
Kari Hepola

GENERATION OF CUSTOMIZED RISC-V

IMPLEMENTATIONS

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: D.Sc. Joonas Multanen

Prof. Pekka Jääskeläinen

January 2022

i

ABSTRACT

Kari Hepola: Generation of Customized RISC-V Implementations
Master of Science Thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
January 2022

Processor customization has become increasingly important for achieving better performance
and energy efficiency in embedded systems. However, customizing processors is time-consuming
and error-prone work. The design effort is reduced by describing the processor architecture with
high-level languages that are then used to generate the processor implementation. In addition to
processor customization, open source hardware and standardization have become increasingly
more popular. RISC-V that is a relatively new open standard instruction set architecture, has
gained traction both in academia and industry.

This thesis work added a RISC-V extension to the OpenASIP toolset that is developed at Tam-
pere University. OpenASIP has wide support for customizing and generating transport triggered
architectures. Transport triggered architectures have an exposed datapath that is visible to the
programmer, which allows a lower level programming interface. The hardware generation and
customization features in OpenASIP were reused by utilizing a transport triggered architecture as
the internal microarchitecture together with a microcode unit. The extension generates the RISC-V
implementations from an architecture description, which reduces the design effort of customizing
the implementation.

The RISC-V generator developed in this thesis has customization points for the bypass net-
work, amount of pipeline stages, operation latencies and an optional addition of the standard M
extension. The generator was evaluated by generating RISC-V cores with different customization
points and comparing their performance and post-synthesis properties with open source imple-
mentations. The generated cores with bypass network achieved better performance while con-
suming slightly more area than the smallest reference design. The microcode hardware only
utilized 3.6% of the design area and did not affect the maximum clock frequency.

Keywords: RISC-V, TTA, processor customization, ASIP

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Kari Hepola: Räätälöityjen RISC-V-toteutuksien generoiminen
Diplomityö
Tampereen yliopisto
Sähkötekniikan DI-ohjelma
Tammikuu 2022

Prosessorien räätälöinnistä on tullut yhä tärkeämpää sulautettujen järjestelmien suorituskyvyn
ja energiatehokkuuden lisäämisessä. Prosessorien räätälöinti on kuitenkin työläs ja virhealtis pro-
sessi, jonka työmäärää voidaan keventää kuvaamalla prosessorin arkkitehtuuri korkean tason kie-
lillä, joita käytetään prosessoritoteutuksen generoimisessa. Prosessorien räätälöinnin lisäksi avoi-
men lähdekoodin laitteisto ja standardointi ovat kasvattaneet suosiotaan. RISC-V on verrattain
uusi avoimen standardin käskykanta-arkkitehtuuri, joka on saanut suosiota sekä akateemisessa
maailmassa että teollisuudessa.

Tässä diplomityössä lisättiin RISC-V-laajennos Tampereen yliopistossa kehitettäviin OpenASIP-
työkaluihin. OpenASIP-työkaluissa käytettävä siirtoliipaisuarkkitehtuuri on prosessorisuunnittelu-
filosofia, jossa suorittimen datapolku on avoin ohjelmoijalle, mikä mahdollistaa matalamman ta-
son ohjelmointirajapinnan. OpenASIP-työkalujen ominaisuuksia uudelleenkäytettiin hyödyntämäl-
lä siirtoliipaisuarkkitehtuuria suorittimen sisäisenä mikroarkkitehtuurina ja lisämäällä siihen mik-
rokoodiyksikkö. Laajennos generoi RISC-V-toteutukset arkkitehtuurikuvauksesta, mikä vähentää
räätälöintiin liittyvää työmäärää.

Diplomityössä toteutulla RISC-V-generaattorilla voi räätälöidä prosessorin liukuhihnataso-
jen määrää, rekisteripankin ohituskytkentöjä ja lisätä RISC-V-spesifikaatiossa määritellyn M-
laajennoksen. Generaattoria arvioitiin vertaamalla eri räätälöintivalinnoilla generoitujen prosesso-
rien suorituskykyä ja synteesin jälkeisiä ominaisuuksia avoimen lähdekoodin toteutuksia vastaan.
Generoidut prosessorit, joissa oli rekisteripankin ohituskytkennät saavuttivat parhaimmat suoritus-
kykytulokset ja kuluttivat vain lievästi enemmän pinta-alaa kuin pienin verrokkitoteutus. Mikrokoo-
diyksikkö kulutti vain 3,6% ytimen pinta-alasta eikä vaikuttanut maksimikellotaajuuteen.

Avainsanat: RISC-V, TTA, prosessorin räätälöinti, ASIP

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

The work in this thesis was carried out in the Customized Parallel Computing research

group at Tampere University. This project has received funding from the ECSEL Joint

Undertaking (JU) under grant agreement No 783162 (FitOptiVis). The JU receives sup-

port from the European Union’s Horizon 2020 research and innovation programme and

Netherlands, Czech Republic, Finland, Spain, Italy. The project was also supported by

European Union’s Horizon 2020 research and innovation programme under Grant Agree-

ment No 871738 (CPSoSaware) and Academy of Finland (decision #331344).

I would like to thank my supervisors D.Sc. Joonas Multanen and Prof. Pekka Jääskeläi-

nen for making this thesis work possible and for the excellent feedback and guidance I

received along the project. I would also like to thank my coworkers in the group for cre-

ating a fun and positive work environment. Last but not least, I would like to thank family

and friends for supporting me during my studies.

In Tampere, Finland, 18th January 2022

Kari Hepola

iv

CONTENTS

1. Introduction . 1

2. Processors . 3

2.1 Complex Instruction Set Computers 3

2.2 Reduced Instruction Set Computers 4

2.3 Pipelining and Hazards . 4

2.4 RISC-V. 7

2.5 Instruction-level Parallelism. 9

2.5.1 Very Long Instruction Word Processors 9

2.5.2 Superscalar Processors 13

3. Processor Customization . 14

3.1 Application-specific Instruction-set Processors 14

3.2 Architecture Description Languages 15

3.3 Processor Generation and Customization in OpenASIP 16

3.4 RISC-V Generators . 18

4. Hardware Generation and Implementation. 20

4.1 Processor Pipeline . 20

4.2 Microcode Implementation . 22

4.2.1 Instruction Translation 23

4.2.2 Micro-operation Sequencing. 24

4.2.3 Control Flow Operations 25

4.2.4 Data Hazards and Forwarding 26

4.3 Microarchitectural Patterns . 28

4.4 Hardware Generation . 29

4.5 Customization Points . 32

5. Verification and Evaluation . 35

5.1 Reference Implementations. 35

5.2 Synthesis Results . 37

5.2.1 Comparison Against Reference Implementations 37

5.2.2 Overhead Evaluation 39

5.3 Performance . 40

5.4 Verification . 43

6. Future Work . 45

6.1 Pipeline Flush Support . 45

6.2 64-bit Instruction Set and Additional Extensions. 45

v

6.3 Custom Operations . 46

7. Conclusions . 47

References . 48

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ADF Architecture Definition File

ADL Architecture Description Language

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

AUIPC Add Upper Immediate to Program Counter

CISC Complex Instruction Set Computer

CU Control Unit

DAG Directed Acyclic Graph

GPP General Purpose Processor

IDF Implementation Definition File

ILP Instruction-Level Parallelism

IPC Instructions Per Cycle

ISA Instruction Set Architecture

JAL Jump and Link

JALR Jump and Link Register

LSU Load-Store Unit

OSAL Operation Set Abstraction Layer

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SoC System-on-Chip

TTA Transport Triggered Architecture

VLIW Very Long Instruction Word

1

1. INTRODUCTION

Processors are important components in digital systems. Rising performance and energy

efficiency requirements have created motivation for more optimized processors. One way

to achieve a better quality of results is to tailor the processor heavily to the targeted use-

case. Processors are, however, complex systems, and customizing them manually in a

register transfer level (RTL) description is a time-consuming and error-prone task. The

effort required for processor customization is decreased when the processor architecture

is specified on a higher-level architecture description that is used to automatically produce

the synthesizable RTL.

The complexity of designing processors is not the only challenge hindering innovation in

processor design. Commercial instruction set architectures (ISA) have restricted the im-

plementation of processors because of their proprietary nature. RISC-V is a relatively new

ISA that has gained traction both in academia and industry due to its open-standard na-

ture. Besides being open-standard, RISC-V is a suitable candidate for application-specific

instruction-set processors (ASIP) because of the option for adding custom instructions

and the optional standard extensions that create a modular structure for the ISA.

In this thesis, a RISC-V extension was added to the OpenASIP toolset, which uses an

architecture description format to generate customized RISC-V implementations with dif-

ferent amount of pipeline stages, operation latencies, standard extensions and bypass

connectivity. The generator uses a transport triggered architecture (TTA) as the internal

microarchitecture together with a generated microcode layer to implement the RISC-V

ISA. The microcode hardware consists of lookup tables that translate RISC-V instructions

to micro-operations that are sequenced separately. The microcode layer is essentially a

design-time RISC-V front end that allows the reuse of hardware generation features that

are found in OpenASIP. In this work, microprogramming is purely a method for implement-

ing part of the control and decode logic for a RISC-V core.

The structure of the thesis is divided into the following chapters. Chapter 2 introduces

different processor design philosophies, instruction set architectures, as well as ways to

exploit instruction-level parallelism in processor designs. Chapter 3 gives an overview of

processor customization by exploring architecture description languages, the OpenASIP

toolset and available RISC-V generators. Chapter 4 describes the implementation of the

2

microcode hardware, its function in the processor pipeline and its integration into the Ope-

nASIP toolset. Chapter 5 evaluates the performance and synthesis results of generated

RISC-V cores as well as the ways the hardware was verified. Chapter 6 discusses the

ideas for future work and the ways they could be implemented. Chapter 7 concludes the

thesis.

3

2. PROCESSORS

Processors are complex programmable hardware components that perform computation

on external data. In order to program processors, the programmer must have information

about the processor architecture. This architectural information is described in the instruc-

tion set architecture (ISA), such as ARM or x86. An ISA does not describe the internal

microarchitecture of a processor implementation, but only the details that are needed to

program the processor. This chapter focuses on the processor design philosophies and

explores different example architectures.

2.1 Complex Instruction Set Computers

Complex instruction set computer (CISC) is an ISA design philosophy. Like in the name,

this design philosophy makes use of so called complex instructions. CISC instructions ex-

ecute long sequences of basic operations in their instructions, even processing data that

is in the memory. An example of this is loading values from memory, doing an arithmetic

operation and storing the result back to memory all in one instruction. A typical CISC

instruction set has both register-to-register, register-to-memory and memory-to-memory

operations, which causes multiple addressing modes. This causes an issue because

when the operand described in the instruction word is in memory, it takes many bits to

express the memory address. To support different amount of operands that can be either

in memory or in the internal registers, the instruction words can be variable length, which

complicates the instruction decoding and scheduling. [1] The most popular CISC ISA is

the x86 that has variable length instructions that range from one to seventeen bytes [2].

Historically, there were many motivations for complex instructions, most of which were

caused by memory constraints. Complex instructions meant that fewer instructions would

have to be executed in total, which resulted in better code density. This added motiva-

tion for the use of complex instructions in early computers, as memory was expensive.

Additional constraint was the speed gap between memory and the processor core, which

added motivation for higher-level instructions to improve the performance of the system.

[3] In addition to the hardware properties, complex instructions were used to close the

semantic gap between high-level languages and hardware [1].

The downside of CISC implementations is the complex control hardware that enables the

4

execution of long sequences of basic operations described in CISC instructions. To sim-

plify the control unit design, CISC implementations use a method called microprogram-

ming. In this method, the control unit of the processor core is embedded with microcode

that translates a complex instruction to a sequence of simpler micro-operations. [1] Mi-

croprogramming is not a new concept for creating control units as it was already proposed

in the 1950’s by M.V Wilkes [4].

2.2 Reduced Instruction Set Computers

Another ISA design philosophy is the reduced instruction set computer (RISC). The most

popular RISC-based ISA family is ARM that is dominant in embedded computing [2].

In the RISC philosophy, the instruction set of a processor consists of simple operations

compared to the complex instruction set computer philosophy, where single instructions

can execute a long sequence of basic operations. RISC systems usually follow the load-

store architecture, where only separate load and store operations move data between the

memory and the register file and other instructions don’t operate directly with operands

that are stored in the memory. [1]

In load-store architectures the amount of addressing modes is reduced because only the

separate load and store operations access memory. This allows ISAs to more easily de-

sign fixed-length instruction formats. Besides the fixed length, the formats can more easily

use fixed boundaries in the subfields of the instruction word that simplifies the decoding

of instructions. The control logic in RISC implementations can be easily constructed with

hardwired logic without the use of microcode because of the more simple semantics of

the instructions. [1]

2.3 Pipelining and Hazards

Pipelining is a common way to optimize the speed of execution in processor implementa-

tions. It works by splitting the processor core to multiple stages of execution and feeding

the pipeline a new instruction each cycle. This way, the critical path of the core is shorter

and the core can achieve a higher clock frequency. [2] Pipelining works similarly as an

assembly line in a factory; the manufacturing of the product is divided into multiple steps

that are done in a sequence. Multiple workers can then each do their own step in the

assembly line and this way higher throughput can be achieved.

