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Non-Hermitian skin effect of dislocations and its topological origin
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We demonstrate that dislocations in two-dimensional non-Hermitian systems can give rise to density ac-
cumulation or depletion through the localization of an extensive number of states. These effects are shown
by numerical simulations in a prototype lattice model and expose a different face of the non-Hermitian skin
effect, by disentangling it from the need for boundaries. We identify a topological invariant responsible for the
dislocation skin effect, which takes the form of a Z, Hopf index that depends on the Burgers vector characterizing
the dislocations. Remarkably, we find that this effect and its corresponding signature for defects in Hermitian
systems fall outside of the known topological classification based on bulk-defect correspondence.
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Introduction. The Hermiticity of observables in quantum
mechanics is a concrete part of their mathematical structure
and physical interpretations. However, upon dealing with dis-
sipative quantum systems as well as a variety of classical
platforms such as electrical circuits, photonic crystals, and
mechanical metamaterials, non-Hermitian (NH) Hamiltonians
can effectively describe an essential part of their dynam-
ics [1-5]. Recently, in light of overwhelming interest and
progress in understanding topological phases, NH models
have been also revisited from a topological point of view
[6,7]. Although they share certain similarities with Hermitian
systems, NH systems possessing complex energy spectra can
reveal quite distinct topological features [8,9]. In particular,
it has been found that in absolute contrast to any Hermi-
tian system, in NH models the presence of open boundaries
can drastically affect the energy spectra, and subsequently
all eigenstates accumulate towards one end of the system,
a phenomenon called the non-Hermitian skin effect (NHSE)
[10-28]. This effect, which necessitated revisiting the concept
of bulk-boundary correspondence in Hermitian topological
phases [29-32], originates from nontrivial point gap topology,
represented by the one-dimensional (1D) winding number of
the complex energy bands [33,34].

Here, we address the question of how the NHSE manifests
in the presence of topological defects such as dislocations,
instead of open boundaries. Many studies have revealed
the presence of topologically protected modes at defects in
Hermitian topological systems [35-45]. The topological de-
fects have been thoroughly classified by Teo and Kane, who
have put forward the concept of bulk-defect correspondence
[46-48]. The classification of topological defects has been
also extended to NH systems [49], and very recent works have
examined defect modes in NH topological phases [50-52].
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However, the interplay between nontrivial defects and point
gap topology, the latter being an intrinsically NH feature, still
remains to be understood.

By considering a prototype two-dimensional (2D) NH lat-
tice model, we find both a macroscopically large density
accumulation and also density depletion in the vicinity of
dislocations, which we respectively call skin and antiskin
effects (see Fig. 1). This observation not only shows an un-
explored consequence of the NHSE effect, but strikingly it is
related to a Hermitian topological system hosting a different
type of bulk-defect correspondence, beyond the known stable
classifications [46,47]. Nevertheless, we identify a topologi-
cal invariant ¥ = Z - (v x B)/2 to diagnose the macroscopic
density collapse in terms of the Burgers vector B of the
dislocation and two weak indices, v = (vy, v,), which are the
2D averaged winding numbers. We show that the topological
invariant ¥ has an integer/half-integer parity given by the
topological 6 term. We further provide an intuitive picture
for ¥ in connection with topological invariants of weak topo-
logical phases of Hermitian systems subjected to topological
defects.

Weak Hatano-Nelson model. As a preliminary, we first con-
sider the simplest prototypical model which shows the NHSE,
the Hatano-Nelson (HN) model described by the Hamilto-
nian Hipun = Zj,nzj:l(t +7 SI)C}L.HC]- as a single-orbital
tight-binding chain with nonreciprocal hoppings [53,54]. A
nonzero winding number of energy bands given by

1 T de(k) 1
V= — d —_—
2ri J_, ok e(k)
signals the existence of the NHSE, revealed by the sensitivity
of all eigenstates to the boundary conditions and the break-
down of the conventional bulk-boundary correspondence. The

= sgn(6t) = 1 (D
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FIG. 1. (a) Sketch of the WHN model with two dislocations
which are indicated by encircling them. (b) Logarithm of local den-
sity profile of the system with L = 30 and under periodic boundary
conditions and using a logarithmic scale for the density. The green
peak and red dip represent the skin and antiskin effects in which an
extensive number of exponentially localized states are piled up and
depleted from the two dislocations, respectively.

