
Automated HW/SW Co-design for Edge AI:
State, Challenges and Steps Ahead

Special Session Paper

Oliver Bringmann
oliver.bringman@uni-tuebingen.de

University of Tübingen

Tübingen, Germany

Wolfgang Ecker
Wolfgang.Ecker@infineon.com

Infineon Technologies AG

Neubiberg, Germany

Ingo Feldner
ingo.feldner@de.bosch.com

Bosch Corporate Research

Renningen, Germany

Adrian Frischknecht
adrian.frischknecht@uni-

tuebingen.de

University of Tübingen

Tübingen, Germany

Christoph Gerum
christoph.gerum@uni-tuebingen.de

University of Tübingen

Tübingen, Germany

Timo Hämäläinen
timo.hamalainen@tuni.fi

Tampere University

Tampere, Finland

Muhammad Abdullah Hanif
muhammad.hanif@tuwien.ac.at

Technische Universität Wien, Austria

New York University Abu Dhabi, UAE

Michael J. Klaiber
michael.klaiber@de.bosch.com

Bosch Corporate Research

Renningen, Germany

Daniel Mueller-Gritschneder
daniel.mueller@tum.de

Technical University of Munich

Munich, Germany

Paul Palomero Bernardo
paul.palomero-bernardo@uni-

tuebingen.de

University of Tübingen

Tübingen, Germany

Sebastian Prebeck
Sebastian.Prebeck@infineon.com

Infineon Technologies AG

Neubiberg, Germany

Muhammad Shafique
muhammad.shafique@nyu.edu

New York University Abu Dhabi

Abu Dhabi, United Arab Emirates

ABSTRACT

Gigantic rates of data production in the era of Big Data, Internet

of Thing (IoT), and Smart Cyber Physical Systems (CPS) pose in-

cessantly escalating demands for massive data processing, storage,

and transmission while continuously interacting with the physical

world using edge sensors and actuators. For IoT systems, there is

now a strong trend to move the intelligence from the cloud to the

edge or the extreme edge (known as TinyML). Yet, this shift to edge

AI systems requires to design powerful machine learning systems

under very strict resource constraints. This poses a difficult design

task that needs to take the complete system stack from machine

learning algorithm, to model optimization and compression, to soft-

ware implementation, to hardware platform and ML accelerator

design into account. This paper discusses the open research chal-

lenges to achieve such a holistic Design Space Exploration for a

HW/SW Co-design for Edge AI Systems and discusses the current

state with three currently developed flows: one design flow for

This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the project Scale4Edge under contract no. 16ME0131 and
Business Finland Co-innovation project "SoC Hub".

CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9076-7/21/10.
https://doi.org/10.1145/3478684.3479261

systems with tightly-coupled accelerator architectures based on

RISC-V, one approach using loosely-coupled, application-specific

accelerators as well as one framework that integrates software and

hardware optimization techniques to built efficient Deep Neural

Network (DNN) systems.

CCS CONCEPTS

• Computing methodologies → Machine learning; • Hardware

→ Software tools for EDA; • Computer systems organization→

Embedded systems.

KEYWORDS

Edge Machine Learning, Edge Computing

ACM Reference Format:

Oliver Bringmann, Wolfgang Ecker, Ingo Feldner, Adrian Frischknecht,

Christoph Gerum, Timo Hämäläinen, Muhammad Abdullah Hanif, Michael

J. Klaiber, Daniel Mueller-Gritschneder, Paul Palomero Bernardo, Sebastian

Prebeck, and Muhammad Shafique. 2021. Automated HW/SW Co-design

for Edge AI: State, Challenges and Steps Ahead: Special Session Paper. In

2021 International Conference on Hardware/Software Codesign and System

Synthesis (CODES/ISSS ’21), October 10–13, 2021, Virtual Event, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3478684.3479261

1 INTRODUCTION

As we are moving more and more into the era of Big Data, Internet

of Thing (IoT), and Smart Cyber Physical Systems (CPS), rising

rates of data production pose incessantly escalating demands for

11

2021 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

massive data processing, storage, and transmission while stronger

automation and autonomy requires systems to continuously inter-

act with the physical world using edge sensors and actuators. The

first generation of intelligent systems stream these large data sets

into the cloud. For upcoming IoT systems, there is now a strong

trend to move the intelligence from the cloud to the edge or the

extreme edge, also referred to as TinyML. Such Edge AI systems

can provide better privacy, higher autonomy, lower response la-

tency, less cost, higher energy efficiency as well as lower bandwidth

demand to the cloud.

Yet, the design of powerful edge AI systems is a challenging

task as computing and memory resources are highly limited at

the edge. Hence, designers need to optimize the complete system

stack from machine learning algorithm, to model optimization

and compression, memory planning, software implementation of

kernels onto the hardware platforms withML accelerators as well as

the underlying hardware architecture design [14, 17, 21, 23, 48, 52].

We refer to this as HW/SW Co-design for Edge AI. The target of

this paper is to discuss the current state, challenges in this field

and propose the next steps to realize the next-generation Edge AI

systems.

For that, the paper firstly provides an overview of related work

in Section 2. Then, in Section 3 we discuss the current open research

challenges in the field from the academic and industrial perspective.

We outline the potential of current Open Source solutions for realiz-

ing a holistic HW/SW Co-design approach and outline the different

steps required to achieve this goal. The paper then highlights the

current state with three currently developed end-to-end flows:

In Section 4 we show that the selection of RISC-V processor ex-

tensions for tightly-coupled accelerator solution is a challenging

process. The goal is tomove the intersection between computational

and communication bound as close as possible to the operational in-

tensities for the concrete NN kernel. The presented, auto-generated

tightly-coupled RISC-V solution enables the specific selection and

combination of further configurable extensions for optimization

purposes. The results of the early validation phase of this approach

show a performance gain of ∼23𝑥 .
In Section 5 we show how automatic generation of application-

specific loosely-coupled AI accelerators can significantly increase

design efficiency. To maximize performance, a joint co-optimization

of both hardware and software is necessary. This can more than

halve the power consumption at similar performance compared

to hand-crafted approaches. An ongoing challenge for creating

a true end-to-end design flow from AI use case to optimized ac-

celerator is closing the gap between operator-level intermediate

representations of the workload and a corresponding hardware

implementation. The section lays out how this can be achieved

using the machine learning compiler framework TVM.

Finally, in Section 6, we present a framework that systematically

integrates software and hardware optimization techniques to build

efficient Deep Neural Network (DNN) systems [16][30]. At the soft-

ware level, hardware-aware optimization of DNNs is important,

while at the hardware level, using optimized datapaths is the key

to efficient DNN inference. Dataflow optimization is also essential

to reduce the costly off-chip memory accesses. Each optimization

technique has the potential to reduce the energy consumption of

DNN execution on edge devices. However, systematic integration

of these techniques uncovers the real benefits.