An example of a classic 5-stage RISC pipeline is presented in Figure 2.1. As seen in the

figure, the core is divided into five pipeline stages: instruction fetch, instruction decode,

execute, memory access and writeback. The instruction fetch is responsible for fetching a

new instruction from the instruction memory. Part of the essential control flow functionality

is done in this stage, as it includes the program counter register that stores the address of

5

the fetched instruction. In the next stage, instruction decode, the instruction is decoded.

Essentially, this step transforms the bits from the instruction word to control signals in

the hardware. Traditionally, the core’s register file is read in this step as well. In the

execute stage, the arithmetic logic unit (ALU) is used to perform an arithmetic or logical

operation. The executed operation is controlled by the control signals that were decoded

in the previous stage. In the described pipeline, the ALU is also used to calculate the

jump address that is then passed to the program counter in the instruction fetch stage.

Data memory access is divided into its own stage where the load-store unit (LSU) is used

to perform the memory access. Similarly to the jump address, the address calculation

for the data access is done in the execute stage. Finally, in the last stage, writeback, the

result operand is written back to the register file.

PC

M
EM

/W
B

EX/M
EM

IF/ID

ID
/EXIM Reg ALU LSU

Instruction
fetch

Instruction
decode Execute Memory

access Writeback

0

1

+4

Figure 2.1. Block view of a 5-stage RISC pipeline

Even though pipelining increases the throughput of a processor, it does not come with-

out its complications. During pipelined execution, there are situations in the processor

pipeline when an instruction cannot be executed in the pipeline stage during a clock cy-

cle without changing the program order. These situations are called hazards. Pipeline

hazards can be divided into three groups: structural, data and control hazards. Structural

hazards happen when multiple instructions in the pipeline would need the same resource.

For example, the von Neumann architecture that has shared interface for data and instruc-

tion access would cause a structural hazard during a memory operation, as the memory

access would have to be performed in the same clock cycle as the fetching of the next

instruction. [2]

In the processor pipeline, data hazards are caused when an operation has a data depen-

dency on the result of a previous operation that has not yet been written to the register file.

An easy way to make sure valid operand value is assigned to an operation during a data

hazard is to stall the processor pipeline until the result has been written to the register file.

Pipeline stalls are also referred to as bubbles. This method induces a significant amount

of stalls because data hazards are common during program execution. More sophisti-

cated way to solve the data hazard issue is to forward the data to a previous stage in the

processor pipeline straight from the function unit output port without routing the operand

6

through the register file. This way, the pipeline can continue to operate and the correct

operand is assigned to the execute stage. However, not all data hazards can be solved

without stalls. [5] As in the pipeline in Figure 2.1, the memory access is divided into its

own pipeline stage. If the next instruction has a data dependency on the load operation,

the result operand of the load operation would not have yet arrived to the core when the

result is needed as an input operand in the next instruction. In this scenario, the pipeline

would have to be stalled even with bypass support from the memory access stage.

Control hazards are caused by control flow operations. The essential issue is that control

flow operations can break the sequential flow of operations by causing a jump to a new

instruction address, which causes a dependency on the next instructions in the pipeline.

Some instruction set architectures use programmer visible delay slots to minimize the

pipeline stalls and allow the programmer to insert useful instructions to cycles that would

otherwise cause stalls in the pipeline. [2]

In the example pipeline, the hardware could deduct in the decoding phase that the in-

struction is a control flow operation. At this point, the instruction fetch stage is already

fetching the next instruction. An absolute unconditional jump can be executed with no

pipeline stalls if the jump address and control logic is passed directly from the decode

stage to the instruction memory by bypassing the program counter register. This would,

however, create a long combinatorial path in the design. If the jump is handled as in the

example pipeline, it would cause three stalls.

Additional complexity is added by the use of conditional jumps that are also known as

conditional branches. Conditional jumps are executed only if a condition that is set in

the instruction is met. Usually, the branch condition uses a register file operand together

with an arithmetical or a logical operation. [2] In the example pipeline presented in Fig-

ure 2.1 the ALU is used to calculate the branch condition which means that conditional

branches would cause three stalls if the branch condition is controlled from the execute

stage pipeline registers and passed to the program counter register. If the branch control

bypasses the execute and the program counter registers, branches would only cause one

stall cycle at the cost of longer combinatorial paths. The processing of branch conditions

could also be moved to the decode stage, which would save one additional stall cycle.

Additional optimizations can be made to conditional branches because not-taken branches

do not break the sequential flow of instructions. This way, during a conditional branch in-

struction, the pipeline can continue to operate. The issue is how to solve the hazard when

a branch is taken. A way to deal with this is to flush the instructions in the pipeline if a

branch is taken. Pipeline flushing can be implemented by extending pipeline stages with

control logic that effectively transforms the invalid instructions into no operations. [2]

7

2.4 RISC-V

RISC-V is a relatively new open standard instruction set architecture that follows the RISC

design philosophy. RISC-V instruction set is a modular structure, which is defined by

the compulsory base integer ISA and optional extensions that can be added to support

additional operations. The ISA also allows custom operations, which enables the design

of application-specific instruction-set processors (ASIP) based on the RISC-V instruction

set architecture. [6]

RISC-V specifies three variants to the base instruction set that differ in bitness: 32-bit,

64-bit and 128-bit. The 32-bit variant has two subsets: RV32I and RV32E. The RV32I

is similar to the 64- and 128-bit variants because like the 64- and 128-bit variants, it has

32 general-purpose registers instead of 16 as in the RV32E subset that is targeted for

small embedded applications. All of the variants reserve the bottom most register as a

zero-register that has all bits hard coded to zero. The RV64I and the RV128I are built on

top of the RV32I variant, but they have a wider datapath, address spaces and additional

operations. [6] The decision for supporting multiple variants was driven by the popularity

of 32-bit architectures in embedded systems and respectively 64-bit architectures’ popu-

larity in personal computers [7].

The different instruction formats of the RISC-V instruction set architecture are presented

in Figure 2.2. RISC-V instructions use six different formats: R-, I-, S-. B-, U- and J-type.

The formats have shared properties to simplify the decoding logic of the hardware. As

seen in the figure, the bits indicating the operation code, function fields and register file

indexes: rs1, rs2 and rd always exist in the same places in the instruction word between

formats. The left-most bit of the immediate value is always the 31st bit in the instruction

word to simplify the sign extension logic [6].

opcode

opcode

opcode

opcode

opcode

opcode

rd

rd

imm[4:0]

imm[4:1|11]

rd

rd

funct3

funct3

funct3

funct3

rs1

rs1

rs1

rs1

rs2

rs2

rs2

funct7

imm[11:0]

imm[11:5]

imm[12|10:5]

imm[31:12]

imm[20|10:1|11|19:12]

R-type

I-type

S-type

B-type

U-type

J-type

06711121415192431 25 20

Figure 2.2. RISC-V 32-bit instruction formats [6]

Because of the fixed placement of the register file indexes, the bits presenting immediate

values are scattered in different places between instruction formats, which is why the

8

immediate value must be shuffled based on the instruction format. This property is not

unique to the RISC-V ISA as it was also used in the SPUR [8] architecture. Immediate

values are presented in five different ways in instruction formats, but all the immediate

values are sign-extended to the data width of the architecture. [6]

The control flow operations of the RISC-V ISA are presented in Table 2.1. As seen in the

table, RISC-V base ISA has eight control flow operations, six of which are conditional.

However, RISC-V does not have a separate operation for direct jumps. Instead, the jump

and link (JAL) operation is used to implement direct jumps. JAL operation writes the

return address as a result operand to the register file. If the operation is used as a direct

jump instead of a function call, the result value can be stored to the zero-register to save

space in the register file. The add upper immediate to program counter (AUIPC) operation

works similarly, but in its case, the immediate value is not added to the program counter

and instead the program counter is added to the immediate value and the result stored in

the register file. [6]

The RISC-V control flow operations, apart from the jump and link register (JALR) opera-

tion, use program counter relative addressing, where the jump offset address is added to

the program counter value. JALR operation can be used as a return statement because

it uses an absolute address that comes from a register. [6] In addition to the program

counter relative addressing, the control flow operations do not have visible delay slots be-

cause it is a microarchitectural pattern that does not offer major benefit for aggressively

pipelined and superscalar implementations [7].

Instruction Name Description

beq Branch == if(rs1 == rs2) PC += imm

bne Branch != if(rs1 != rs2) PC += imm

blt Branch < if(rs1 < rs2) PC += imm

bge Branch >= if(rs1 >= rs2) PC += imm

bltu Branch < (U) if(rs1 < rs2) PC += imm

bgeu Branch >= (U) if(rs1 >= rs2) PC += imm

jal Jump and Link rd = PC + 4; PC += imm

jalr Jump and Link Reg rd = PC + 4; PC = imm + rs1

Table 2.1. Control flow operations of the RISC-V base instruction set architecture [6]

9

2.5 Instruction-level Parallelism

Instruction-level parallelism (ILP) is one form of parallelism and a way to increase the

performance of a processor. In the example pipeline presented in Figure 2.1, the core

would fetch one instruction per cycle and execute it in the pipeline. Pipelining can be

seen as a form of instruction-level parallelism, as the execution of instructions overlap

due to the pipeline stages. However, even with pipelining, the maximum instructions per

cycle (IPC) is one. Multi-issue machines execute multiple instructions in parallel in the

processor pipeline, which increases the maximum IPC.

To execute multiple operations in parallel, instruction-level parallel multi-issue machines

need parallel function units in the processor pipeline. Figure 2.3 shows an example of a

multi-issue pipeline. As seen in the figure, the LSU and ALU are placed in parallel in the

execute stage. This allows the pipeline to execute a memory and an arithmetic operation

concurrently.

PC

EX/W
B

IF/ID

ID
/EXIM Reg

ALU

LSU

Instruction
fetch

Instruction
decode Execute Writeback

0

1

+4

Figure 2.3. Block view of a multi-issue pipeline

Instruction scheduling is the process of deciding in which sequence the instructions are

executed. Processors can be divided into statically scheduled and dynamically scheduled

processors. In statically scheduled processors, the compiler expresses the sequence in

which the instructions are executed. In dynamically scheduled processors, the hard-

ware sequences the instructions during run time. The differences between these ap-

proaches are important when exploiting ILP. This section explores the ways to implement

instruction-level parallelism in processors, focusing on superscalar and very long instruc-

tion word (VLIW) processors and inspects transport triggered architecture (TTA) as a

variation of a VLIW processor.

2.5.1 Very Long Instruction Word Processors

VLIW processors are statically scheduled multi-issue processors where the instruction

level parallelism is explicitly stated in the instruction word. In VLIW architectures, one

10

long instruction word packs multiple operations that are then executed in parallel in the

processor core. An enormous benefit of VLIW processors is the static scheduling that

is determined by the compiler when the operations are packed into the instruction. This

allows to explicitly exploit ILP without complex hardware that does the scheduling during

run time. [9]

A big drawback of VLIW processor is code density, as the packets that cannot be fully

utilized with operations are filled with no operations. The no operations can fill a sizeable

portion of the instruction code, which is why some VLIW architectures use templates

with differing amount of operations. [9] To support differing amounts of operations in

instructions, the architecture can utilize variable-length instructions, which complicates

the fetching and decoding of instructions as in some CISC implementations.

Transport Triggered Architectures

Transport triggered architecture follows the VLIW principle, where instructions are stati-

cally scheduled. TTA, however, is not based on the operation triggered model that is used

in RISC architectures, instead the programming model is based on the transportation of

operands. Operation triggered architectures are programmed by specifying an opera-

tion which results in implicit data-transports between the register file and function units.

Transport triggered architectures have a lower level programming interface, where the

datapath is exposed to the programmer. In the TTA programming model, the programmer

states explicit operand moves between the function units and registers, which causes an

execution of operations as a side-effect. [10]

Because of the exposed datapath, the programmer is aware of the interconnection net-

work. In operation triggered architectures, the datapath is not visible in the programming

interface even though it influences performance when the missing bypass connections

cause stalls during data hazards. The connectivity of the interconnect plays a crucial

role in programming the TTA processor as it dictates which moves are supported by the

architecture. The customization of the interconnect network connectivity is an important

feature as it contributes to the design area and possibly the critical path. Reducing the

datapath connectivity is especially important for wide-issue machines, as the multiple

combinations of parallel function units cause many combinations of bypass paths. [11]

Figure 2.4 shows an example of the modular structure of a transport triggered architec-

ture. The structure is divided into multiple different building blocks: function units, register

files, interconnect busses and sockets. The example design has three function units: an

ALU, a LSU and a control unit (CU). The register file is treated similarly as a function unit,

which allows the programmer to directly transfer operands between the register file and

function units via the interconnection network [11]. The sockets connect the function unit

ports to the interconnect busses. In the example architecture, the design has six inter-

11

connect busses and three parallel functions units. The socket connections are configured

so that the busses can be used in parallel for transportation of operands to different func-

tions unit which enables the exploitation of ILP. Due to the modular design philosophy of

transport triggered architectures, the architecture can be easily scaled by adding more

function units and interconnect busses to the design.