NHSE can be characterized in terms of the localization of
the probability density defined as o, = ), | (rlyky |2 in which
|¢f) is the nth right eigenstate of the Hamiltonian, |r) is
the position ket, and the summation is over all eigenstates
regardless of eigenvalue. For a 1D HN model with open
boundaries, all eigenstates are localized towards one end,
and as a consequence, the probability density is o, o ¢’/ém
with a 1D localization length & = 1/log[(t 4 6t)/(t — 6t)]
determined by the strength of nonreciprocity 4¢.

We construct a 2D model by stacking HN chains along
the y direction, with nearest-neighbor interchain hoppings as
schematically shown in Fig. 1(a), and with the Hamiltonian

M= [t +ndt)c), g+t 50l ()

r p==+1

in which only hoppings in the x direction are nonrecipro-
cal [55]. We refer to this Hamiltonian as the weak HN model
(WHN), in analogy to weak topological insulators which
are formed by stacking lower-dimensional strong topological
insulators. Its eigenvalues form a family of ellipses in the
complex plane which wind around the origin as a function of
momentum &g = 2(f, cos k, + ¢, cos k, + i 8t sink,). In mo-
mentum space, the Hamiltonian Hy corresponding to Eq. (2)
can be considered as a stack of decoupled 1D HN models with
a k,-dependent chemical potential 2t,cosk,. We introduce
weak indices

d’k
vi= | —/—=
J iQr) K

0, My A3)

as the average of two 1D winding number densities v(k;)
along the j = x, y directions. Aslong as |t,| < [t;], there exists
a point gap at ¢ = 0 in the spectrum. Subsequently, the weak
indices Eq. (3) are quantized, and for our particular stacked
model we obtain v, = sgn(dt,) and v, = 0. Consequently, for
a system with open boundaries all states show a NHSE along
the x direction and, depending on the sign of §t,, they localize
either on the left or the right edge.

Dislocation-induced skin effect. We consider a rectangular
system consisting of 2L x L sites in the x and y directions,
imposing periodic boundary conditions (PBCs) in order to
form a torus and introduce two dislocations separated by a
length of L sites using the cut and glue procedure. A row of

L sites is first removed from the system, and the resulting cut
is glued back together using vertical hoppings #,, as shown in
Fig. 1(a).

We find that the density localizes at one of the dislocations,
forming a peak, and depletes at the other one, forming a dip
[see Fig. 1(b), obtained for t,/t, = 0.4, ét./t. = 0.6]. This
behavior is indeed different from the conventional NHSE,
although the underlying mechanisms are the nonreciprocity of
the hopping parameters in both cases. First, the localized den-
sity depletion around the second dislocation (antiskin effect)
is a feature of the NHSE which does not occur in uniform,
defect-free NH systems. Second, in spite of the fact that
vertical hopping terms are reciprocal, the exponential accu-
mulation and depletion of the density around the dislocations
take place in both the x and the y directions, as can be seen in
Fig. 1(b).

The formation of skin and antiskin effects at the disloca-
tions can be understood intuitively in two different ways. The
first is to consider the decoupled limit, ¢, = 0, in which the
system consists of independent 1D Hatano-Nelson models.
In this case, introducing dislocations amounts to removing
half of the sites from one of the HN chains, such that it
goes from periodic to open boundary conditions. This leads
to the formation of a NHSE at its boundaries [red and green
sites in Fig. 1(a)]. However, the skin and antiskin effects
are present also when f, # 0. This fact can be understood
as arising from the nonreciprocal hoppings in the horizontal
direction. For 8¢, > 0, the hopping to the right is larger than
the hopping to the left, implying that states will be pumped in
the direction of the larger hopping [56], as indicated by arrows
in Fig. 1(a). Examining a closed loop surrounding each of the
two dislocations, shown by green and red circles, we find that
the number of arrows pointing into the contour is different
from the number pointing out of the contour. This imbalance is
consistent with the density accumulation and depletion shown
in Fig. 1(b), suggesting that states are pumped into or out of
the dislocations cores.