2 RELATEDWORK

There are multiple fundamentally different approaches for hard-

ware platforms accelerating the inference of NNs. Some are based

on systolic arrays [4] or enhance them by a reconfigurable architec-

ture [57]. S2TA [29] is a method exploiting structured sparsity on

systolic arrays. Wang et al. [50] showed an FPGA-based solution,

similar to Sankaradas et al. [42] for CNNs. [50] made it applica-

ble also to hybrid-NNs. Within the group of ASIC accelerators, it

can be differentiated between processing-element based (PE-based),

tightly-coupled and coprocessor-based. PE-based accelerators are

designed for highly parallelized computation. Some were especially

designed to calculate data in compressed format [8, 13, 36, 60] to

gain efficient processing and power efficiency. Tightly-coupled ones

are typically based on a light-weight CPU, preferred with an open-

source ISA like RISC-V [2], which can be extended by additional

instructions [37]. [11, 12] solve the bandwidth bottleneck of such

systems by custom instructions loading data in incremental fashion

while computing payload. Sub-byte custom instructions and tightly-

coupled multicore clusters are further methods. Zhang et al.[61]

presented a coprocessor extending the open-source Hummingbird

E203 processor.

Several proposals exist for design tools of such hardware plat-

forms. Timeloop [35] offers architecture exploration by automati-

cally mapping the machine learning model to candidate HW archi-

tectures. It supports DNNs, fully connected layers and recurrent

neural networks (RNNs). Another example is Gemmini, which is

part of the chipyard [5] framework. It offers memory-mapped pe-

ripheral accelerators and Rocket Custom Co-processors (RoCC)

based on RISC-V. Gemmini includes a matrix multiplication acceler-

ator generator for systolic arrays. MAGNet [49] and AutoDNNchip

[56] are examples for template-based generation of loosely-coupled

ASIC accelerators. Given a DNN model and design budget they

automatically co-optimize the operator mapping and underlying

hardware architecture to create application-specific accelerator in-

stances. Yu et al. [59] approaches the architectural design space

exploration with a framework based on a hardware analytical

model of individual DNN operations reducing the search to a

multi-dimensional optimization problem. EasyQuant [54] is a post-

training quantization (PTQ) technique utilizing scale optimization.

Furthermore, Shomron et al [43] applies a sparsity-aware quantiza-

tion (SPARQ) method.

In recent years, the hardware-aware design of neural net-

works has received increasing attention. In addition to techniques

for model compression such as quantization-aware training (QAT)

and pruning [14, 17, 21, 48, 52], hardware-aware neural architec-

ture search (NAS), which also takes hardware characteristics like

latency, power, or area into account, has become a central aspect in

automating the process of designing new NN architectures for Edge

AI. In [20] and [3] reinforcement learning based NAS is extended

to include search for an accelerator configuration on FPGAs and

optimize it for latency and area. [58] presents a similar approach

for heterogeneous ASIC accelerators. Additionally, there exist aca-

demic approaches that address limited resources of edge platforms

12

Automated HW/SW Co-design for Edge AI CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA
AI

 M
od

el
Ha

rd
w

ar
e

So
ftw

ar
e

Network Architecture
Search

Hardware Architectural
Exploration

HW-specific NN
Optimization

NN Deployment

Datasets Constraints

NN Topology
Conditional computing
Training

Platform composition
NPU customization
CPU ISA extensions
Memory System

Quantization
Pruning
Re-Training

Code Generation
Kernel Libraries
Kernel Optimization
Memory Planning

Fast
Evaluation

Fast
Evaluation

Fast
Evaluation

Figure 1: Generic Design Space Exploration Flow for

HW/SW Codesign of Edge AI Systems

by pooling memory resources from several edge devices together

and optimizing DNNs for distributed inference [41, 45].

3 RESEARCH AND INDUSTRIAL

CHALLENGES IN EDGE AI

From an industrial perspective one of the main challenges to de-

velop complex Edge AI systems is bridging the gaps between hard-

ware (HW), software (SW) and AI engineers to define a common

workflow for a joint Design Space Exploration (DSE). The diagram

in Figure 1 shows such an envisioned DSE flow and the links be-

tween the three domains. It becomes apparently clear that the

development of complex Edge AI systems requires the skills of

software, hardware, and AI engineers. In most industrial projects,

however, these skills are distributed among several people or even

different teams.

Even-though effective HW/SW Co-design methodologies have

been examined for decades, they are still not the norm in the de-

velopment of large-scale (embedded) systems [27, 44]. As Edge AI

systems are a relatively new device class, the same holds true for

them. A major issue here is that the requirements between HW, SW,

and AI domains cannot be easily exchanged. A result is that hard-

ware is designed with assumptions about an algorithmic workload

that might already be outdated and that the AI model is designed

without an understanding of what operations provide good perfor-

mance on the target hardware. This holds especially true in the field

of embedded systems (which include Edge AI systems), as these sys-

tems often have limited computing and communication resources

and, hence, use heterogeneous, application-specific platforms.

As of today, there is no established end-to-end development

methodology for Edge AI systems [23]. The current fragmentation

can lead to local optimization in the aforementioned domains, e.g. :

• optimization of AI model accuracy via Neural Architecture

Search (NAS)[9],

• optimization of the hardware resources via Hardware Archi-

tecture Search (HAS) methods [19],

• optimization of the implementation of HW-specific AI kernel

libraries (e.g. a Conv2D layer for a specific neural network

accelerator) via auto-tuning methods[7]

A long-term challenge is to combine all of these optimization prob-

lems into a single holistic one, as envisioned by the flow in Figure 1.

This may inherently change the task of HW/SW/AI designers. Their

competence then needs to shift from implementing a single design

point to defining search constraints for a global HW/SW/AI DSE

flow.

Formulating and defining such constraints is the first step on

the way to holistic optimization. As a means of realizing a flow as

shown in Figure 1, compiler technology was identified to be the

major asset to be able to achieve this goal [26]. All of the steps in

Figure 1, from neural architecture search (NAS) to neural network

deployment to hardware description can be seen as compiler passes.

As of today, the quality and maturity of such compiler passes for

industrial applications still varies. In neural network training Ten-

sorFlow as well as PyTorch are quite established, whereas passes

for neural architecture search (e.g. DARTS [28]), tools for neural

network deployment (e.g. ApacheTVM [7]) and tools for hardware

generation (e.g. CIRCT [1, 62]) are in early industrialization phases

or in the research phase. However, these approaches already show

that the developed compiler technology is going to provide an end-

to-end Edge AI flow soon and possibly even in the open-source

domain.

In detail, the design constraints for such a holistic optimization

are discussed in [47] for accuracy, throughput, latency, energy ef-

ficiency, power consumption, flexibility, and scaleability in seven

design steps. In Edge AI chips, the most expensive resources are

usually on-chip memory and high-speed IO pins. Therefore, the

maximum achievable parallelism must first be studied at all levels

between the application data and the computing micro-architecture,

while exploring the alternatives. The challenge is the very large

space when all the factors are optimized at the same time. Addi-

tional challenges arise from the heterogeneity of the platforms.

Complex Neural Networks may be deployed partly on specialized

accelerators, partly on the embedded processors, possibly with AI-

specific ISA extensions. Such mixed-deployment scenarios require

research into compiler passes that can explore different mappings as

well as consider communication overheads. Additionally, memory

planning methods are required that consider the memory resources

of all available compute units.