ALU RF CULSU

Figure 2.4. Example of a transport triggered architecture

The function units in the architecture implement one or more operations. The operations

can be internally pipelined inside the function unit because they are implemented sepa-

rately from the interconnect network. The operation latency is visible in the programming

interface and the programmer must be sure that the result operand is moved from the

output port after the operation has been executed in the operation pipeline and arrived to

the output register. [11]

TTA instructions consist of moves that transport operands to and from the ports of a func-

tion unit. An operation is executed as a side-effect when an operand and the operation

code is transported to the triggering port that are marked with crosses in the example

architecture. Due to this operation model a separate move is needed for each input

operand that can be transported in parallel if the interconnect connectivity allows it. The

result operand is moved on a later cycle after the operation has been executed in the func-

tion unit. An addition operation that would be described in RISC-V as a single assembly

instruction:

add r3 r1 r2

Can result in three separate instructions for a TTA:

Cycle 0 : RF. r1 −> ALU. i n

Cycle 1 : RF. r2 −> ALU. t . add

Cycle 2 : ALU. out −> RF. r3

12

If the interconnect has enough busses and the required connectivity, the two input operands

can be transported during the same clock cycle, which reduces the amount of instructions

to two:

Cycle 0 : RF. r1 −> ALU. i n RF. r2 −> ALU. t . add

Cycle 1 : ALU. out −> RF. r3 . . .

The second bus could not be used to transport any operands in cycle one, which is why

it was assigned with a no operation that is described with three dots in the code.

In operation triggered architectures bypasses are dynamic and done automatically by the

forwarding logic when a data hazard is encountered. Due to the programming model

of TTAs, the bypasses are programmable and therefore invoked by software. In a simple

addition that would cause a data hazard in an operation triggered architecture, the hazard

is hidden from the programmer, and the hardware can either stall the pipeline until the

result operand of the previous instruction is written into the register file or forward the

result operand:

add r3 r1 r2

add r4 r1 r3

On a TTA, the bypasses are generated by the programmer:

Cycle 0 : RF. r1 −> ALU. i n RF. r2 −> ALU. t . add

Cycle 1 : ALU. out −> ALU. t . add . . .

Cycle 2 : ALU. out −> RF. r4 . . .

In cycle one, the result of the previous operation is not transported to the register file

at all, as it is not used by any other future instruction. This TTA-specific optimization is

called dead result elimination. The above code also uses a technique called operand

sharing. As the r1 input operand was already transported into the function unit port, it

was not required to move it again on a later cycle. As seen in the assembly examples,

the lower level programming model offers more scheduling freedom and optimizations to

the compiler compared to traditional operation triggered architectures.

In the example architecture, the core has two register file write ports and three read ports.

Multiple issue processors are known to have multiple register file ports to transport the

operands to the parallel function units. Operation triggered VLIWs with N function units

would need 3N register file ports if each function unit uses the maximum of two input

and one output value. However, transport triggered architectures are less dependent on

the amount of register file ports because operands are not required to be routed through

the register file like in operation triggered architectures. TTAs are less dependent on

accessing the register file due to the additional scheduling freedom and optimizations

enabled by the lower level programming interface, which reduces the amount of register

13

file operands in the program code. In addition to the reduction of register file size and

port amount, TTA-specific optimizations increases energy efficiency as accesses to the

register file are reduced. [11]

An example of a transport triggered architecture’s instruction format is presented in Figure

2.5. The instruction word is divided into different move slots that present flow of data in the

core’s interconnect busses. The move slots have separate source and destination fields

that describe the source and the destination sockets. The destination field also specifies

the operation code of the targeted function unit if it is connected to a triggering port. If a

move slot cannot be used for the transportation of an operand in an instruction, the move

slot is assigned to a no operation.

Move slot
B0

Move slot
B1

Move slot
B2

Move slot
B3

Source field Destination field

00001 : NOP
10000 : RF_o
00000 : ALU_o

00001 : NOP
10000 : ALU_i1.add
10001 : ALU_i1.sub

10010 : ALU_i1.mul

Figure 2.5. Example of a transport triggered architecture’s instruction format

2.5.2 Superscalar Processors

Superscalars, also known as dynamically scheduled multi-issue processors, take a dif-

ferent approach to instruction-level parallelism compared to VLIW processors. In super-

scalar processors, the ILP is not explicitly stated by the compiler. Instead, the core re-

ceives the same instructions as an equivalent single-issue processor of the same ISA. Su-

perscalar processors exploit ILP by fetching multiple instructions to an instruction queue

during the same clock cycle and dynamically scheduling them in hardware so that multiple

instructions are executed in parallel when possible. [9]

An enormous benefit of superscalar processors is that as the multi-issue capability is

purely an implementation detail that can be hidden from the programmer, the design is

compatible with the binaries with different dynamic multi-issue or single-issue implemen-

tations of the same ISA. The dynamic scheduling of operations, however, results in more

complex hardware implementations, which is a big drawback of superscalar processors.

[9] The more complex hardware implementation of superscalar processors is problematic

especially when targeting embedded devices and optimizing for low power consumption.

14

3. PROCESSOR CUSTOMIZATION

Processor customization is a way to optimize processor implementations and architec-

tures towards the desired use case. While customization can yield better results in terms

of performance, area and energy efficiency, it is a time-consuming and error-prone task.

This chapter explores ways of processor customization and available RISC-V generators

as well as the OpenASIP toolset as an example of processor customization tools.

3.1 Application-specific Instruction-set Processors

The term application-specific instruction-set processor is not strongly defined. However,

in literature it is usually used as a term for a processor whose instruction set is tailored

for a specific application domain [12] [13] [14]. Compared to general-purpose processors

(GPP) whose instruction set is designed to achieve the maximum performance and flex-

ibility in general-purpose computing, ASIPs can achieve better performance and energy-

efficiency in the target domain while possibly losing some of the flexibility that comes with

general-purpose processors. The key design benefit of ASIPs is the ability to tailor the

instruction set in a way where instructions that are not beneficial in the target domain are

removed and respectively custom instructions that accelerate the target applications can

be added. This way, the area and performance are strongly optimized for the application

domain.

Overall, the flexibility, performance and power consumption of ASIPs falls in between

GPPs and non-programmable fixed function accelerators. ASIPs benefit from the flexi-

bility gained from programmability even though it comes with an overhead in area, per-

formance and power consumption. Implementing ASIPs is also less risky and offers a

shorter time-to-market than fixed function application-specific integrated circuits (ASIC)

as debugging software is cheaper than post fabrication debugging of hardware. In ad-

dition, ASIPs can be theoretically produced in higher volume compared to fixed function

accelerators because related applications in the same domain can use the programmable

hardware for acceleration. [15]

The tailoring of the instruction set in ASIPs does not come without a cost because the

tailored instruction set must be supported by the compiler and the instruction set sim-

ulator so that the processor can be used efficiently. This adds motivation for ASIP de-

15

sign environments that can automatically generate the software development kits from a

higher-level description of the processor.

3.2 Architecture Description Languages

The term architecture description language (ADL) has been used for designing of both

hardware and software architectures. In hardware architectures, ADLs are used to de-

scribe hardware components, their connections as well as the behaviour. It is used in a

similar manner for software architectures where ADLs describe the behavioural specifi-

cations and interactions of software components. There are multiple terms for ADLs that

target processor design, such as processor and machine description language. Even

though the concept of ADLs is not strongly defined, they are used for describing systems

on a higher level where architectural information is presented rather than the implemen-

tation itself, as in hardware description languages. [16]

Using ADLs in processor design is good for design space exploration, as the designer

can explore the processor on an architectural level without modifying the microarchitec-

tural details. In addition to the hardware customization and generation, ADLs make the

automatic generation of testing environments and software toolkits easier for customized

processors as all the architectural information is known in the architecture description.

This is especially important when developing retargetable compilers to add compiler sup-

port for ASIPs. [16]

One way of classifying ADLs is their objective. From this perspective, ADLs can be divided

into compilation-, simulation-, synthesis- and validation-oriented ADLs. The main purpose

of compilation-oriented ADLs is to enable automatic generation of retargetable compilers

where the ADL is used to provide the compiler information about the architecture as input.

Simulation-oriented ADLs are used for simulating customized processors. Simulation

can be divided into multiple abstractions where the higher level abstractions produce

functional simulation and the lower level abstractions clock cycle accurate information.

The synthesis-oriented ADLs are used for hardware generation and validation-oriented for

functional verification of processors. Many ADLs, however, have a mix of these objectives.

[16]

LISA is an example of a mixed-level ADL that describes the behaviour, structure and the

interfaces of a processor architecture. The LISA model is divided into two main parts.

The first part describes the resources of the processor architecture, while the second

part stores information about the instruction set, behaviour, expression and timing in the

form of operations. The resource entries consist of multiple subsets that include registers,

pipelines and memories that can be parameterized with different values. The operation

descriptions can be further divided into multiple sections: coding, syntax, semantics, be-

haviour and activation. The coding section is used to describe the binary image of an

16

instruction word, the syntax section for describing the assembly syntax and the seman-

tics section for expressing the abstracted behaviour of an instruction. The behaviour and

expression sections describe state transitions, and the activation section is for describing

the activation of instructions in the pipeline. Effectively, the processor model is divided into

multiple submodels that describe different parts and abstraction levels of the processor.

[17]

3.3 Processor Generation and Customization in OpenASIP

OpenASIP [18] or TCE is an open source TTA-based application specific instruction-set

processor toolset that allows users to generate and program customized ASIPs. Ope-

nASIP allows heavy customization of both the architecture and implementation of the

processor.

As seen in Figure 3.1, the processor customization is divided into multiple different tools

and files in OpenASIP. The most visible tool to the user is the Processor Designer that

allows to customize the architecture of the processor. Processor Designer provides a

graphical user interface for modifying the XML-based architecture definition file (ADF)

that has all the information about the programming interface of the processor and is used

for both compilation and simulation in addition to the hardware generation. ADF stores

information about the interconnect network, function units, their operations and latencies,

memory sizes and register files. [19]

Processor
Designer
(ProDe)

Processor
Generator
(ProGe)

Hardware
Database (HDB)

Implementation
Definition File

(IDF)

Hardware
Database Editor

(HDBEditor)

RTL
(VHDL/Verilog)

Architecture
Definition File

(ADF)

User

Operation Set
Editor

(OSEd)

Operation Set
Abstraction Layer

(OSAL)

Figure 3.1. Overview of processor generation and customization in OpenASIP

In addition to the architectural modification, OpenASIP has separate tools for modifying

operation set libraries and the hardware databases. Operations can be added to the oper-

ation libraries with the Operation Set Editor that is operated via a graphical user interface.

In OpenASIP, the operations are strongly separated from their hardware descriptions so

that not even the operation latency is described in the operation set abstraction layer

17

<operat ion >
<name>MAC</name>
< desc r i p t i on > M u l t i p l y and accumulate (signed i n t e g e r) . < / desc r i p t i on >
< inputs >3</ inputs >
<outputs >1</ outputs >
< i n element −count ="1" element −width ="32" i d ="1" type =" SIntWord " / >
< i n element −count ="1" element −width ="32" i d ="2" type =" SIntWord ">
< i n element −count ="1" element −width ="32" i d ="3" type =" SIntWord ">
<out element −count ="1" element −width ="32" i d ="4" type =" SIntWord " / >
< t r i g g e r −semantics >

SimValue mu l_ resu l t ;
EXEC_OPERATION(mul , IO (2) , IO (3) , mu l_ resu l t) ;
EXEC_OPERATION(add , mul_resu l t , IO (1) , IO (4)) ;

</ t r i g g e r −semantics >
</ operat ion >

Figure 3.2. Multiply and accumulate operation entry

(OSAL) and therefore only the semantics of the operation are described in the opera-

tion description. The hardware implementations for function units and operations are

described separately in the hardware databases that can be modified with the Hardware

Database Editor. [19]

OSAL stores the semantics and interfaces of operations, which gives it a key role when

adding custom operations. The static properties of operations are added to an XML-

based .opp file that describes the operation name and interfaces. The operation seman-

tics can be described as a directed acyclic graph (DAG) in the .opp file if the operation can

be constructed by combining different pre-defined OSAL operations. Otherwise, the op-

eration behaviour model must be described in a separate .cc file that is used to describe

the operation behaviour. [19] An example of a multiply and accumulate is presented in

Figure 3.2. The entry states that the operation takes three 32-bit input values and emits

one 32-bit output value. Additionally, the semantics of the operation are described under

trigger-semantics where the mul and add operations are used to describe the operation

as a DAG.