Scaling properties. In order to show the extensive nature
of the NHSE caused by the dislocation, we study numeri-
cally the length dependence of the maximum of the density
in the vicinity of one dislocation. For a 1D HN model, the
maximum density is easily obtained from its conservation law
[ drp, = L which leads t0 pmax = (L/€)/(1 — e71/%) ~ L/E.
We find that also in the 2D case, the linear behavior of the
maximum density persists [see Fig. 2(a)], and our results
are consistent with pp.,x o< L for a wide range of parameter
values ¢,/t, and &t,/t,. When keeping the system size con-
stant, we observe that the maximum density is larger when
ty # 0 compared to the decoupled limit. This indicates that
the dislocation-induced NHSE is different from that occurring
in the 1D model, in the sense that states from the entire 2D
system participate in the density collapse.

In contrast to the scaling behavior of the skin effect, the
antiskin effect saturates as a function of system size, with
the minimum density ppnin becoming independent of L for
large systems. The precise values of py;, depend both on
nonreciprocity as well as the strength of the vertical hoppings,
but they are usually a few orders of magnitude smaller than
the density far away from the dislocations, as can be seen also
in Fig. 1(b).
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FIG. 2. (a) Maximum density plotted as a function of system size
L for two values of (6t,/t.,t,/t,) = (0.9, 0.04), shown using blue
circles, and (0.72, 0.72), shown as red triangles. For large systems,
Pmax & L, as indicated by the black lines. (b) Slope of the density
d(In pya)/0x for the same parameters. The slope is averaged over
five neighboring lattice sites at the midpoint of the line connecting the
dislocations. In the thermodynamic limit, the fit indicates a vanishing
slope (within error bars), as shown by the black lines.

Finally, we study the behavior of the density far from the
cores of the dislocations. We find that the density is roughly
uniform as a function of the coordinates x and y, with the
largest variations occurring on a line connecting the two
dislocations, corresponding to the 1D chain left over after
removing L sites from the system (the row of sites termi-
nating at the dislocations in Fig. 1). We examine the length
dependence of the slope of the density at the midpoint of
this chain, 9, In p(xmiq). When extrapolating to L — oo for
different #, /1, and 4t /t,, we observe that the slope vanishes,
indicating that in the thermodynamic limit the density profile
is flat far away from the dislocation cores [see Fig. 2(b)]. This
is in contrast to the density profile of the 1D Hatano-Nelson
model, where p, o ¢’/éP implies a nonzero 9, In p(rpig) ~
1/&p, independent of system size. The uniform density far
from the dislocation cores is similar to the behavior of Hermi-
tian systems hosting topological defects, where the defect is
locally indistinguishable sufficiently far away from its core.
Here, however, O(L) states accumulate at one of the disloca-
tions, and the remaining O(L%2—L) appear to be distributed
uniformly away from the defect cores.

Topological origin. To determine the topological invari-
ant associated with the dislocation-induced skin and antiskin
effects, we use the procedure outlined in Refs. [33,57]. Start-
ing from our NH system, we construct a doubled Hermitian
Hamiltonian with chiral symmetry as

~ (0 H
’H:(H+ o>' (4)

As shown in Ref. [33], the topological invariant responsible
for the NHSE in # is identical to the one responsible for the
existence of topologically protected midgap states in 7.

The doubled system is a stack of horizontal Su-Schrieffer-
Heeger (SSH) chains [58], coupled by diagonal hoppings.
It belongs to the class BDI in the Altland-Zirnbauer clas-
sification [59], and has been discussed in Ref. [60]. Using
the Hermitian model Eq. (4), we find that the bulk of the
system is gapped provided that |#,| < |¢,|, and that each of the
two dislocations traps an exponentially localized zero-energy
mode. These midgap modes are protected by chiral symmetry,

which forces the spectrum to be symmetric around E = 0.
As a consequence, the energy of the dislocation-bound states
cannot be shifted away from zero unless the bulk gap closes,
or the two defects are brought in proximity of each other, such
that their bound states can hybridize and gap out.