Further major burden is the AI-compile flow for the EDGE AI

accelerator. It begins with training, since EDGE devices capture

data with non-ideal sensors, each with a slightly different behavior.

Ideally, training data is collected in parallel with different sensor

variants. To further improve, a data engineering/processing is es-

tablished to equalize the data variation. Next, network definition

and network optimization (as weight scaling) should consider the

execution time on the AI accelerator and the precision of the AI

accelerator in a neat fashion, respectively. Ultimately, tensor level

optimization and adoption of embedded code generation should be

adopted to the EDGE AI accelerator in an clean way.

Finally, in some applications, it is not only required to run infer-

ence on the edge device but also training [10], which may require

additional training accelerators. Here, especially federated learning

is in the focus [55], in which training data from several edge devices

can be aggregated into a global training process while being able

to maintain the privacy of the training data, as only model updates

and not the data itself are sent from the edge to the cloud.

13

CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

4 AUTOMATIC BUILD OF A RISC-V SYSTEM

WITH TIGHTLY-COUPLED ACCELERATOR

AI applications require the processing of neural network (NN) in-

ferences on proper platforms. Optimizing throughput, hardware

utilization as well as memory requirements and power consump-

tion are key to an efficient and fast setup. Processing is generally

bound to system’s capabilities in both communication and compu-

tation. Thus, a methodology for adjusting those design aspects for

a certain application is required in order to reach high utilization.

Since the kernel properties have a strong influence on the balance

of the two major throughput bounds, it also plays a major role in

designing an optimized system.

Williams et al. [53] showed along their roofline model, that the

overall processor performance for a certain kernel can be estimated

according to (1), using the minimum of both computational and

communicational bound.

𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝐺𝐹𝑙𝑜𝑝𝑠/𝑠𝑒𝑐 = 𝑀𝑖𝑛(𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 𝑃𝑒𝑟 𝑓 ,

𝑃𝑒𝑎𝑘 𝑀𝑒𝑚𝑜𝑟𝑦 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)
(1)

The roofline model hereby focuses on floating point operations at

computation side and off-chip memory accesses from communica-

tion perspective, where operational intensity describes the kernel

specific Flops/byte. The benefits of the model are in its visualization

of throughput limitations over various kernels and unambiguous

bottleneck analysis. Since the roofline model doesn’t consider mem-

ory footprint, area, latency and power, those parameters have to be

kept in mind additionally, while taking optimization decisions.

4.1 RISC-V tightly-coupled approach

We focus on a tightly-coupled accelerator solution, back-boned by

RISC-V. On one hand with its base instruction set the RISC-V serves

as a baseline in order to compare bandwidth and computation limi-

tations against extended/accelerated solutions, on the other hand

it represents a fallback solution for untreated corner cases. Due

to RISC-V’s open instruction set architecture the integration of

additional custom extensions is simple and goes hand in hand with

high configurability. The accelerator is targeting low power, low

cost applications, which either are too heavy to fulfill the latency re-

quirements on a micro controller or are not energy efficient enough,

especially when it comes to advanced data formats.

Sze et al. [46] rates a DRAM read to be more than 100x more

expensive than on SRAM. For the targeted low power accelerator,

this infers strict avoidance of off-chip memory accesses by reducing

model size, instead enabling the storage of model data on-chip.

Thus, the discussed extensions are developed at the background

of supporting reduced model footprints. In addition, reducing the

model size to an extent of manageable loss in precision leads to

several other desirable effects. A smaller memory footprint reduces

the static memory power consumption and chip area. Since the CPU

core and its extensions are supposed to be small in terms of area,

memory is the major driver for chip area. In addition, a reduced

model footprint leads to a decreased number of required accesses

causing a lower dynamic memory power consumption.

Since different kernels constitute various operational intensities,

providing optimized hardware support for a certain application is

challenging. We address this issue by offering a highly extendible

and configurable system, giving the freedom to optimize the SoC

for a concrete kernel by interchanging extension modules and thus

moving computational and communicational bounds closer to the

theoretical maximum.

4.2 Modified roofline model

Figure 2 shows the modified roofline model for the tightly-coupled

RISC-V accelerator. Instead of FLOPS the axis refer to MACS. Effi-

cient low-weight NN inference models use quantized fixed point

integer instead of floating point [25], since they allow smaller model

footprints at acceptable accuracy loss. Furthermore, the examined

system doesn’t provide a floating point extension, for area and

power saving reasons. Therefore, we refer to MACS as a more

feasible metric.

In extent to Williams et al. [53] roofline model we introduce

the terminology of a virtual bandwidth. Data of optimized models

are typically not stored in a ready-to-process fashion in memory

and alignment restrictions are softened in favor of a minimized

memory footprint. Thus, a data preprocessing step preceding the

actual payload computation is mandatory. This preprocessing step

has major influence on the system throughput by reducing the

communicational bound.While considering the physical bandwidth

bound being the absolute maximum a memory/cache can deliver,

the virtual bound is defined by the amount of data delivered ready-

to-process to the computation unit. The virtual bound will always

be below or equal to the physical bound.

4.3 Discussion of the extended model

In the following we discuss the optimization for two different ker-

nels along with the modified roofline model in Figure 2. The first

makes use of a compression technique, namely sparsity. In this

technique dropping of zero weights is considered, but the results

can be extrapolated for other compression algorithms like Huffman

coding. The second one focuses on a kernel using packed data. This

feature describes the common storage of multiple datasets within

the same memory location. One can imagine a packing of 4/8/16/32

data sets per word with respectively 8/4/2/1 bits in width.

Equation 2 gives the formula for the achievablememory footprint

for different compression ratios and packing formats. 𝑟𝑝 and 𝑟𝑠
define the packing ratio and sparsity ratio respectively, whereas

𝑐𝑠𝑒 considers the cost introduce by sparsity encoding.

𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = #𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 ∗ (1/𝑟𝑝 ∗ (1 − 𝑟𝑠) + 𝑐𝑒𝑠) (2)

𝑟𝑝 = #𝑃𝑎𝑐𝑘𝑒𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠/𝐵𝑦𝑡𝑒

𝑟𝑠 = #𝑍𝑒𝑟𝑜 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠/#𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑐𝑠𝑒 = 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡/𝐷𝑎𝑡𝑎𝑠𝑒𝑡

4.3.1 Raising bounds. For both computational as well as communi-

cational bounds, we elaborated on three levels of implementation.

The baseline is embodied by a plain RISC-V 32bit base instruction

set CPU, in Figure 2 referred to as rv32i together with its processor

dedicated load store unit. The load store unit is the limiting factor

at the communication side, whereas the instruction set defines the

capabilities of the compute units, thus bounds computation.

In order to increase the computational bound, two further fea-

tures namely rv32im comprising an integer multiplier and rv32im

+ simd mac are shown in Figure 2. Since for typical NN inference

14

Automated HW/SW Co-design for Edge AI CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

kernels multiplication and addition are heavily utilized, we decided

to evaluate the explicit multiplication support and further make use

of a custom extension supporting single instruction multiple data

(SIMD) format in a dedicated integer vector multiply-accumulate

unit. Those two features define the medium and maximum bound

in computational perspective.