The implementation of the processor is defined in the implementation definition file (IDF).

IDF stores all the information about the implementation that is not relevant in the program-

ming interface, such as hardware implementations of the function units and register files.

Like the ADF, the IDF is an XML-based file that can be either modified manually or in the

Processor Designer tool. [19]

In the last step, the command-line tool Processor Generator is used together with the

ADF and IDF as main input to produce the register transfer level (RTL) description of the

18

processor. The OpenASIP hardware generation can produce the hardware descriptions

both in VHDL and Verilog. [19]

3.4 RISC-V Generators

The open-standard nature and rising popularity of RISC-V has created motivation for

customizable implementations and core generators. This section explores available com-

mercial and open source RISC-V generators and compares their features.

As seen in Table 3.1 there are already many tools that allow the generation of customiz-

able RISC-V implementations. The tools have many common features, even though some

of them are more focused on full system-on-chip (SoC) implementations.

Codasip Studio [20] is a commercial tool for generating customizable RISC-V cores and

software development kits for the generated hardware. Codasip uses a high-level de-

scription language CodAL that can be used to describe different kinds of instruction-set

architectures in addition to RISC-V. [21] Even though Codasip Studio is a commercial tool,

it has also been used in academic work to design an application-specific instruction-set

processor for 5G data link layer processing [22] as well as to implement an instruction

set extension for the secure hash algorithm for the MIPS instruction set architecture [23].

Codasip Studio has a strong support for custom operations and is able to automatically

generate the hardware for the custom operations as well as integrate them into the LLVM-

based compiler toolchain without the need for intrinsics in the source code.

SiFive Core Designer [24] is another commercial tool for generating customized RISC-V

implementations from multiple different core templates with a vast amount of customiza-

tion points. The templates can be modified to include multiple RISC-V cores and config-

ure many parts of the internal microarchitecture such as branch predictors, caches and

debuggers.

Andes [25] RISC-V core customization works in a similar way as SiFive’s, where the

processor is modified from a processor template. However, the templates are more fixed

and do not allow users to heavily customize the internal implementation as in SiFive’s

Core Designer. The user can add custom operations to the processor templates with

instruction development tools that configure the compiler toolchain and RTL.

Synopsys ASIP Designer [26] is also a commercial tool that allows heavy customization.

ASIP Designer is based on the nML architecture description language and contains many

other processor templates besides RISC-V. ASIP Designer ships with a retargetable com-

piler and a simulator that are configured based on the architecture description. [27] ASIP

Designer can be extended with MP Designer [28] to add support for multicore designs.

WARP-V [29] is an open source tool that allows the user to generate customized RISC-V

19

cores. The tool supports only generating the core logic and does not support platform

components, such as caches and memory management units. The generator utilizes TL-

Verilog to describe the core architecture and even has support for generating multicore

designs. The WARP-V does not support custom operations and does not offer compiler

support like SiFive Core Designer, Andes, ASIP Designer and Codasip Studio.

Rocket Chip Generator [30] is another open source tool developed by the University of

Berkeley. It utilizes the Chisel hardware construction language to combine a library of

generators for cores, caches and interconnects into a SoC implementation. Rocket Chip

Generator has been used to produce functional ASIC implementations that are capable

of booting Linux. The tool is divided into multiple different generators that handle different

components. The Core Generator is used to instantiate and customize RISC-V cores. It

offers customization for function unit pipelines, branch predictors and floating point units.

The toolset has multiple different core generators that use different base implementations:

Rocket core that is a scalar core with a 5-stage in-order pipeline, BOOM, that is an out of

order superscalar core and Z-scale that is a smaller 3-stage core.

Another interesting implementation is VexRiscv [31] that is a SpinalHDL [32] based RISC-

V implementation. SpinalHDL is a scala library that enables to describe hardware imple-

mentations. VexRiscv describes the different parts of the RISC-V core as plugins, which

allows heavy customization. However, it is not exactly a generator even though the RTL

is generated from the SpinalHDL description and therefore requires the user to manually

modify the description to customize it.

Overall, there are not many open source tools for generating customized RISC-V imple-

mentations. Many of the tools are commercial and neither freely available nor extensively

documented. The missing support for custom operations was also observed in open

source tools.

ASIP Designer Codasip SiFive Andes WARP-V Rocket

Custom operations x x x x

Multicore x x x x x

Configurable pipelining x x x x x x

Branch prediction x x x x x x

Caches x x x x x

Open source x x

Table 3.1. Properties of available RISC-V generators

20

4. HARDWARE GENERATION AND IMPLEMENTATION

To enable generation of customized RISC-V implementations, this work extends the open

source tool OpenASIP. In the implementation of the RISC-V generation, a TTA core is

used as the internal microarchitecture and a RISC-V front end is generated to implement

part of the control and decoding logic. This enables reuse of the customization points that

are available for TTA cores in OpenASIP. Transport triggered architectures are a suitable

candidate for describing more high-level architectures because of their exposed datapath

that allows the programmer to directly move data between different function units and the

register file via the core’s internal interconnect.

The main benefit of extending OpenASIP and using a TTA core as base implementation

is the easy design time exploration. In practice, the front end acts as a design time mi-

croprogramming layer in the hardware that can be optimized during the synthesis phase.

The method follows a similar microprogramming design philosophy that is used in CISC

implementations to design control logic. In this work, however, instead of RISC-like micro-

operations, the internal micro-operations are TTA moves. Using the microprogramming

to design control logic does not offer any runtime benefits in this work as the microcode

is not programmable and is merely used to design the control logic for RISC-V implemen-

tations. This chapter explains how the microcode component was implemented and how

its generation was integrated into the OpenASIP toolset.

4.1 Processor Pipeline

A high level description of the design pipeline with RISC-V microcode support is described

in Figure 4.1. The pipeline is divided into four pipeline stages where both the translation

and decoding of the micro-operation are done in the same combinatorial path. Because of

the programming model of TTA cores, they don’t have the implicit writeback functionality in

hardware as in operation triggered architectures. However, due to the added microcode

component, the writeback stage is implicitly formed because the microcode hardware

guarantees that the result operand is always written to the register file.

A microarchitectural difference compared to the classic RISC pipeline is caused by the

register file placement in the core pipeline. In TTA cores, the register file is treated sim-

ilarly as function units, which enables the programmer to directly move data from and to

21

the register file ports via the core’s interconnect. In the described pipeline configuration

due to the decode registers, the register file read is done in a different stage than the

decoding of the instruction. In classic RISC implementations, the register file is usually

read in the decode stage. Because of the operation model of TTAs, the register file can-

not be moved to the same stage as the instruction decode without removing the decode

stage registers, as then the register file would not be accessible via the interconnect. If

the decode registers were removed, the pipeline would resemble a moderately pipelined

RISC implementation at the cost of a longer combinatorial path.

IF Microcode Decode Execute

Interconnect

Register
file

ra rb wa

Opa

Opb

Opc

addr_o

rdata_i

Figure 4.1. High-level description of the design pipeline

The RISC-V instruction set architecture specifies the instruction width, which is why the

width of the fetched instruction blocks is fixed to 32 bits. The micro-operations that are

emitted from the microcode hardware can be viewed as TTA moves, but here they are

used for implementing the control logic of an operation triggered architecture. Essentially,

they are a step of forming the control signals to the core pipeline that are emitted from the

decode unit.

In this work, the microcode hardware must implement the hardware features that are not

found in transport triggered architectures which include dynamic features such as data

hazard detection, data forwarding and handling of control flow operations in a way that is

specified in the instruction set architecture. During control flow operations, the microcode

hardware must assure that the control hazards are handled in a way that the program

order is preserved. In the RISC-V ISA, control flow operations do not use delay slots and

therefore the microcode hardware must make sure that the pipeline is stalled if a control

hazard arises.

22

4.2 Microcode Implementation

The microcode component must provide a programming interface for the target instruction

set architecture. Because of the vast differences in the operation models of operation and

transport triggered architectures, the instruction binaries cannot be statically translated

and instead the multiple micro-operations must be sequenced separately to achieve the

wanted operation-triggered behaviour. Some features that are software programmable

in TTA cores are handled by hardware in operation triggered cores, for example, data

forwarding.

Figure 4.2 shows a block diagram of the internal structure of the microcode unit. Some

details and interfaces that are not directly related to the translation and sequencing of

the micro-operations are hidden from the block diagram to simplify it. As seen in the

figure, the microcode component has multiple different subcomponents that are explored

in more detail in later sections. The most important components are the controller that

is responsible for handling the control flow operations, the micro-operation sequencer

that schedules the micro-operations and lookup tables that contain the microcode and

operation latencies. Additionally the decoding of the formats and data hazard detection is

done inside the microcode component.

Control Flow
Operation?

LUTsData Hazard
Detection

Format
Decoding

Controller

Micro-
operation
Control

Merge
Register
Indexes

MUX
Merge

instruction_i

operation

reg_indexes

is_ctrl_op

bubble

moves

movesformat

op_lat

rs1_hazard

rs2_hazard instruction_o

rd_move

stall_ifetch_o

NOP

moves

Immediate
Handling

immediate_o

Figure 4.2. Block diagram of the microcode hardware

A similar method has been used to interpret x86 instructions on an ARM core, where the

ARM instructions can be seen as micro-operations. The method uses translation tables

that transform the x86 into one, two or three ARM instructions that are then executed by

using a micro-operation sequencer. The interpretation hardware effectively serves as an

x86 front end to the ARM core. The implementation includes two operation modes where

both ARM and x86 instructions can be run on the same hardware. [33] In this work,

23

however, the architecture is fixed to the RISC-V ISA without allowing multiple operation

modes to focus on the generation of standard RISC-V implementations.

4.2.1 Instruction Translation

The most important component of the microcode hardware is a lookup table that maps

instructions between one another. The instruction word that is read from the lookup table

is later split into multiple micro-operations that are scheduled separately. Adding an entry

in the lookup table for every possible combination is not feasible as immediate values

and register file indexes would cause too many combinations and, therefore, make the

lookup table impractical for hardware generation and synthesis. When both instruction

set architectures support same ranges for register file indexes and immediate values,

they can be directly mapped between instruction words without routing them through a

lookup table. This reduces the lookup table size and now only combinations of instruction

formats and operations need an entry in the lookup table.

When the immediate values and register file indexes are removed from the RISC-V in-

struction word, only the operation code and function fields are left. Respectively, TTA

moves consist only of the operation sources, destinations and the operation code on the

triggering bus when the register file indexes and immediate values are excluded. In this

case, the TTA moves can be mapped solely from the RISC-V operation code and function

fields as they identify these properties.

For the translation to work correctly, the microcode unit must be aware of how the different

operands are mapped to the transport busses. This requirement is due to the direct

mapping of the register indexes as well as the splitting of the translated instruction into

multiple micro-operations.

When a new instruction arrives to the translation stage, the immediate values and register

indexes are sliced from the RISC-V instruction word. The register indexes are mapped

directly to the translated TTA instruction. Handling of register indexes in hardware is easy

because in RISC-V’s case the register file indexes exist in the same places in the instruc-

tion word between formats as observed in Figure 2.2. Handling of the immediate values is

more complex as each format has a different way of expressing immediate values, which

is why the immediate bits must be shuffled and shifted based on the instruction format.

The immediate values are not inserted into the translated instruction word, instead, they

are passed directly to the decoder output. This way handling of the immediate value is

independent of the supported immediate width by the internal instruction format of the

microarchitecture as the immediate value is sign extended to 32 bits and forwarded to the

decode output by the microcode unit.

24

4.2.2 Micro-operation Sequencing

The differences in the programming model between operation and transport triggered ar-

chitectures cause additional complexity because instructions cannot be translated directly

between one another. During the scheduling of the micro-operations, the hardware must

assure that the result is transported into the register file during the correct clock cycle. In

practice, this means that the translated micro-operations must be scheduled in two se-

quences where the micro-operation that moves the result operand back to the register file

is scheduled on a later cycle. Implementing such a control structure is simple for hard-

ware implementations where all operations have an operation latency of one clock cycle.

In this case, the result move can be forwarded into a register that delays the result move

from being passed to the decoder by one cycle, ensuring that the operation has been

executed in the execute stage when the result move is performed.

In Figure 4.2 the sequencing of micro-operations is shown in more detail. The result

operand move is sliced from the translated instruction and assigned to a register, the

input operand moves are passed directly to the decoder. The controller inside the mi-

crocode unit can insert a bubble that bypasses the sequencer output in order to bubble

the pipeline.

