∈ V (G ). The null-space
of Qi is characterized as exi = T−1

wi
νiewi . Taking into account

S , the closed-loop trajectories in (11) imply Lhev = 0n.
Therefore, ev = ex = 0n and ew = 0n. Thus, the only solution
that can stay identically in S is xcl(t) = 04n. Therefore, the
origin in (11) is the globally asymptotically stable. As a
result, Acl in (12) is Hurwitz.
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