With respect to the communication bound two further exten-

sions are added. The un/repacked extension supports the system by

preparing data for kernels making use of the packed data feature. It

especially offloads the address computation, data fetch and repack-

ing for alignment reasons. The sparsity extension skips activations

with a corresponding zero weight from computation or inserts

alignment zero weights skipped in memory according to a sparsity

vector. The kernel features influence the computation intensity,

whereas the mentioned extensions optimize the bounds, according

to the concrete kernel properties. Optimization goal is to move the

intersection between computational and virtual bandwidth bound

close to the kernel computation intensity. In the desired operation

point utilization of both aspects is high and throughput as well as

latency is optimized.

4.3.2 Compression feature. Figure 2 shows decreasing computa-

tional intensity for the sparse kernel compared to the original kernel.

The reason is the additional storage of the sparsity information in

a dedicated sparsity vector in memory. Additionally, zero weights

are dropped out of the memory. This overall heavily decreases the

memory footprint. Nevertheless, the computational intensity does

not get affected by that. The amount of MACs reduces proportion-

ally to the sparsity ratio, due to zero skipping in multiplications.

Without further analysis, a positive influence on memory size and

latency can be stated.

Since a sparse kernel requires additional preprocessing steps

(blue/white dots), the virtual bandwidth bound decreases in com-

parison to the non-sparse case (green squares), since less ready-to-

process data gets delivered to the computation unit in the same

duration. On the other hand, a dedicated extension (red/white dots),

even increases the virtual bound, since it prepares data more effi-

ciently than CPU does.

Given these bounds, we discuss the consequences for a sparse

kernel in comparison to its original. We find the original kernel to

be computationally limited by rv32i. Extending to rv32im leads to

minor throughput gain, since the bandwidth bound is close. Moving

to the sparse kernel the throughput reduces, limited by virtual band-

width due to more expensive data-preparation at first. Nevertheless,

adding the sparsity extension lifts the bound to computation. By

enabling the rv32im extension the compute and bandwidth through-

put evolves close to equality, thus the concrete kernel becomes an

almost ideal one. It is important to mention, for different sparsity

ratios the computational intensities deviate. Thus, this trade-off

analysis may result in different conclusions.

4.3.3 Packing feature. In contrast to sparsity, Figure 2 shows an

increased computational intensity of the packed kernel compared

to the original one. The exact deviation depends on the concrete

packing format. Without further discussion, it can be stated that

packing reduces kernels memory footprint. By packing, the number

of datasets stays untouched, while multiple are stored into one

common memory location.

rv32i

rv32im

rv32im + simd mac

un/repacking ext.

no un/repacking ext.
no sparsity ext.

sparsity ext.
virtual bound rv32i

packed
original

MAC/byte

MAC/s

Computational
- bound

Communicational
- bound

ph
ys

ica
l b

ou
nd

vir
tua

l b
ou

nd
s

original
packed
sparse

ideal kernels
application kernels
influence packing
influence sparsity

sparse

Figure 2: Extended roofline model

Using packing doesn’t necessarily lift the bandwidth bounds.

Theoretically, the memory can deliver more datasets, but the un-

packing or repacking process is complex, especially with odd but

efficient packing formats. Thus the virtual bandwidth bound even

drops (blue dots), since data preprocessing becomes the bottleneck.

Instead, a dedicated extension taking over un/repacking tasks re-

solves the issue and drives the virtual bandwidth limitations closer

to the physical bound (red dots). Due to packing, payload fetch-

ing inevitably leads to accesses of unutilized data as side effect,

especially when combined with sparsity.

Especially when it comes to SIMD processing units, the packing

extension plays a crucial role, since it allows data to be prepared in

a proper ready-to-process SIMD format in a direct fashion. Similar

to sparse kernel support, the packing extension helps to optimize

the throughput bounds for a concrete kernel, by simultaneously re-

ducing latency, memory footprint and system power consumption.

4.4 Evaluation

We did an early validation of the proposed work-in-progress flow

for an audio localization application based on a sparse packed

kernel with 70% weight sparsity and a packing format of four 8-bit

datasets per addressable memory location. Both sparsity as well

as packing extension were enabled. The computation performance

level was set to rv32im + simd mac with support of four parallel

MAC operations matching the packing format.

The packing reduced the model footprint by ∼75% in comparison

to the original 32bit data format, whereas weight sparsity led to a

weight footprint reduction of further ∼60%, In contrast the rv32im

support added∼30% area overhead on top of the baseline and rv32im

+ simd mac further ∼20%. The extension for sparsity and packing

support increased the area by another ∼70%. This setup achieved

a latency reduction of ∼23𝑥 in comparison to a non-optimized

rv32im.

15

CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

5 AUTOMATIC GENERATION OF

APPLICATION-SPECIFIC AI

ACCELERATORS FOR EDGE DEVICES

Deep neural network accelerators help bring intelligent data pro-

cessing to edge devices. To meet the strict performance and power

requirements, many accelerators use hand-crafted architectures

tailored to specific use cases. Designing and extending such ar-

chitectures is time-consuming and requires strong domain knowl-

edge. Generator-based approaches that automate the development

of loosely-coupled AI accelerators can help increase design effi-

ciency. To fully leverage their potential, end-to-end solutions from

hardware-aware DNN training and deployment down to the actual

hardware synthesis are needed.

We present HANNAH (Hardware Accelerator and Neural Net-

work seArcH) to automatically co-optimize neural network architec-

tures and a corresponding neural network accelerator (Section 5.1)

and outline our current efforts of integrating TVM into the existing

deployment and hardware generation flow (Section 5.2). The poten-

tial of joint co-optimization of hardware and software is highlighted

on an audio use case (Section 5.3).

5.1 HANNAH Framework

The HANNAH design flow is shown in Figure 3. Neural networks

are instantiated and trained in the training component employ-

ing quantization aware training (QAT) and dataset augmentation.

Trained neural networks are then handed over to the deployment

component for target code generation. Here, the neural network is

quantized to a low word width representation, the neural network

operations are scheduled, and on-device memory is allocated for

the neural network. Along with the target network architecture, a

specialized hardware accelerator for the neural network process-

ing is instantiated from a configurable Verilog template. Hardware

dependent performance metrics like power consumption and chip

area are then either generated by running the neural network on a

gate-level simulation or estimated using an analytical performance

model. The evolution-based search strategy implemented in the

HANNAH optimizer is then used to incrementally search the neural

network and hardware accelerator co-design space.

5.1.1 HANNAH - Train. A hardware-aware neural network design

and training process is key for an efficient DNN execution on edge

devices. HANNAH addresses this by providing a constrainable

neural network design space and a QAT flow.

Neural networks within the design space are build from config-

urable building blocks. These blocks contain common DNN oper-

ations (e.g., convolution, activation, pooling) and topology infor-

mation that defines the order and structure of the operations. By

constraining the operands and topology of each block, it is possi-

ble to ensure that neural networks of a particular archetype are

generated that are supported by the target hardware.