However, it is common that the operation latency differs between operations. Splitting

complex operations into multiple cycles is one way of shortening the critical path in hard-

ware implementations. This is commonly used for division and multiply operations that

would otherwise cause a long combinatorial path in the design with the possible cost of

stalls when the operation is executed in the operation pipeline. Multi-cycle operations

cause additional complexity to the micro-operation sequencing, as the result move can-

not be statically delayed. Instead, during the translation of the incoming instruction, an

additional lookup table must be read to find out the operation latency for the incoming

operation and bubble the pipeline until the result move can be executed.

Additional steps must be taken to add support for the RISC-V load upper immediate

operation that loads 20 bits from an immediate value to the destination register upper

bits by using the U-format and replaces the lower bits with zeroes. [6]. In transport

triggered architectures, this operation could be described as a simple move between a

short immediate and the register file. However, it is not an optimal solution to describe the

operation in such a way by the microcode hardware because the immediate move would

have to be mapped to the result operand bus. If the bus that is used for the result operand

moves has support for short immediate values, it could be used to delay the result move

like with other operations. A more general solution is to mimic the way small immediate

values are loaded into the register file in RISC-V applications. The programmer can use

the add immediate operation and mark the other input operand as the zero-register which

loads the original immediate target value to the register file by routing it through the ALU.

25

This same method can be used internally to solve the load upper immediate scheduling

problem without adding extra register file write ports, short immediate support for the

result operand bus or complicating the micro-operation sequencing. This design choice

does not come without its drawbacks, as now loading the upper immediate value causes

extra switching activity in the ALU, potentially resulting in a higher energy consumption.

4.2.3 Control Flow Operations

Control flow operations are the most complex types to sequence because they propagate

into the core’s control logic. To minimize the amount of required stalls, the control flow

operations should be handled as a special case. This is easy to implement for operations

whose input operands have no dependency on the register file. This way, they can be as-

signed directly to the control unit and added to the program counter value without routing

them via the other stages of the processor pipeline.

Both the JAL and the AUIPC operation can be directly routed to the control unit to min-

imize control hazard related stalls. However, the result move must still be scheduled to

ensure that the result operand is stored in the register file after the operation has been

executed.

JALR, as well as branch operations, are more complex to optimize because their input

operands depend on register file values. As seen in 4.1, in TTA designs, the register file

is treated similarly as a function unit, which means that register file dependent opera-

tions must be routed through the interconnect. A way to optimize this issue is to predict

that the branch is not taken and keep the pipeline running. In case the branch was mis-

predicted, the following instructions of the branch instruction would be flushed out of the

pipeline. A similar optimization cannot be made for the JALR operation because it utilizes

an unconditional jump.

In this work, when the microcode hardware encounters a branch or a JALR instruction,

the instruction fetch unit is stalled and the micro-operation inserted into the core pipeline.

Because of the decode registers, the core must bubble the pipeline for one clock cycle

until the operation has been executed in the control unit. After this, the previous stages

must be filled with valid instructions, which takes one to two cycles depending on whether

the instruction register is enabled in the instruction fetch unit. With the described configu-

ration, the core suffers a penalty of N-1 cycles, where N is the amount of pipeline stages.

The amount of pipeline stalls could be minimized by reducing the amount of pipeline

stages, but this is not an optimal solution for general-purpose performance as it would

cause long combinatorial paths to the design, which reduces the maximum clock fre-

quency. Additionally, the program counter register could be bypassed during control flow

operations, but this could form a long combinatorial path when memories are connected

to the core.

26

4.2.4 Data Hazards and Forwarding

TTAs’ specialty are the software programmable bypasses where the programmer can

assign a move from a function unit output port to a function unit input port without routing

the data through the register file. This is possible when the interconnect has the required

connectivity. A similar method can be used to perform data forwarding if the microcode

unit detects a data hazard. When a data hazard is detected, the move from the register

file to the function unit input port on the data hazard bus is not assigned. Instead, the

operand is routed from the function unit output port by utilizing the bypass connectivity.

A core with full bypass support to every register operand is presented in Figure 4.3. As

seen in the figure, the register file output ports are connected to the first and the second

bus in the architecture. Respectively, all function unit output ports are connected to the

first and the second bus, as well as the third bus that is connected to the register file

input port. This way, the executed results can be forwarded straight from the function unit

output port when a data hazard is encountered. The core presented in Figure 4.4 has no

bypass support as the function unit output ports are only connected to a bus which only

input connection is to the register file.

M R C

0

1

2

3

rs2

rs1

rd

imm

Figure 4.3. Architectural view of a core with full bypass support

M R C

0

1

2

3

rs2

rs1

rd

imm

Figure 4.4. Architectural view of a core with no bypass support

To make the dynamic forwarding possible, the microcode unit needs additional lookup

27

tables. In the first lookup table, each operation is assigned a target tag which identifies

which output port the operation stores the result operand after it is executed. This way, the

microcode hardware can use a register to store the output port of the previous operation.

In addition, a lookup table is needed for each register input operand: rs1 and rs2. The

operand lookup tables have an entry for each combination of operand output and input

ports. When encountering a data hazard, the move from the register file is discarded on

the hazard bus and bits for that move are fetched from the bypass lookup table. It is im-

portant that the result move to the register file is still simultaneously performed alongside

with the forwarding move.

Instruction
LUT

rs1 move
rs2 move

operation
other moves

rs1 forwarding
LUT

operation

Output
LUT

output port

rs2 forwarding
LUT

operation

Merge

operation

rs1
hazard

rs2
hazard

rs1 bypass
move

rs2 bypass
move

instruction
out

operation

source port

source port

MUX

MUX

Figure 4.5. Instruction translation with data forwarding support

The dynamic bypass logic is described in Figure 4.5. By default, the translated instruction

is fetched from the instruction lookup table. During each clock cycle, the output port for

the operation is read from a lookup table and assigned to a register. When a data hazard

is encountered, the output port of the previous operation is passed to the operand bypass

lookup table as the source port for the bypass move. The forwarding moves are passed

through a multiplexer together with the default register file move, which enables the hard-

ware to discard the move from the register file on the data hazard bus and use the bypass

move instead. The data hazard is detected in a separate component in the microcode hi-

erarchy, as presented in Figure 4.2. The data hazard detection unit is passed the register

indexes and the current instruction format, which are used to deduct whether the current

operation will result in a data hazard. The data hazard unit has internal registers that

28

store the format and result index of the previous operation.

4.3 Microarchitectural Patterns

ADF allows users to heavily customize the architecture of the generated ASIP cores.

However, to fully meet the requirements of the RISC-V instruction set architecture, the

TTA microarchitecture that is used in the implementation must meet certain requirements.

The most obvious requirement is that the underlying TTA microarchitecture must have

all the required operations to implement the RISC-V base instruction set architecture.

The microcode unit could implement the missing operations as multiple entries of mi-

crocode that would start a sequence of instructions to implement the missing operation

with several operations. For instance, this could be done for missing logical operations.

Implementing operations as microcode would complicate the translation hardware and

decrease performance, which is why it is not implemented in this work.

RISC-V instruction formats dictate how many and which operands the bound operation

must take as input and whether the operation emits an output value. This causes a

requirement for the amount of busses and their configuration. To achieve the best per-

formance and minimize the micro-operation sequencing logic, the core should be able to

transport all the operands during each clock cycle. Both the RISC-V S-type and B-type

formats have three input operands, as seen in Figure 2.2. It should be noted that when

the S- or B-format operation is scheduled, the core could be transporting a result from a

previous operation in the result bus, which means that the result bus cannot be used for

the transportation of one of the input operands. This dictates that the core must have the

minimum of four busses to be able to transfer three input operands and the result from

the previous operation in one clock cycle.

RISC-V instruction set architecture specifies the size and the width of the register file.

To match the programming interface of the RISC-V instruction set architecture, the un-

derlying TTA microarchitecture must also have a register file with at least 32 entries to

implement the RV32I subset or 16 for the smaller RV32E subset. The size is not however

the only requirement for the register file. Many of the RISC-V instruction formats perform

two register file reads while performing one write to the register file in the write back stage.

To support this operation model, the register file must have two read ports and one write

port.

ADF allows the user to freely modify the interconnect connectivity of the generated cores.

The connectivity plays a crucial role in the compilation as it dictates which moves between

sources and destinations are supported by the core. To support the load-store model, the

core must have connectivity from the register file output ports to all register operand input

ports. Respectively, all operation output ports must have connectivity to the register file

29

input ports. However, it is not sufficient that the core has the required connectivity, it must

also be able to schedule all the required moves in parallel. This way the transport busses

are mapped to their dedicated register and immediate operands. In RISC-V’s case, the

core has dedicated busses for rs1, rs2, rd and immediate operands.

A minimal configuration to implement the RISC-V ISA is described in Figure 4.4. The

configuration has the required two register file read ports and one write port. The inter-

connect has the four busses that are mapped to RISC-V operands. As seen in the figure,

the order of the operand busses does not matter as long as they have the required con-

nectivity. The rs2 operand bus is the uppermost bus and below that is the rs1 bus. The

input operand busses rs1 and rs2 have only connections from the register file output to

function unit input ports. Respectively, the result operand bus rd only has connections

from the function unit output ports to the register file input port. The immediate bus is a

special case as its operand is expressed directly in the RISC-V instruction word.

The microarchitecture has two separate function units: M that contains both the load-

store and arithmetic logic unit and the C that is the control unit. The function unit M has

three input ports to support the RISC-V S- and B-format, with three input operands. As

seen in the figure, the immediate operand bus has connections to two input ports in the

M function unit. This connectivity requirement is caused by the I-format that has shared

operations with the R-format, but the rs2 operand is replaced with the immediate operand

[6]. This is why the immediate operand must have the same connectivity as the rs2

operand to the function unit that implements the I-format operations. In addition to this,

the S-format requires the transportation of both the rs2 and immediate operand, which

is why the immediate operand must also have its own input port for the function unit that

implements the S-format operations.

The control unit also has three input ports to support the three input operands of the

B-format. The control unit, however, has two output ports. The reasoning behind this is

that the return address is implemented as a special register in OpenASIP’s TTA imple-

mentations. The operation model of function calls was not changed for this work and the

return address operand was implemented as a special register port and the AUIPC result

operand as its own. The ideal solution would be that the control, load-store and arithmetic

logic unit were implemented as one function unit for scalar implementations to maximize

the amount of hardware sharing between operations and to minimize the bypass logic.

However, there is a current hardware generator limitation in OpenASIP that disables the

combining of control unit with other functions units.

4.4 Hardware Generation

When generating the RISC-V microcode layer for the internal TTA microarchitecture, the

hardware generator needs to have information about the internal TTA core’s program-

30

ming interface. OpenASIP describes the information needed to program the generated

TTA processor in machine and binary encoding objects, which is sufficient to generate

a RISC-V microcode layer. The machine object describes relevant information on the

operations, operation latencies, function units, register files and bus configurations. The

binary encoding object is relevant when generating the final program images because

it has information on how the operation encodings are mapped. The microprogramming

hardware can be solely generated from information acquired from the machine and binary

encoding map objects.

The program flow of generating the microcode unit hardware is described in Figure 4.6.

During the hardware generation, the software makes sure the internal TTA microarchi-

tecture meets all of the design requirements for the RISC-V mode. First, the software

checks that the microarchitecture supports all the required operations. If this condition

is not met, the software throws an error which notifies the user that the RISC-V mode

cannot be generated for the given TTA core.

ADF allows the user to freely map the operation operands to different ports in the function

unit. This must be taken into account because in TTA’s programming model, the moves

are assigned to and from ports. This is especially important for operations whose be-

haviour is dependent on the operand mapping. RISC-V has four different operands: rs1,

rs2, immediate and rd. Because the behaviour of the operations are fixed both in the

RISC-V specification and in OpenASIP’s operation models, the software can map opera-

tion ports directly to four different maps. This way it can be deducted on operation level

which function unit port corresponds to which RISC-V operand.

In the next step, the register file information is analyzed. If the register file does not

have enough entries to meet the RVI or RVE specification, an error is thrown. For the

scheduling to work, the register file must have the minimum of two read ports and one

write port. This property is also checked in this step.

Register file ports are not bound to any operation operands so they can be connected to

the busses in any way possible as long as write ports are used as input and read ports as

output. It is up to the hardware generation software to decide how the register file ports

should be mapped to the operand busses so that the scheduling is possible. Connecting

the register file ports and bussed to operands depend on each other because the register

file connectivity has an effect on which busses can be used for the transportation of which

operands. The finding of the operand busses is purely iterating the different combinations

of the register file ports and the transport busses because all the operation operands are

mapped to function unit ports because of fixed behaviour of the operations.

The algorithm that maps the operand busses is described as pseudocode in Figure 4.7. In

practice, the algorithm works as a microscheduler that deducts how the available busses

and register file ports should be mapped between operands so that the operands can be

31

Verify operations

Has all
operations? Throw an error

Find operation ports

Find register file

Connect register file

Find operation
sources

Connection
successful?