The doubled model provides a convenient starting point to
demonstrate the topological origin of the NHSE caused by
the dislocations. In Hermitian systems, it has been shown that
protected midgap states can appear not only at the boundaries
but can be also trapped by topological defects. In the latter
case, their existence relies on the topological properties of de-
fect Hamiltonians H (K, r), with r spanning a D-dimensional
sphere around the defect, as proposed by Teo and Kane [46].
At each point r far away from the defect, H(k, r) is well ap-
proximated by a Bloch Hamiltonian since the lattice is locally
translation symmetric. However, upon encircling around the
dislocation as indicated in Fig. 1(a), an extra translation by
the Burgers vector B is needed as compared to a similar loop
in the absence of the dislocation.

For our 2D model in the presence of a dislocation we can
devise a NH defect Hamiltonian 7 (k, s) with 2D momenta k
and a variable s € [0, 1] which describes the loop around the
topological defect. The doubled Hamiltonian H (K, s) corre-
sponds to a 2D chiral-symmetric system with a point defect,
which is characterized by the 3D winding number,

e [ d*kds

——Tr(qd,q" 939" gdrq"), (5

Wr =
T3 ] nip

according to the topological classification of Ref. [46]. The
integration is over T2 x S' (the effective 3D Brillouin zone
of the defect Hamiltonian), €#"* is the fully antisymmetric
Levi-Civita tensor, and g(k, s) = H/(HH")"/? results after
flattening the bands of the Hermitian Hamiltonian H (K, s).
Since our WHN model has only one band, g(k, s) is a scalar,
which means that the winding number in Eq. (5) vanishes
identically (due to the Levi-Civita tensor). This means that W5
fails to capture the existence of topological zero modes of the
doubled defect Hamiltonian 7, and thus also fails to capture
the dislocation-induced NHSE.

This motivates us to formulate an alternative approach,
where instead of working with the defect Hamiltonian, we
displace locally the Bloch wave functions as uy s(r) = uﬁ (r—
sB) along the loop surrounding the dislocation, where u
denotes the Bloch state of the defect-free crystal. That way
the interplay of the defected lattice represented by the Burgers
vector and band-structure topology are directly introduced
through the displaced Bloch wave functions. Consequently,
the Berry connection of the system in the presence of a topo-
logical defect reads

Ak, 5) = (5| Vic sl ) = A°(k) + 2A,(k),  (6)

consisting of a defect-free part A°(k) = (uy |Vi|uj ) and an
additional term due to the defects. We find that the defect-
free part is given by AVk) = %q;leqk with gx = ex/|exl,
since the Bloch states for the doubled Hamiltonian are given
by |uﬁ) = (1 /ﬁ)(qk, 1)T. The defect-enforced term A, (k) =
(uk 5|0s|uk s) in Eq. (6), which originates from displacing
Bloch states by the fictitious momentum s, can be written as
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[46,61]
Ayk)=—B - (u)|V,|up) =iB -k —B-a’(k), (7)

where a”(k) = (u|(V, + ik)|u)) is periodic over the recip-
rocal space [62]. Now, associated with the Berry connection
(6), there exist a Chern-Simons (CS) form Qs(k,s) =
d’kds " Tr(A,0,A; + %A 4AvA;). From a detailed deriva-
tion [61], we find a Z,, CS invariant,

1 1
ﬁ_m/;ZXSIQ3_EZ~(va) mod 1, ®)
determined by the cross product of the Burgers vector, and the
2D weak indices of the WHN model, Eq. (3). The Z, invariant
¥ € {0, 1/2} can distinguish between the trivial and nontrivial
phases of the doubled Hamiltonian in the presence of topolog-
ical defects. ¥ = 1/2 implies an odd parity of zero modes at
a dislocation in the doubled Hamiltonian, and consequently
the skin effect of topological defects in the WHN model.
The two dislocations shown in Fig. 1 are characterized by
Burgers vectors B = (By, B,) = (0, 1), which, together with
weak indices v = (1, 0) for éz, > 0, imply a half integer ¢.
Remarkably, both the skin and antiskin effects are associated
with a nontrivial invariant, signaling that also the localized
density depletion around one of the dislocations is topological
in origin.