Deploying the neural networks on efficient integer hardware

involves quantization of the floating-point data used during training.

To account for the quantization effects, quantization-aware training

is used to simulate a symmetric fixed-point quantization of weights,

biases, and features during the forward pass of the training.

HANNAH – Train

QAT

Network Topologies

Data Augmentation

HANNAH – Deploy

Scheduling

Quantization

Memory Allocation

UltraTrail – NPU

MAC Array

Distributed Memory

Programmable
Control Unit

M
etrics

HANNAH – Optimize (Neural Architecture Search)

Figure 3: Overview of the HANNAH framework.

Finally, datasets and data augmentation such as the addition of

noise is also handled by the training component.

5.1.2 HANNAH - Deploy. To execute a trained neural network, a

target-specific mapping onto the hardware is necessary. This in-

cludes quantization, operator scheduling, memory allocation and

layout, as well as the generation of corresponding configuration

files. HANNAH supports two separate deployment options. The ma-

chine learning compiler framework TVM and a custom deployment

backend optimized for the neural processing unit (NPU) described

in the following section. For the hardware accelerator search the

use of the custom backend is mandatory. In addition to the target-

specific mapping, the custom backend also handles the parameteri-

zation and validation of the NPU architecture. Given the network

model, quantization intent, and desired number of functional units

it derives fitting memory macros and scales port widths and the

control unit appropriately. If desired, a simulation, synthesis, and

power estimation are run automatically. The simulation results are

compared with the reference output of the training component to

validate the functional correctness of the NPU.

5.1.3 UltraTrail - NPU. The used NPU architecture is based on Ul-

traTrail [6], a configurable accelerator designed for the TC-ResNet.

It consists of an array of multiply-and-accumulate (MAC) units

for convolutional and fully-connected layers, an output processing

unit for post-processing operations such as activation functions or

pooling, a distributed memory structure, and a programmable con-

trol unit. The baseline architecture has been heavily parameterized

(e.g., arbitrary word width, MAC array dimension, memory sizes)

which opens up a large NPU design space.

To avoid time-consuming simulation and synthesis of the hard-

ware when exploring this design space, analytical models are pro-

vided. This includes a cycle-accurate performance model, as well

as models for power and area.

5.1.4 HANNAH - Optimize. The search for a target neural net-

work and accelerator architecture configuration is implemented as

an evolution-based multi-objective optimization. The joint search

space combines the neural network and NPU design space. It can be

further restricted by reducing the number of certain design choices.

During the iterative search process the error rate of the trained neu-

ral network and estimated power, latency, and area of the hardware

models are used as target metrics for the optimization function.

16

Automated HW/SW Co-design for Edge AI CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

CPU

UltraTrail – NPUHANNAH – DeployHANNAH – Train

SystemVerilog

Hardware
Models

Hardware
GraphTVM TIRTVM

Tensor Expr.

Core

TVM RelayNeural
Network

C-Code

BYOC

HANNAH – Optimize (Neural Architecture Search)

unsupported opsunsupported opsunsupported ops

TVM Standard Flow (CPUs)

supported ops

Figure 4: TVM-based hardware generation flow.

5.2 TVM-based Hardware Generation

Although highly parameterizable, the core architecture of the NPU

and in particular the control and data flow is based on a hand-crafted

design process.While this is sufficient for single application-specific

scenarios, extending the architecture is a time consuming proce-

dure that requires expert knowledge which makes a fast adoption

to different application areas difficult. The same applies to the hard-

ware models and custom deployment backend, due to their direct

dependence on the underlying hardware. With TVM already inte-

grated into HANNAH, the obvious step would be to streamline the

deployment flow by moving the NPU-specific deployment to TVM.

However, without a mechanism to automate the generation of a

specific NPU architecture from the operator-level intermediate rep-

resentation (IR) of a neural network used in TVM, manual design

of custom backends and accelerators would still be required.

To close the gap between the operator-level IR and a correspond-

ing hardware implementation we propose a combined TVM-based

hardware generation flow. This includes (1) an IR hardware synthe-

sis, (2) abstract hardware modeling, and (3) automatic deployment.

Combining these three aspects comes with various advantages.

First, changes to the framework such as updates or extensions are

represented in all components, which significantly reduces the

implementation overhead. Second, adding new features is a one-

time effort. Once implemented within the generator framework,

design changes like the dataflow or memory management are han-

dled on an algorithmic level within TVM and must no longer be

manually crafted for each accelerator instance. Finally, it enables

a true end-to-end compilation flow from neural network down to

the actual hardware. This allows rapid joint prototyping of both

hardware and software, which in turn can be used for automatic

design space exploration in HANNAH. The greater flexibility on the

hardware target also opens up the possibility to extend the search

from application-specific to domain-specific accelerators with an

optimized support for a set of application areas.

Another advantage that comes from using TVM is the rich and

growing feature set available in the framework. For example, sup-

port for mixed-deployment allows operations not supported by the

NPU to be added to the NAS.

Figure 4 shows an abstract view on the TVM-based hardware

generation flow. A trained neural network gets passed from the

training to the deployment stage, where it is transformed to RelayIR.

Using the Bring Your Own Codegen (BYOC) framework, the graph

Table 1: Comparison of Results on Keyword Spotting Task

UltraTrail

[6]

HANNAH

HA

HANNAH

LP

Area 0.20mm2 a 0.13mm2 b 0.09mm2 b

Word Width (W) 6 6 6

Word Width (F) 8 6 6

MAC Array Size 8 × 8 8 × 8 6 × 6

Accuracy 93.09 % 94.33 % 93.37 %
Power 8.2 µW 6.38 µW 3.79 µW

a Area for layout/chip b Cell area for synthesis

is partitioned into NPU supported and unsupported operations. For

the supported operations, custom tensor expressions are defined.

Scheduling and memory layout transformations are performed in

this stage. The lowered TensorIR (TIR) is analyzed and from it a

hardware graph, i.e., an abstract hardware representation, is build.

The hardware graph forms the basis for deployment, hardware

modeling, and hardware synthesis. Deployment is realized through

C-Code emission using BYOC. Hardware synthesis uses a combina-

tion of parameterizing generalized hardware templates and actual

RTL-Code generation. Finally, TVM is used to execute the program

on the target system.

5.3 Case Study

Weevaluate the impact of a joint hardware/software co-optimization

using the HANNAH flow of Section 5.1 on the task of real-time key-

word spotting. We use the Google Speech Commands Dataset V2

(GSDC) [51] with 10 keyword classes and 1 class each for "silence"

and "unknown". The real-time constraint is set to 10 inferences per

second. Soft constraints for area, power, and accuracy are set to

150 000 µm2, 5 µW, and 93 %, respectively. Candidates that violated

them are penalized by being ranked worse than those that meet the

soft constraints. The search space contains a wide variety of neu-

ral network architectures, different quantization word widths for

weights (W) and features (F), and different NPU MAC-array sizes.