No
Forwarding
enabled?

Remove forwarding
from scheduling

Throw an error

Yes

No

Identify operand
busses

Map operation
latencies

Yes

No

Yes

Register file
valid?

Throw an error
No

Yes

Generate RTL

Figure 4.6. Overview of the microcode unit generation

transported in parallel by utilizing the available connectivity in the interconnect. When the

algorithm is run for the first time, it attempts to connect the busses and register file ports

with data forwarding enabled. If the algorithm is unable to find the operand busses, data

forwarding is removed from the scheduling and the iterations are run again.

The algorithm is separated into two different functions. At the start of the first function,

every output port is added to the list of input operand ports if data forwarding is enabled.

This way the bypass connectivity can be verified by checking the connectivity between

function unit input and output ports on the register operand bus. Then the register file

ports are iterated in the three for loops that check every possible combination of register

file ports and operands. During each iteration the second function is called, which finds

out if the operand busses can be assigned to that particular register file port combina-

tion. The suitability of the busses for the tested operand is evaluated by inspecting if the

32

interconnect is able to move data from every source port to every destination port on that

bus. Additional inspection must be made for the immediate operand as its bus must be

able to transport an immediate value. After every iteration is run, the algorithm has ei-

ther found suitable operand busses for each RISC-V operand or concluded that suitable

configuration cannot be found for the microarchitecture.

If the finding of operand busses was successful, the software can inquire all relevant

information that is needed to instantiate the microcode hardware. The hardware must be

aware of the exact places of the operand move slots in the instruction word as well as the

places of register indexes so that they can be directly mapped between RISC-V and TTA

instructions.

To support varying length operation latencies between operations, the microcode hard-

ware must be able to identify each operation’s latency. During the next step, a lookup

table is generated for the supported operations.

Finally, when all the relevant information has been inquired, an instruction lookup table

that maps RISC-V operation code and function fields to TTA instructions can be gener-

ated by first generating instruction bits for the underlying TTA microarchitecture and then

storing them in a hardware lookup table.

4.5 Customization Points

The key benefit of generating the hardware descriptions in software from an architectural

level description is that it allows many and complex customization points without using

complex if-generate and generic structures in the hardware description. The customiza-

tion points implemented in this work are presented in Table 4.1.

The current implementation supports three and four pipeline stages. To support the con-

figuration of three pipeline stages, the instruction register in the instruction fetch unit must

be disabled. In this configuration, the fetching, translation and decoding of the instruction

are done in the same combinatorial path. As described in Figure 4.1 the execute and

register file read are separated from the writeback into their own stage.

The extensions are automatically configured from the definition of the architecture. If the

architecture has at least 32 register file indexes, the base integer subset is automatically

picked. The smaller RV32E subset is chosen if the architecture has only 16 register file

indexes. The optional M extension is generated if the required operations are defined in

the ADF.

Operation latencies can be fully customized. From the front end point of view, only the

scheduling of the result move must be reconfigured based on the defined operation laten-

cies, which is implemented by storing the operation latency as an entry into a lookup table.

33

1: function CONNECTRF
2: if dataForwarding then
3: rs1Ports.add(rdPorts)
4: rs2Ports.add(rdPorts)
5: ports.rs1← rs1Ports
6: ports.rs2← rs2Ports
7: ports.rd← rdPorts
8: ports.imm← immPorts
9: for all w1 ∈ rfWritePorts do

10: ports.rd← rd.Ports
11: ports.rd.add(w1)
12: for all r1 ∈ rfReadPorts do
13: ports.rs1← rs1Ports
14: ports.rs1.add(r1)
15: for all r2 ∈ rfReadPorts do
16: ports.rs2← rs2Ports
17: if ports.rs1.hasElement(r2) then
18: continue
19: ports.rs2.add(r2)
20: if connectBusses(ports, operandBusses) then
21: return true

return false
22:
23: function CONNECTBUSSES(p b)
24: for all bus ∈ busses do
25: if not isConnected(p.simm, bus) || not bus.hasSimm then
26: continue
27: b.simm← bus
28: for all bus ∈ busses do
29: if not isConnected(p.rs1, bus) || b.hasElement(bus) then
30: continue
31: b.rs1← bus
32: for all bus ∈ busses do
33: if not isConnected(p.rs2, bus) || b.hasElement(bus) then
34: continue
35: b.rs2← bus
36: for all bus ∈ busses do
37: if not isConnected(p.rd, bus) || b.hasElement(bus) then
38: continue
39: b.rd← bus
40: return true

return false

Figure 4.7. Algorithm for finding operand busses

The control logic stalls the pipeline until the multi-cycle operation has been executed. The

implementation could be improved by allowing the pipelining of operations, but that would

require more complex data hazard control as the hardware would have to keep track of

the operations in the operation pipeline to forward the correct result operand.

Bypass connection customization is partly supported. The data forwarding can either be

entirely disabled or enabled. During the generation of the microprogramming hardware,

the software checks whether the interconnect has connectivity for all the bypass moves.

If the core supports bypass moves to all register operand input ports, the bypass logic

is generated to the microcode hardware. Customization of the bypass network was not

34

found in other RISC-V generators. In this work, it is easy to modify the bypass network

due to the use of exposed datapath processor as the internal microarchitecture.

Pipeline stages 3-4

Extensions RV32E/RV32I(M)

Operation latencies Fully customizable

Bypass connections Partly customizable

Table 4.1. Customization points of the generated RISC-V cores

35

5. VERIFICATION AND EVALUATION

This chapter explores the ways the generated RISC-V cores were evaluated and verified.

First, the implementation details of the generated cores are compared against two open

source RISC-V implementations. Then the post-synthesis area and maximum clock fre-

quency are evaluated and, after that, the performance figures are presented. Then the

verification methods that were used to verify the hardware are discussed.

5.1 Reference Implementations

The generated RISC-V cores were evaluated against two RISC-V implementations: zero-

riscy [34] and RI5CY [35]. However, there are differences in the cores’ implementation,

which are explained in this section.

The operation latencies are described in Table 5.1. The values in the table are best-

case latencies, as data hazards and dynamic latencies can cause additional stalls when

the operation is executed. One of the major differences between the implementations

is in how the memory operations are handled: zero-riscy requires a minimum of two

cycles to finish both load and store operations whereas the generated and RI5CY cores

can execute load and store operations without any additional stalls. Zero-riscy does not

bypass the load data and instead always loads it into the register file before resuming

execution, even without a data hazard. The stalls during store operations are caused by

waiting for a response from the memory before resuming execution [36][37]. Zero-riscy’s

handling of memory operations causes additional overhead, especially in data-oriented

code.

Pipelining has an effect on the implementation of control flow operations. Due to its

shorter pipeline, zero-riscy has a smaller branch penalty compared to the generated and

RI5CY cores, which can be seen as a reduction of one clock cycle in the latency of

taken branch operations [36][37]. The generated cores do not implement flushing for

branch operations, which means that the branch is never predicted taken and instead all

branches are executed the same way, independent of whether they are taken or not.

Another difference is in the pipelined mulh, division and remainder operations. Remain-

der and division are complex operations that in zero-riscy’s and RI5CY’s case are imple-

36

mented with dynamic latencies where the latency of the operation is dependent on its

input values [36][37]. Dynamic latencies were not implemented for the generated cores

and instead the latencies for such operations were fixed to static latency. The support

for dynamic latencies could be added by assigning the operation latency to the best-case

value and locking the core pipeline from inside the function unit until the operation has

been executed if the latency exceeds best-case value.

The RI5CY core differs from the two cores significantly because it has additional cus-

tom features that are not implemented for zero-riscy or the generated cores. These fea-

tures include support for hardware loops, optional FPU support and custom instruction-

extensions, such as dot product operations. RI5CY has also a more complex register file

compared to the other implementations. RI5CY has a register file with two write and three

read ports instead of one write and two read ports like in zero-riscy and the generated

cores. The more complex register file is due to the load-store unit having its own write

port and the extra read port that was added for custom operations, such as multiply and

accumulate. [34][35][36][37]

Reference implementations also handle data hazards in a different way. RI5CY core

experiences a penalty of one clock cycle for data hazards originating from the load-store

unit output due to the missing bypass connection from the load-store unit read data [37].

Zero-riscy’s data forwarding was not documented, but data hazard related stalls were not

witnessed in the execution traces.

Three configurations were generated to evaluate properties of the generated cores: three-

stage versions with and without bypass support as well as four-stage configuration with

bypass support. The architecture definition of Figure 4.3 was used to generate the cores,

but the bypass connections were removed for the core that has no bypass connectivity.

In the implementation, the LSU and ALU were implemented as one function unit, while

the control unit that contains the control flow operations was implemented as a separate

function unit.

A system on a chip implementation, Pulpino [38], was used to integrate and benchmark

the zero-riscy and RI5CY cores. Pulpino separates the instruction and data memories

and connects them to an AXI4 interface, which allows the cores to access both memories

either locally or via the AXI4 interconnect [39]. This allows the cores to run self modifying

code. The generated cores also follow the Harvard architecture where the instruction

and data memories are separated, but the current test bench does not allow the LSU

interface to access the instruction memory, which disables the use of self modifying code.

This limitation is purely due to the integration of the memories in the test bench and not a

feature of the generated cores. The cores were not, however, tested with self modifying

code.

37

Operation Type zero-riscy RI5CY 3 stages 4 stages

Integer Arithmetics 1 1 1 1

Load/Store 2 1 1 1

MUL 1 1 1 1

MULH 2 4 4 4

Division/Remainder 1 or 37 2-32 35 35

Branch (Not-Taken) 1 1 3 4

Branch (Taken) 2 3 3 4

Jump 2 2 2 3

Table 5.1. Operation latencies of the cores

5.2 Synthesis Results

Post-synthesis properties of the cores were evaluated by synthesizing the designs with

Synopsys Design Compiler [40] and a 28nm technology without memories. Zero-riscy

and the generated cores were configured without the M extension to highlight the effect

of the microcode hardware and to remove the effect of the different implementation of the

area consuming M extension. Also, the debugger, control and status registers, prefetch

buffer and the compressed decoder were removed from zero-riscy’s RTL. Due to the

more complex structure of the RI5CY and the non-configurable M extension, the RI5CY

core was synthesized without making any modifications to the RTL, which makes RI5CY’s

synthesis results not directly comparable with the other designs.

5.2.1 Comparison Against Reference Implementations

All of the designs were synthesized with their maximum clock frequencies as their timing

target. The design areas are described in Figure 5.1. Zero-riscy achieves the smallest

area compared to other implementations. The four-stage configuration utilizes approxi-

mately 13% more area than zero-riscy and is the biggest in terms of area of the generated

cores which is expected due to the extra pipeline registers. Comparison of the three-stage

configurations gives an idea of the area overhead of the bypass connectivity. The config-

uration with no bypass connectivity achieves the lowest area of the three generated cores

even though it utilizes 7% more area than zero-riscy. The version with three pipeline

stages and full bypass connectivity utilizes 11% more area than zero-riscy. Of the cus-

tomization points used in the synthesis, the bypass connectivity has the biggest effect on

the design area, causing approximately 4% addition to the area utilization. RI5CY has

290% bigger area than zero-riscy due to its extra features that are not implemented for

38

the other designs.

Some of the area overhead compared to zero-riscy is caused by the extra pipeline stage

that adds registers to the execute stage. Additional overhead is caused by OpenASIP’s

current hardware generator limitation that does not allow to combine the control unit with

other function units as seen in Figure 4.3. This makes indicating resource sharing be-

tween operations difficult in the hardware description. Additionally, it adds extra registers

to the design as each function unit output port has its own registers. Additional complex-

ity is also added to the forwarding logic by the separate function units because of the

increased amount of bypass path combinations.

ze
ro

-r
is

cy

R
I5

C
Y

3
st

ag
es

no
by

pa
ss

3
st

ag
es

by
pa

ss

4
st

ag
es

by
pa

ss

0

5 000

10 000

15 000

20 000

25 000

7 000

26 600

7 500 7 800 7 900

A
re

a
(µ
m

2
)

Figure 5.1. Area utilization of the synthesized cores

The maximum clock frequencies of the designs are described in Figure 5.2. The gener-

ated designs achieve the highest maximum clock frequency of the cores. The four and

three-stage versions achieve the same clock frequency. In all the generated designs, the

critical path started from the decode output registers and went through the register file

read, interconnect and ending in the program counter register in the instruction fetch unit.

In the four stage version, the instruction fetch was separated into its own stage. The

synthesis tool was unable to retime the registers and therefore both the critical path and

timing were the same between the pipeline configurations. However, the extra pipeline

register in the instruction fetch could prove useful when memories are connected. The

bypass connectivity had only a small impact on the maximum clock frequency, making

the version without bypass connectivity 2% faster than other generated designs. Even

the versions with bypass support achieve significantly higher clock frequencies than the

two reference designs, beating zero-riscy by 20% and RI5CY by 63%.