The topological invariant Eq. (8) is reminiscent of that
characterizing dislocations in Hermitian weak topological
phases [46]. The invariant there also involves both the Burgers
vector and the vector of weak indices, though their scalar
product instead of the cross product. As in that case, an
intuitive understanding can be gained by going to the de-
coupled limit, where the Burgers vector specifies which type
of termination is introduced into one of the chains, and the
weak invariants control which terminations will show the
NHSE. Furthermore, due to the correspondence, unraveled in
Ref. [33], between the NHSE and the topology of Hermitian
systems given by Eq. (4), the invariant ¥ can be equally used
for the 2D Hermitian model. Namely, we can use it to predict
the appearance of zero modes bounded to dislocations in a 2D
model consisting of arrays of SSH chains.

We emphasize that the CS invariants are not gauge invari-
ant in general, hence, ¥ only captures the integer/half-integer
parity of the 7Z/2 invariant Z - (B x v)/2. As such, it can
only distinguish the even or odd parity of dislocation-bound
zero modes of the doubled, Hermitian model #H, and not
their total number. This can be better understood by noting
that for a single-band 2D NH model, the Berry connection
A(k, s) is a 3D Abelian gauge field, and consequently the
CS invariant ¥ is identical to the Hopf index [63—-66]. The
Hopf index is generally a Z,y,, invariant where the inte-
ger Ncp = GCD(Cy, Gy, Cy) is the greatest common divisor
of three Chern numbers C; = f d’k, Q ; defined over three
2D cross sections of T2 x S'. Using the definition of Berry
curvature ; = £;1;9;A; and the Berry connection given by
Eq. (6), we find (Cy, Gy, Cy) = (By, —By, 0) with GCD =1,

which justifies the Z, nature of the topological invariant
[61]. The correspondence between the WHN model with topo-
logical defects and Hopf insulators indicates that it also lies in
the nonstable regime (the numbers of energy bands are below
the bounds introduced in Ref. [67]). As a result, it falls beyond
the periodic table of stable phases where 2D chiral-symmetric
systems with point defects are characterized with the winding
number W5 € Z [46].

Finally, we find that, consistent with the topological in-
variant of Eq. (8), the density peak and dip shown in Fig. 1
lose their robustness when B x v = 0, or when the point gap
at ¢ =0 closes (|t,| > |t:|). We explore these cases in the
Supplemental Material [61], comparing the nontrivial point
defects studied above with trivial point defects, such as vacan-
cies. We find that, while localized features in the density are
still observed, for trivial point defects they are much weaker,
and can be suppressed by means of local perturbations. They
are similar to the conventional impurity states present in Her-
mitian systems, which do cause localized features in the local
density of states, but do not show the robustness associated
with the nontrivial topology.

Conclusions. Using a prototypical 2D non-Hermitian sys-
tem, we have shown that dislocations result in the formation
of a non-Hermitian skin effect, signaled by the accumulation
of density due to the localization of a macroscopically large
number of states towards the dislocation. This effect is ob-
served numerically, and then understood using a topological
invariant that falls outside the conventional, stable bulk-defect
correspondence. The analytical study of this density accu-
mulation as well as its extensions to arrays of dislocations
provides an interesting avenue for further research.

Unlike the skin effect associated with the boundaries of
non-Hermitian systems, we have found that dislocations can
also host the antiskin effect. This is a topologically protected
depletion of an otherwise uniform density profile, which oc-
curs at the dislocation core. The possibility of an antiskin
effect offers an additional tool for tailoring the positions of
eigenstates in non-Hermitian systems, and may be useful in
the design of practical applications, such as sensors [68] or
light funnels [19].

Note added in proof. Recently, we became aware of
Ref. [52], in which the authors observe the presence of skin
effects at dislocations in NH systems, including for a model
that is equivalent to our WHN system.
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