The search ran with a search budget of 2000 individual architectures

and used a population size of 100.

The NPUs are implemented using the 22FDX technology by

Globalfoundries with low-leakage standard cells and SRAMs by

Invecas. Synthesis and power estimation was done with Cadence

Genus 20.10 and Synopsys PrimeTime Q-2019.12, respectively. All

accelerator instances are set to operate at 250 kHz and are evaluated

at a 25 °C TT corner with 0.8V supply voltage and no body bias

voltage. The NPU uses clock-gating and low-power modes of the

SRAM during idle times.

Table 1 shows a comparison of the hand-crafted baseline archi-

tecture UltraTrail and the two Pareto points with highest accuracy

(HA) and lowest power (LP) selected from the NAS results. Both

co-optimized instances of neural network and NPU reach better

results for area, power, and accuracy compared to the baseline

architecture. HA achieves an accuracy increase of 1.24 p.p. while
reducing the total power by 22.2 %. Using a reduced number of

processing elements, LP reaches a 53.8 % reduction in power with

a slight 0.28 p.p. increase in accuracy.

17

CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

6 ENERGY-EFFICIENT EDGE AI: FROM

ALGORITHMS TO HARDWARE

ARCHITECTURES

Modern systems perform most of the data processing close to the

sensors at the edge due to privacy and latency concerns. However,

edge devices are highly resource-constrained and cannot run com-

plex DNNs, specifically for long durations. Designing a highly effi-

cient yet effective DNN system is challenging and requires system-

atic integration of hardware and software optimization techniques.

We present a cross-layer framework for generating optimized DNNs

and optimizing the deployment of the DNN onto a given hardware

platform [16][30] (Section 6.1). After presenting the framework, we

will highlight the effectiveness of different parts of the framework

with the help of practical case studies (Section 6.2).

6.1 Cross-Layer Optimization Framework

Our cross-layer EdgeAI design and optimization framework is illus-

trated in Figure 5. It considers user requirements such as accuracy

and performance along with hardware constraints to explore the

architecture space and to generate an appropriate / Pareto-optimal

DNN model(s). The DNN is then further optimized by exploiting

pruning and quantization techniques. The optimized model is then

processed for error-resilience analysis that guides the hardware

approximation phase to achieve further energy efficiency. Finally,

an effective dataflow scheme and layer partitioning and scheduling

are devised / employed to optimize the off-chip memory accesses.

The details of different steps of our framework are explained in the

following subsections.

Software-level Optimization

Pruning

Quantization

Neural
Architecture

Search

Search
Space

System
Requirements

Hardware-level
Optimization

Hardware
Approximations

DNN System

Performance
Predictor

Training and
Validation
Datasets

Hardware
Accelerator

Accuracy
Predictor

Error-Resilience
Evaluation

Efficient
Dataflow

Efficient
DNN

Efficient
DNN

DNN
Hardware

Dataflow

Figure 5: Overview of our cross-layer EdgeAI framework.

6.1.1 Software-level optimization. Hardware-aware neural archi-

tecture design is the key to efficient data processing at the edge.

Therefore, based on the user requirements and hardware constraints,

a restricted search space is first defined. Then using amulti-objective

optimization algorithm that jointly considers validation accuracy

and performance metrics, the overall design space is explored to

generate a suitable DNN. For fast exploration, accuracy and perfor-

mance estimation models are constructed and used to characterize

candidate models that guide the optimization algorithm. Our re-

sults in [31] and [38] show that different Pareto-optimal models

can be generated using such a methodology based on user-defined

constraints/requirements.

The generated DNN is then passed for pruning and quantization

to further improve the efficiency of DNN execution on edge devices.

Network pruning is usually performed iteratively, where, in each

iteration, a small percentage of network parameters are removed

and the network is retrained for a limited number of epochs to

regain the lost accuracy. The pruning policy is selected based on the

target hardware and the user constraints to remove the correct set of

parameters that offermaximum efficiency gainwithout affecting the

accuracy. After pruning, an effective quantization policy is selected

to enable low-precision computations and further reduction in the

network size. In [38], we show that model compression through

pruning and quantization enables a further reduction in storage

requirement by up to 53× for an accuracy loss of less than 0.2%.

Note that pruning and quantization can be closely integrated with

the NAS algorithm to significantly reduce the design cost.

6.1.2 Hardware-level optimization. Specialized hardware acceler-

ators are typically used for efficient DNN execution on edge de-

vices. These accelerators can be further optimized by exploiting

the error-resilience characteristics of DNNs. Towards this, different

types of approximations can be employed at the hardware level,

e.g., memory approximation by reducing the supply voltage below

the standard specification [24][22] or functional approximation of

the computational units [34]. These approximations are usually

effective for less complex applications or require extensive retrain-

ing of DNNs. Therefore, we focus on data-driven approximations

such as [18] or approximations with additional error compensa-

tion [15][33] to avoid any accuracy loss.

6.1.3 Dataflow optimization. The energy consumption of off-chip

memory accesses is orders of magnitude higher than other opera-

tions involved in DNN execution. Dataflow and layer partitioning

and scheduling define the number of off-chip memory accesses

required per inference. Therefore, it is important to optimize them

to suppress the dominating factor in the system’s energy consump-

tion. To achieve this, we study the reuse factor of all the datatypes

(i.e., weights, activations, and partial sums) of each layer of the

given DNN, and based on the DNN accelerator design, choose a

suitable adaptive layer partitioning and scheduling scheme to min-

imize the memory accesses. Our results in [40] show that, with

the selection of an appropriate layer partitioning and scheduling

scheme, it is possible to reduce the number of off-chip memory

accesses for the VGG-16 by 36% and for the MobileNet by 45% over

conventional schemes. Apart form layer partitioning and schedul-

ing, application-specific memory designs can also be developed by

exploiting application characteristics and techniques like power-

gating to further boost the efficiency gains [32]. Moreover, selection

of an appropriate data mapping policy that orderly prioritizes to

maximize the row buffer hits, bank- and subarray-level parallelism

have also shown to be highly effective in reducing the energy con-

sumption associated with DRAM accesses [39].

6.2 Case Studies

6.2.1 Designing efficient DNNs for wearable healthcare devices.

Based on the methodology presented in Section 6.1, we devel-

oped BioNetExplorer framework [38] to systematically generate

18

Automated HW/SW Co-design for Edge AI CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

and optimize DNN architectures for bio-signal processing in wear-

able edge devices. The overview of the framework is shown in

Figure 6. It deploys genetic algorithms to search for embedded

DNN architectures with low hardware overhead to ensure their

deployment in wearables devices to extract health information like

the occurrence of arrhythmia or seizures. The framework enables

hardware-aware DNN architecture search by considering hardware

constraints (i.e., storage and FLOPs) during the exploration stage.

The genetic algorithm-based search reduces the exploration time

by 9x (on average) compared to exhaustive search and identifies

Pareto-optimal designs that can reduce the storage requirement by

30MB for an accuracy loss of less than 0.5%. The model compression

stage enables a further reduction in storage requirement by up to

53× for an accuracy loss of less than 0.2%.