The generated cores have one or two more pipeline stages than zero-riscy which explains

39

the higher clock frequency. The RI5CY core is slow compared to the other designs be-

cause of its more complex operation set, which causes a long combinatorial path through

the execute stage. It should be noted that the synthesis was run with the core as the

top level design, which excludes memories. If the memories were connected, the design

could have a different maximum clock frequency and critical path. This would most heavily

impact the LSU, as it has a long combinatorial path before the actual memory access.

ze
ro

-r
is

cy

R
I5

C
Y

3
st

ag
es

no
by

pa
ss

3
st

ag
es

by
pa

ss

4
st

ag
es

by
pa

ss

0

0.5

1

1.5

2

1.66

1.23

2.04 2.00 2.00
M

ax
im

um
cl

oc
k

fre
qu

en
cy

(G
H

z)

Figure 5.2. Maximum clock frequencies of the synthesized cores

5.2.2 Overhead Evaluation

The three-stage version with bypass support was also evaluated against a similar TTA

core without the RISC-V front end and the required changes to the instruction fetch unit.

TTAs use shadow registers in function unit ports to store data between clock cycles.

However, in the RISC-V mode these shadow registers can be removed because all input

values are transported during the same clock cycle. The shadow registers were also

removed from the TTA core to help pinpoint the overhead of the microcode hardware.

The static timing analysis revealed that both the core with and without RISC-V front end

achieve the same clock frequency of 2.0 GHz, which is expected as the microcode hard-

ware is not on the critical path of the design. The TTA design achieved almost identical

area to the RISC-V implementation with these settings. However, the instruction fetch

units are not identical between the implementations. The RISC-V implementation routes

some control flow operations directly to the instruction fetch unit and the TTA has a wider

instruction word, which affects the area results. With flattening disabled, the TTA core

utilized 2.9% less area than the RISC-V core, which indicates that the flattening helps in

reducing of the microcode area.

40

Register file

54%

ALU+LSU

25%

Instruction fetch

10% Microcode hardware

3.6% Interconnect
6% Decoder
1.4%

Figure 5.3. Break down of the area utilization of a generated core with 3 stages and full
bypass connectivity

The breakdown of the area utilization between different components is presented in Fig-

ure 5.3. The microcode hardware takes approximately 3.6% of the design area, while

the register file combined with the function units and instruction fetch unit take 89% of

the total area. The lookup tables that are used for the bypass and register moves only

consisted 1% of the design area. It should be noted that to evaluate the area of different

components, flattening had to be disabled, which has an impact on the results as the

synthesis tool cannot optimize the design through hierarchies.

In combination, the decoder and microcode hardware utilized 5% of the design area,

which is close to the relative decoder utilization of zero-riscy which was 4.5%. More

accurate results of the area utilization of the control and decode logic could be acquired if

the microprogramming hardware was implemented inside the decoder component instead

of as a separate component. This, however, makes hardware generation more complex

and should not yield better results because when the design is flattened, the synthesis

tool is able to optimize the design through hierarchies.

5.3 Performance

All the RISC-V cores were benchmarked with a benchmark suite CHStone [41] that does

not have benchmarks with floating point computation. The source code was compiled with

RISC-V GNU Compiler Toolchain [42] version 11.1.0 that was configured to the RV32IM

subset of the RISC-V ISA. JPEG as well as the double precision benchmarks were left

out because they were too large for Pulpino’s 32kB memories.

The cycle count comparisons are presented in Figure 5.4. The generated cores with

bypass support achieve significantly better cycle counts than the two reference cores.

41

The three-stage configuration has approximately 28% and 16% lower cycle counts than

zero-riscy and RI5CY on average. The configuration with four pipeline stages suffers an

overhead from the higher control flow latencies and achieves only 24% and 12% lower

clock cycles compared to zero-riscy and RI5CY. The effect of missing bypasses can be

seen in the cycle count results of the configuration with no bypass support that has on

average 11% higher cycle counts than zero-riscy and 56% higher than the three-stage

version with bypass support. The bypass connectivity is a very useful feature as it has

only a minimal effect on the synthesis results while lowering the cycle counts significantly.

However, the RI5CY core suffers a significant overhead from the missing forwarding sup-

port from the load-store unit, causing a 22% overhead on average. Zero-riscy suffered

even larger overhead due to the multi-cycle memory operations where both load and

stores take the minimum of two cycles to complete. The overhead of the stalls caused by

memory operations in zero-riscy’s case was 47% in average.

Additional distortion in the results is caused by the differences in the division and remain-

der operations that are implemented with dynamic latencies in the PULP-based refer-

ence cores. However, these are relatively rare operations in the used benchmarks and

only used in the aes benchmark where they make approximately 0.2% of all executed

instructions. The mulh operations was not used in the benchmarks.

If the stalls caused by the load-store unit are discarded, the configuration with three

pipeline stages and bypass support has 5% and 2% higher cycle counts compared to

zero-riscy and RI5CY. Zero-riscy can handle control-oriented code with less penalty due

to its less aggressive pipelining. The overhead caused by the missing flush support can

be seen in the control heavy mips benchmark where not taken branches make 3.5% of

all instructions. In this scenario, the configuration with three pipeline stages and bypass

support has 11% and 6% higher cycle counts than zero-riscy and RI5CY if the load-store

unit caused stalls are removed. Even though the two generated cores are able to achieve

low cycle counts due to their memory interface and bypass connectivity, the evaluated

penalty of control flow operations adds motivation for future flush support.

Run time of the benchmarks described in Figure 5.5 can be extracted by combining the

clock cycle counts presented in Figure 5.4 with the maximum clock frequencies presented

in Figure 5.2. The configuration with three pipeline stages and bypass support achieves

the lowest run time of the designs because of its higher clock frequency, offering in aver-

age 41% and 48% lower run time than zero-riscy and RI5CY. Even when the load-store

unit caused stalls are removed from the run time, the cores’s run time is 13% and 37%

lower than zero-riscy’s and RI5CY’s. The configuration with four pipeline stages achieved

8% and 34% lower run time when the load-store unit induced stalls were discarded.

Overall, the reference cores and the configuration with three pipeline stages and bypass

support achieved similar clock cycle counts when the LSU induced stalls were discarded

42

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

zero-riscy RI5CY 3 stages
no bypass

3 stages
bypass

4 stages
bypass

0

0.2

0.4

0.6

0.8

1

1.2

LSU stalls

Base cycles

Figure 5.4. Cycle counts compared to zero-riscy baseline

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

ad
pc

m
ae

s
bl

ow
fis

h
gs

m
m

ip
s

m
ot

io
n

sh
a

zero-riscy RI5CY 3 stages
no bypass

3 stages
bypass

4 stages
bypass

0

0.2

0.4

0.6

0.8

1

1.2

LSU stalls

Base cycles

Figure 5.5. Run time compared to zero-riscy baseline

43

from the results of the reference cores. This is due to the similar operation latencies be-

tween the cores, which proves that using a TTA core as the internal microarchitecture to

implement the RISC-V ISA can provide competitive results, even providing significantly

faster run times than the two reference implementations. The configuration without by-

pass connectivity experiences significant overhead due to the missing operand forwarding

support, which emphasises the importance of bypass connectivity. The configuration with

an extra pipeline stage could not achieve better performance as it had higher control flow

latencies and same clock frequency as the three pipeline stage version. Better clock fre-

quencies could be achieved if the register file read was made synchronous or registers

were added to the function unit input ports. If the register read were synchronous, the mi-

crocode would need a more complex sequencer as the micro-operations would need to

be sequenced in three cycles instead of two as in the current implementation. Registers

in the function unit input ports would effectively raise the operation latency to two clock

cycles. It could, however, be trivially pipelined, but that would cause problems with data

forwarding as it has a similar effect to separating the memory access to its own stage

where even a forwarded operand would cause a stall during a data hazard.

5.4 Verification

Verification is an important step of making sure that the hardware design meets the re-

quirements set in the specification. When designing processor cores, the specification is

the instruction set architecture. A common way to verify that the design works correctly is

feeding the design stimuli in a hardware test bench and verifying that the design emitted

the correct output. However, just verifying the output was correct does not give a strong

coverage on the operation of the internals of the hardware. A more sophisticated way

to verify hardware is to emit traces on the execution and compare them against golden

traces, which also helps debugging the hardware in case the design does not work as

expected by the specification.

The verification structure used to verify the hardware in this thesis work is described

in Figure 5.6. The test programs shown on the left of the figure consist of the CH-

Stone benchmark suite that includes 12 programs written in the C programming language.

RISC-V GNU Toolchain was used to compile and generate the program images from the

source code. The program images were read in the hardware test bench and uploaded

into the instruction and data memories of the core. The design source files were compiled

and simulated with a register transfer level simulator Modelsim [43]. To generate golden

traces, a RISC-V instruction set simulator riscvOVPsim [44] was used. In the final step,

the golden traces output by riscvOVPsim were compared against the ones generated

during RTL simulation. The generated verification traces were divided into two different

types: instruction traces and datapath traces.

44

GCC

RTL simulation

Instruction set
simulator

Compare

Traces

Traces

Program
images

ELF

Test
programs Results

Figure 5.6. Overview of the hardware verification structure

Comparing the log of executed instructions against a golden trace gives a good view of

the control flow of the hardware. This way, the test environment can verify that the core

executed the correct instructions during program runs. However, it by itself does not verify

that the core created the correct output and executed the operations correctly when they

do not affect the control flow directly.

Generating instruction traces during program runs is simple. In this work, the instruction

tracer was placed in the microcode hardware. The tracer works by writing a new entry into

a text file every time there was a new incoming RISC-V instruction that was not bubbled.

Cores with flushing support would need additional logic to the trace generation because

in their case, not all decoded instructions are executed.

Datapath verification gives a strong coverage of the internal workings of a processor

core. In transport triggered architectures, this must be done by emitting the data that is

being transported in the interconnect busses because not all data is routed through the

register file. In load-store architectures, it is sufficient to emit the data that is written into

the register file. When both the instruction trace and the datapath trace are compared

against the equivalent golden traces, it can be deducted whether the design executed the

program correctly.

During verification the core received 86% total line coverage while the microcode hard-

ware received 66% line coverage. The tested benchmarks did not utilize all the operations

and the bypass paths, which affected the acquired coverage as many of the entries in the

instruction and bypass lookup tables were not tested. When the lookup tables were ex-

cluded, the microcode hardware received 96% line coverage. More extensive verification

could be added by running unit tests on the core, which would stress all the operations

and bypass combinations.

45

6. FUTURE WORK

This chapter discusses the additional features and improvement points that could be im-

plemented to extend the work initiated in this thesis. RISC-V is an extendable and cus-

tomizable ISA, which enables a lot of extra features that were not implemented in this

work but would allow more customization points to the RISC-V generator presented in

the thesis.

6.1 Pipeline Flush Support

Flushing of instructions from the processor pipeline after a taken branch is a common

optimization in processor implementations. In practice, the core pipeline would need

some sort of guard that would disable writes to the register file and execution of store

operations if the instructions in the pipeline are invalid. This way, no modifications to the

program state would not be made by invalid instructions.

Currently, the RISC-V cores generated in this work do not have support for flushing of

instructions which caused a small overhead, especially in control oriented code MIPS

benchmark. Additional changes in the hardware generation would need to be made to

implement flushing. Most importantly, it would have to be inspected if the conditional

branches are taken and then disable writes to the register file and memory until the invalid

instructions have been flushed from the pipeline. Another way to implement flushing is

to use the trigger guards that disable the execution of an operation in transport triggered

architectures based on a boolean register value. This way, the boolean register could

be set to disable operation triggers while there are invalid instructions in the pipeline and

therefore disable any unwanted changes to the program state.

6.2 64-bit Instruction Set and Additional Extensions

The current implementation allows to generate the RV32E/32I(M) configurations. The

RISC-V ISA includes lots of different standard extensions such as atomic, floating, vector

as well as control and status operations. They could be included the same way to the

microcode as was done for the M extension in this work, where a map of the instruction

bits and the operations of the extension are added to the hardware generation to allow the

46

generation of the microcode. Then, if the defined architecture has all the required oper-

ations, the extension would be automatically generated. Especially interesting extension

is the vector extension that can be added to exploit data-level parallelism.

The 64-bit subset of the RISC-V ISA could be easily added because it only requires the

extension of the core’s datapath to 64 bits and a few additional operations. OpenASIP

has partial support for 64 bit designs that could be reused for the 64-bit subset of the

RISC-V ISA.