Exploration of DNN
Architectures

User Requirements

Quality Metrics (e.g.,
Accuracy, Precision,

and Recall)

Hardware Constraints

Wearables/
Mobile Phone

2MB,
0.1 TFLOPs

Generate Neural
Networks

Genetic Algorithm-
based Search

(e.g., using NSGA-II)

Network Selection

In
pu

t

La
ye

r 1

O
ut

pu
t

La
ye

r n

0 0 0

Model Compression

Number of Layers
Number of Filters
Number of LSTM
Cells

Generation of DNN
Architectures

A

B

C D

E

Pruning

Quantization

Figure 6: Overview of the BioNetExplorer framework [38].

6.2.2 Optimizing off-chip memory accesses for image classifica-

tion application. To evaluate the impact of selecting appropriate

dataflow and layer partitioning and scheduling on the energy ef-

ficiency and the number of off-chip memory accesses of a DNN

system, we employed our ROMANET methodology [40] to identify

the dataflow and computation schedule for image classification

using the MobileNet and the VGG-16 networks. The evaluation

shows that selection of effective dataflow and layer partitioning

and scheduling leads to 36% reduction in the number of off-chip

memory accesses for the VGG-16 and 45% for the MobileNet over

conventional schemes, which translates to around the same amount

of access energy savings.

7 CONCLUSIONS

This paper outlined the state, challenges and step aheads, which

needs to be addressed within a holistic DSE process to enable an

automated HW/SWCo-design for Edge AI systems. Three currently

developed flows were presented in an exemplary fashion to illus-

trate the current state, but many more such flows or individual

tools are under development by various groups world-wide.

REFERENCES
[1] 2021. CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt
[2] 2021. RISC-V. https://riscv.org/
[3] Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim,

and Nicholas D Lane. 2020. Best of both worlds: Automl codesign of a cnn and
its hardware accelerator. In 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[4] Trio Adiono, Grasia Meliolla, Erwin Setiawan, and Suksmandhira Harimurti.
2018. Design of Neural Network Architecture using Systolic Array Implemented
in Verilog Code. In 2018 International Symposium on Electronics and Smart Devices
(ISESD). 1–4. https://doi.org/10.1109/ISESD.2018.8605478

[5] Alon Amid, David Biancolin, AbrahamGonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul
Rigge, Colin Schmidt, John Wright, Jerry Zhao, Jonathan Bachrach, Sophia Shao,
Borivoje Nikolić, and Krste Asanović. 2020. Invited: Chipyard - An Integrated
SoC Research and Implementation Environment. In 2020 57th ACM/IEEE Design
Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.
9218756

[6] Paul Palomero Bernardo, Christoph Gerum, Adrian Frischknecht, Konstantin
Lübeck, and Oliver Bringmann. 2020. Ultratrail: A configurable ultralow-power
tc-resnet ai accelerator for efficient keyword spotting. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 4240–
4251.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578–594.

[8] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308. https://doi.org/10.1109/JETCAS.2019.2910232

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[10] Frederik Funk, Thorsten Bucksch, and Daniel Mueller-Gritschneder. 2020. ML
Training on a Tiny Microcontroller for a Self-adaptive Neural Network-Based DC
Motor Speed Controller. In IoT Streams for Data-Driven Predictive Maintenance
and IoT, Edge, and Mobile for Embedded Machine Learning.

[11] Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca Benini, and Davide
Rossi. 2021. XpulpNN: Enabling Energy Efficient and Flexible Inference of Quan-
tized Neural Networks on RISC-V based IoT End Nodes. IEEE Transactions on
Emerging Topics in Computing (2021), 1–1. https://doi.org/10.1109/TETC.2021.
3072337

[12] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio
Pullini, Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. 2017.
Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint
Devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 10
(2017), 2700–2713. https://doi.org/10.1109/TVLSI.2017.2654506

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 243–254. https://doi.org/10.1109/ISCA.2016.30

[14] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[15] Muhammad Abdullah Hanif, Faiq Khalid, and Muhammad Shafique. 2019. CANN:
Curable approximations for high-performance deep neural network accelerators.
In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[16] Muhammad Abdullah Hanif and Muhammad Shafique. 2021. A cross-layer
approach towards developing efficient embedded deep learning systems. Micro-
processors and Microsystems (2021), 103609.

[17] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2704–2713.

[18] Shubham Jain, Swagath Venkataramani, Vijayalakshmi Srinivasan, Jungwook
Choi, Kailash Gopalakrishnan, and Leland Chang. 2019. BiScaled-DNN: Quantiz-
ing long-tailed datastructures with two scale factors for deep neural networks.
In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[19] Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi. 2020.
Standing on the shoulders of giants: Hardware and neural architecture co-search
with hot start. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39, 11 (2020), 4154–4165.

[20] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen
Gu, Sakyasingha Dasgupta, Yiyu Shi, and Jingtong Hu. 2020. Hardware/software
co-exploration of neural architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 12 (2020), 4805–4815.

[21] Qing Jin, Linjie Yang, and Zhenyu Liao. 2019. Towards efficient training for
neural network quantization. arXiv preprint arXiv:1912.10207 (2019).

[22] Sung Kim, Patrick Howe, Thierry Moreau, Armin Alaghi, Luis Ceze, and Visvesh
Sathe. 2018. MATIC: Learning around errors for efficient low-voltage neural
network accelerators. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 1–6.

19

CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA

[23] Michael J. Klaiber, Axel J. Acosta, Ingo Feldner, and Falk Rehm. 2021. Enabling
Cross-Domain Communication: How to Bridge the Gap between AI and HW
Engineers. CoRR abs/2104.03780 (2021). arXiv:2104.03780 https://arxiv.org/abs/
2104.03780

[24] Skanda Koppula, Lois Orosa, A Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, and Onur Mutlu. 2019. EDEN: Enabling energy-
efficient, high-performance deep neural network inference using approximate
DRAM. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 166–181.

[25] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. ArXiv abs/1806.08342 (2018).

[26] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2020. MLIR: A compiler infrastructure for the end of Moore’s law.
arXiv preprint arXiv:2002.11054 (2020).

[27] Glaydson Luiz Bertoze Lima, Guilherme Augusto Lopes Ferreira, Osamu Saotome,
Adilson Marques Da Cunha, and Luiz Alberto Vieira Dias. 2015. Hardware devel-
opment: Agile and co-design. In 2015 12th International Conference on Information
Technology-New Generations. IEEE, 784–787.

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[29] Zhi-Gang Liu, Paul N.Whatmough, Yuhao Zhu, andMatthewMattina. 2021. S2TA:
Exploiting Structured Sparsity for Energy-Efficient Mobile CNN Acceleration.
arXiv:2107.07983 [cs.AR]

[30] Alberto Marchisio, Muhammad Abdullah Hanif, Faiq Khalid, George Plastiras,
Christos Kyrkou, Theocharis Theocharides, andMuhammad Shafique. 2019. Deep
learning for edge computing: Current trends, cross-layer optimizations, and open
research challenges. In 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 553–559.