6.3 Custom Operations

Support for custom operations was a popular as well as important customization point in

the commercial RISC-V tools. In the scope of this thesis work, the support for hardware

generation of custom operations could be added effortlessly. The free opcodes in the

RISC-V ISA could be used to declare encodings for the custom instructions and then add

them to the microcode of the RISC-V front end. However, having only the hardware with

the custom operations is not by itself very useful unless the programmer wants to only

directly invoke them with machine code.

The most major issue with custom operations is that they would require compiler support.

Some implementations fork their own version of the RISC-V GCC Toolchain and add

the support for their own custom extensions to the compiler backend as was done for the

RI5CY [35]. However, this is not a very sophisticated solution for design exploration as the

user would have to manually extend and recompile the compiler every time a new custom

operation is added. A solution for this is to use a retargetable compiler that would allow

the addition of operations into the compiler without the need to recompile the compiler.

OpenASIP’s retargetable LLVM-based compiler tcecc could be extended to allow com-

pilation for different subsets of the RISC-V ISA by putting restrictions to the architecture

description, which would effectively produce RISC-V code. A key feature of this is to

restrict the architecture to operation triggered mode where all input operands are trans-

ported during the same cycle and the result operand is always written to the register file,

which would disable the use of software programmable bypasses. Then the compiler gen-

erated output could be transformed to RISC-V binaries by mapping them during program

image generation.

47

7. CONCLUSIONS

This master thesis work implemented a RISC-V generator by extending the OpenASIP

toolset. The generator works by utilizing a TTA core as the internal microarchitecture

together with a generated microcode unit that implements the operation triggered features

as well as part of the control logic. Microprogramming has been extensively used to

implement control units for CISC processors but not for RISC implementations, which

adds novelty to this work and enables the reuse of features from the OpenASIP tool flow

for RISC-V customization.

The current implementation allows the customization of the amount of pipeline stages,

operation latencies, addition of the M extension and partial customization of the bypass

network. Support for custom operations was a key feature in commercial RISC-V gener-

ators. However, it was not added in this work as it needs compiler support, which is out of

scope for the topic of the thesis. Additional interesting future work is the addition of extra

standard extensions of the RISC-V ISA and the extending of the subset to 64 bits.

In the evaluation section, three generated RISC-V designs with different customization

options were evaluated against two open source implementations: zero-riscy and RI5CY.

Configuration with 3 pipeline stages and bypass support achieved the best performance

of the generated cores and reached 13% and 37% lower run time compared to zero-riscy

and RI5CY when the cycles caused by differences in the implementation of load-store

units were discarded. The generated cores achieved higher clock frequencies than the

reference implementations but consumed more area than zero-riscy. Some area over-

head is caused by OpenASIP’s current hardware generation limitation that prevents the

fusing of the control unit with other function units. The microcode hardware itself utilized

only 3.6% of the design area.

The evaluated penalty in control-oriented code caused by the missing pipeline flush sup-

port adds motivation for future work on optimizing the pipeline to allow pipeline flushes.

The more deeply pipelined configurations could be optimized more by moving the pipeline

stage registers from the instruction fetch unit to either the register file output or to function

unit input ports, as those are in the critical path of the design. Additional critical path

analysis should be performed with integration to memories or caches so that the critical

paths are analyzed in a more realistic setup.

48

REFERENCES

[1] Dandamudi, S. P. Guide to RISC Processors for Programmers and Engineers. 1st

ed. 2005. New York, NY: Springer New York, 2005.

[2] Patterson David A. Hennessy, J. L. Computer organization and design: the hard-

ware/software interface. Morgan Kaufmann, 2013.

[3] Patterson, D. A. and Ditzel, D. R. The case for the reduced instruction set computer.

Computer architecture news (1980).

[4] Wilkes, M. V. The best way to design an automatic calculating machine. Proc.

Manchester Univ. Computer Inaugural Conf. 1951.

[5] Hennessy, J. L. and Patterson, D. A. Computer Architecture: A Quantitative Ap-

proach. Elsevier Science & Technology, 2011.

[6] Waterman, A. and Asanovíc, K. The RISC-V Instruction Set Manual, Volume I:

User-Level ISA, Document Version 2.2. Tech. rep. 2017. URL: https://riscv.
org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf.

[7] Waterman, A. S. Design of the RISC-V Instruction Set Architecture. eScholarship,

University of California, 2016.

[8] Lee, D., Kong, S., Hill, M., Taylor, G., Hodges, D., Katz, R. and Patterson, D. A

VLSI chip set for a multiprocessor workstation. I. An RISC microprocessor with

coprocessor interface and support for symbolic processing. IEEE Journal of Solid-

State Circuits (1989).

[9] Processor Design System-On-Chip Computing for ASICs and FPGAs. 1st ed. 2007.

Springer Netherlands, 2007.

[10] Hoogerbrugge, J. and Corporaal, H. Transport-triggering vs. operation-triggering.

Compiler Construction. Ed. by P. A. Fritzson. Springer Berlin Heidelberg, 1994.

[11] Corporaal, H. Microprocessor Architectures: From VLIW to TTA. John Wiley &

Sons, Inc, 1997.

[12] Leupers, R., Deprettere, E. F., Bhattacharyya, S. S. and Takala, J. Handbook of

Signal Processing Systems. Springer, 2018.

[13] Designing Embedded Processors A Low Power Perspective. 1st ed. 2007. Springer

Netherlands, 2007.

[14] Nohl, A., Schirrmeister, F. and Taussig, D. Application specific processor design:

Architectures, design methods and tools. 2010 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD). 2010.

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

49

[15] Keutzer, K., Malik, S. and Newton, A. From ASIC to ASIP: the next design discon-

tinuity. Proceedings. IEEE International Conference on Computer Design: VLSI in

Computers and Processors. 2002.

[16] Mishra, P. Processor description languages applications and methodologies. 1st

edition. Morgan Kaufmann Publishers/Elsevier, 2008.

[17] Hoffmann, A., Meyr, H. and Leupers, R. Architecture exploration for embedded pro-

cessors with LISA. Vol. 3. Springer, 2002.

[18] Jääskeläinen, P., Viitanen, T., Takala, J. and Berg, H. HW/SW Co-design Toolset for

Customization of Exposed Datapath Processors. Computing Platforms for Software-

Defined Radio. Ed. by W. Hussain, J. Nurmi, J. Isoaho and F. Garzia. Springer

International Publishing.

[19] TTA-based Co-design Environment User Manual v1.22. Tampere University, 2020.

URL: http://openasip.org/user_manual/TCE.pdf.

[20] Codasip Studio. Codasip. URL: https://codasip.com/.

[21] Codasip Studio brochure. Codasip. URL: https://news.codasip.com/brochure/.

[22] Wargéus, P. and Forsberg, L. Customized Processor Design for 5G Data Link Layer

Processing. eng. Student Paper. 2020.

[23] Eissa, A. S., Elmohr, M. A., Saleh, M. A., Ahmed, K. E. and Farag, M. M. SHA-

3 Instruction Set Extension for A 32-bit RISC processor architecture. 2016 IEEE

27th International Conference on Application-specific Systems, Architectures and

Processors (ASAP). 2016.

[24] SiFive Core Designer. SiFive. URL: https://www.sifive.com/core-designer/.

[25] Andes. Andes Technology. URL: https://www.andestech.com/.

[26] ASIP Designer. Synopsys. URL: https://www.synopsys.com/dw/ipdir.php?
ds=asip-designer.

[27] ASIP Designer Datasheet. Synopsys. URL: https://www.synopsys.com/dw/
doc.php/ds/cc/asip-designer-ds.pdf.

[28] MP Designer. Synopsys. URL: https://www.synopsys.com/dw/ipdir.php?
ds=mp-designer.

[29] WARP-V. Redwood EDA. URL: https://github.com/stevehoover/warp-v.

[30] Asanović, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C., Cook,

H., Dabbelt, D., Hauser, J., Izraelevitz, A., Karandikar, S., Keller, B., Kim, D., Koenig,

J., Lee, Y., Love, E., Maas, M., Magyar, A., Mao, H., Moreto, M., Ou, A., Patterson,

D. A., Richards, B., Schmidt, C., Twigg, S., Vo, H. and Waterman, A. The Rocket

Chip Generator. Tech. rep. EECS Department, University of California, Berkeley,

2016. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html.

[31] VexRiscv. URL: https://github.com/SpinalHDL/VexRiscv.

[32] SpinalHDL. URL: https://github.com/SpinalHDL/SpinalHDL.

http://openasip.org/user_manual/TCE.pdf
https://codasip.com/
https://news.codasip.com/brochure/
https://www.sifive.com/core-designer/
https://www.andestech.com/
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/doc.php/ds/cc/asip-designer-ds.pdf
https://www.synopsys.com/dw/doc.php/ds/cc/asip-designer-ds.pdf
https://www.synopsys.com/dw/ipdir.php?ds=mp-designer
https://www.synopsys.com/dw/ipdir.php?ds=mp-designer
https://github.com/stevehoover/warp-v
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/SpinalHDL

50

[33] Karaki, H., Akkary, H. and Shahidzadeh, S. X86-ARM binary hardware interpreter.

2011 18th IEEE International Conference on Electronics, Circuits, and Systems.

2011.

[34] Schiavone, P. D., Conti, F., Rossi, D., Gautschi, M., Pullini, A., Flamand, E. and

Benini, L. Slow and steady wins the race? A comparison of ultra-low-power RISC-V

cores for Internet-of-Things applications. Proceedings of International Symposium

on Power and Timing Modeling, Optimization and Simulation. 2017.

[35] Gautschi, M., Schiavone, P. D., Traber, A., Loi, I., Pullini, A., Rossi, D., Flamand,

E., Gürkaynak, F. K. and Benini, L. Near-Threshold RISC-V Core With DSP Exten-

sions for Scalable IoT Endpoint Devices. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems (2017).

[36] Zero-riscy Documentation. lowRISC. URL: https://ibex-core.readthedocs.
io.

[37] RI5CY User Manual. PULP Platform. URL: https://github.com/openhwgroup/
cv32e40p/blob/18c10e3659fd8b8e327843b3f4cc2ed836c1d547/doc/user_
manual.doc.

[38] Pulpino. PULP Platform. URL: https://github.com/pulp-platform/pulpino/.

[39] Pulpino Documentation. PULP Platform. URL: https : / / github . com / pulp -
platform/pulpino/blob/master/doc/datasheet/datasheet.pdf.

[40] Design Compiler Graphical. Synopsys. URL: https : / / www . synopsys . com /
implementation-and-signoff/rtl-synthesis-test/design-compiler-
graphical.html.

[41] Hara, Y., Tomiyama, H., Honda, S. and Takada, H. Proposal and Quantitative Anal-

ysis of the CHStone Benchmark Program Suite for Practical C-based High-level

Synthesis. Journal of Information Processing (2009).

[42] RISC-V GNU Compiler Toolchain. URL: https://github.com/riscv-collab/
riscv-gnu-toolchain.

[43] ModelSim. Siemens. URL: https : / / eda . sw . siemens . com / en - US / ic /
modelsim/.

[44] riscvOVPsim. Open Virtual Platforms. URL: https : / / www . ovpworld . org /
riscvOVPsimPlus/.

https://ibex-core.readthedocs.io
https://ibex-core.readthedocs.io
https://github.com/openhwgroup/cv32e40p/blob/18c10e3659fd8b8e327843b3f4cc2ed836c1d547/doc/user_manual.doc
https://github.com/openhwgroup/cv32e40p/blob/18c10e3659fd8b8e327843b3f4cc2ed836c1d547/doc/user_manual.doc
https://github.com/openhwgroup/cv32e40p/blob/18c10e3659fd8b8e327843b3f4cc2ed836c1d547/doc/user_manual.doc
https://github.com/pulp-platform/pulpino/
https://github.com/pulp-platform/pulpino/blob/master/doc/datasheet/datasheet.pdf
https://github.com/pulp-platform/pulpino/blob/master/doc/datasheet/datasheet.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.ovpworld.org/riscvOVPsimPlus/
https://www.ovpworld.org/riscvOVPsimPlus/

	Introduction
	Processors
	Complex Instruction Set Computers
	Reduced Instruction Set Computers
	Pipelining and Hazards
	RISC-V
	Instruction-level Parallelism
	Very Long Instruction Word Processors
	Superscalar Processors

	Processor Customization
	Application-specific Instruction-set Processors
	Architecture Description Languages
	Processor Generation and Customization in OpenASIP
	RISC-V Generators

	Hardware Generation and Implementation
	Processor Pipeline
	Microcode Implementation
	Instruction Translation
	Micro-operation Sequencing
	Control Flow Operations
	Data Hazards and Forwarding

	Microarchitectural Patterns
	Hardware Generation
	Customization Points

	Verification and Evaluation
	Reference Implementations
	Synthesis Results
	Comparison Against Reference Implementations
	Overhead Evaluation

	Performance
	Verification

	Future Work
	Pipeline Flush Support
	64-bit Instruction Set and Additional Extensions
	Custom Operations

	Conclusions
	References