[31] Alberto Marchisio, Andrea Massa, Vojtech Mrazek, Beatrice Bussolino, Maurizio
Martina, and Muhammad Shafique. 2020. NASCaps: A framework for neural
architecture search to optimize the accuracy and hardware efficiency of convolu-
tional capsule networks. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 1–9.

[32] Alberto Marchisio, VojtechMrazek, Muhammad Abdullah Hanif, andMuhammad
Shafique. 2020. DESCNet: Developing efficient scratchpad memories for capsule
network hardware. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2020).

[33] Sana Mazahir, Osman Hasan, and Muhammad Shafique. 2017. Adaptive ap-
proximate computing in arithmetic datapaths. IEEE Design & Test 35, 4 (2017),
65–74.

[34] Vojtech Mrazek, Zdenek Vasícek, Lukás Sekanina, Muhammad Abdullah Hanif,
and Muhammad Shafique. 2019. ALWANN: automatic layer-wise approxima-
tion of deep neural network accelerators without retraining. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[35] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[36] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-Sparse Con-
volutional Neural Networks. SIGARCH Comput. Archit. News 45, 2 (June 2017),
27–40. https://doi.org/10.1145/3140659.3080254

[37] Saman Payvar, Mir Khan, Rafael Stahl, Daniel Mueller-Gritschneder, and Jani
Boutellier. 2019. Neural Network-based Vehicle Image Classification for IoT
Devices. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS).
148–153. https://doi.org/10.1109/SiPS47522.2019.9020464

[38] Bharath Srinivas Prabakaran, Asima Akhtar, Semeen Rehman, Osman Hasan,
and Muhammad Shafique. 2021. BioNetExplorer: Architecture-Space Exploration
of Bio-Signal Processing Deep Neural Networks for Wearables. IEEE Internet of
Things Journal (2021).

[39] Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad
Shafique. 2020. DRMap: A generic DRAM data mapping policy for energy-
efficient processing of convolutional neural networks. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[40] Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad
Shafique. 2021. ROMANet: Fine-Grained Reuse-Driven Off-Chip Memory Access
Management and Data Organization for Deep Neural Network Accelerators. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 29, 4 (2021), 702–715.

[41] Robert M Radway, Andrew Bartolo, Paul C Jolly, and et. al. 2021. Illusion of large
on-chip memory by networked computing chips for neural network inference.
In Nature Electronics, Vol. 4. 71–80.

[42] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar,
Igor Durdanovic, Eric Cosatto, and Hans Peter Graf. 2009. A Massively Parallel
Coprocessor for Convolutional Neural Networks. In 2009 20th IEEE International

Conference on Application-specific Systems, Architectures and Processors. 53–60.
https://doi.org/10.1109/ASAP.2009.25

[43] Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri Weiser. 2021. Post-Training
Sparsity-Aware Quantization. arXiv preprint arXiv:2105.11010 (2021).

[44] Frank Slomka, Matthias Dorfel, Ralf Munzenberger, and Richard Hofmann. 2000.
Hardware/software codesign and rapid prototyping of embedded systems. IEEE
Design & Test of Computers 17, 2 (2000), 28–38.

[45] Rafael Stahl, Alex Hoffman, Daniel Mueller-Gritschneder, Andreas Gerstlauer,
and Ulf Schlichtmann. 2021. DeeperThings: Fully Distributed CNN Inference on
Resource-Constrained Edge Devices. International Journal of Parallel Program-
ming 49, 4 (2021).

[46] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2020. Efficient
Processing of Deep Neural Networks. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S01004ED1V01Y202004CAC050

[47] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. How to
Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered Harmful.
IEEE Solid-State Circuits Magazine 12, 3 (2020), 28–41. https://doi.org/10.1109/
MSSC.2020.3002140

[48] Frederick Tung and Greg Mori. 2018. Clip-q: Deep network compression learning
by in-parallel pruning-quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 7873–7882.

[49] Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason Clemons,
Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2019. Magnet: A modular accelerator generator for neural
networks. In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 1–8.

[50] JunsongWang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, andDeming
Chen. 2018. Design Flow of Accelerating Hybrid Extremely Low Bit-Width
Neural Network in Embedded FPGA. In 2018 28th International Conference on
Field Programmable Logic and Applications (FPL). 163–1636. https://doi.org/10.
1109/FPL.2018.00035

[51] Pete Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. arXiv:1804.03209 [cs.CL]

[52] Simon Wiedemann, Suhas Shivapakash, Daniel Becking, Pablo Wiedemann,
Wojciech Samek, Friedel Gerfers, and Thomas Wiegand. 2021. FantastIC4: A
Hardware-Software Co-Design Approach for Efficiently Running 4Bit-Compact
Multilayer Perceptrons. IEEE Open Journal of Circuits and Systems 2 (2021),
407–419. https://doi.org/10.1109/OJCAS.2021.3083332

[53] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (April 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[54] Di Wu, Qingming Tang, Yong le Zhao, Ming Zhang, Yingnan Fu, and Debing
Zhang. 2020. EasyQuant: Post-training Quantization via Scale Optimization.
ArXiv abs/2006.16669 (2020).

[55] Qi Xia, Winson Ye, Zeyi Tao, Jindi Wu, and Qun Li. 2021. A survey of federated
learning for edge computing: Research problems and solutions. High-Confidence
Computing 1, 1 (2021).

[56] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang,
Chaojian Li, Zetong Guan, Deming Chen, and Yingyan Lin. 2020. AutoDNNchip:
An automated dnn chip predictor and builder for both FPGAs and ASICs. In Pro-
ceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 40–50.

[57] Rui Xu, Sheng Ma, Yaohua Wang, and Yang Guo. 2020. CMSA: Configurable
Multi-directional Systolic Array for Convolutional Neural Networks. In 2020
IEEE 38th International Conference on Computer Design (ICCD). 494–497. https:
//doi.org/10.1109/ICCD50377.2020.00089

[58] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna,
Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020. Co-exploration of neural
architectures and heterogeneous asic accelerator designs targeting multiple tasks.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[59] Ye Yu, Yingmin Li, Shuai Che, Niraj K. Jha, and Weifeng Zhang. 2021. Software-
Defined Design Space Exploration for an Efficient DNN Accelerator Architecture.
IEEE Trans. Comput. 70, 1 (2021), 45–56. https://doi.org/10.1109/TC.2020.2983694

[60] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-x: An Accelerator for Sparse
Neural Networks. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture (Taipei, Taiwan) (MICRO-49). IEEE Press, Article 20, 12 pages.

[61] Shuhua Zhang, Jie Tong, Jun Zhang, Yuqing Lei, Minghao Zhang, Dang Li, and
Lanruo Wang. 2020. A RISC-V Based Coprocessor Accelerator Technology Re-
search for Convolution Neural Networks. Journal of Physics: Conference Series
1631 (sep 2020), 012002. https://doi.org/10.1088/1742-6596/1631/1/012002

[62] Ruizhe Zhao and Jianyi Cheng. 2021. Phism: Polyhedral High-Level Synthesis in
MLIR. arXiv preprint arXiv:2103.15103 (2021).

20

