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Abstract: We introduce a measure of dimensionality of an Abelian group. Our definition of
dimension is based on studying perpendicularity relations in an Abelian group. For G ∼= Zn,
dimension and rank coincide but in general they are different. For example, we show that
dimension is sensitive to the overall dimensional structure of a finite or finitely generated Abelian
group, whereas rank ignores the torsion subgroup completely.
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1 Introduction

We recall that the rank of an Abelian groupG is the cardinality of a maximal linearly independent
subset ofG. Further, the fundamental theorem of finitely generated Abelian groups says that every
finitely generated Abelian group is isomorphic to a group of the form

G = Zn ⊕ Za1 ⊕ · · · ⊕ Zak .

The numbers a1, . . . , ak in the representation of the torsion subgroup Za1 ⊕ · · · ⊕Zak are powers
of (not necessarily distinct) primes. Clearly, for such G, rank is n ≥ 0. In particular, a finite
Abelian group splits into a direct sum of primary cyclic groups and has rank zero. On the other
hand, for each positive integer n, there exists a torsion-free Abelian group of rank n that cannot be
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decomposed into a direct sum. For example, G = (Q,+) has rank one but it is indecomposable.
So, for finitely generated Abelian groups, rank is a measure of dimensionality that is easy to
interpret, but this interpretation does not apply to all Abelian groups.

In addition to rank, there are more advanced tools to study the dimensionality of groups of
different types. For example, the minimal dimension of a finite group G is defined as the minimal
size of a maximal irredundant set of maximal subgroups of G [1, 3]. In this article, we show that
a useful measure of dimensionality of an Abelian group can be defined also in a more elementary
way. It is based on a perpendicularity relation which translates the condition of two vectors x and
y being perpendicular to each other in an inner product space into a similar condition for elements
of an Abelian group. An advantage of this approach is that it applies to all Abelian groups and
is easy to interpret unambiguously. Further, unlike rank, it is sensitive enough to separate finite
Abelian groups into more than one category.

The purpose of this article is to provide an introduction to the basic properties of the dimension
of an Abelian group which is, as already said, a new concept. Orthogonality relations in an
Abelian group have, however, been studied axiomatically already in the 1970s by Davis [2]. His
approach is based on studying a disjointness relation, introduced first by Veksler [8] in a linear
space, and differs to some degree from the definition to be discussed below. More precisely,
he defines an orthogonality relation with aid of four axioms (a pre-orthogonality relation) and a
condition on the pre-orthogonal components of singletons (i.e., a set with exactly one element).

A more elementary axiomatisation of perpendicularity, designed merely for educational
purposes and compatible with the Euclidean plane, has been studied by Haukkanen, Merikoski,
and Tossavainen [5, 7].

2 Perpendicularity

Let G = (G,+) be an Abelian group and ⊥ a binary relation in G satisfying

(A1) ∀a ∈ G : ∃b ∈ G : a ⊥ b,

(A2) ∀a ∈ G \ {0} : a 6⊥ a,

(A3) ∀a, b ∈ G : a ⊥ b⇒ b ⊥ a,

(A4) ∀a, b, c ∈ G : a ⊥ b ∧ a ⊥ c⇒ a ⊥ (b+ c),

(A5) ∀a, b ∈ G : a ⊥ b⇒ a ⊥ −b.

We call⊥ a perpendicularity inG. This definition originated from [4]. It is easy to see that A1–A5
follow immediately from the basic properties of an inner product whenever 〈a, b〉 = 〈a, c〉 = 0.
The above definition is meaningful also for non-Abelian groups, but the Abelian groups provide
a more natural context for the definition. Indeed the fourth axiom seems more justified if
b+ c = c+ b for all b, c ∈ G, yet a ⊥ b ∧ a ⊥ c alone implies both a ⊥ (b+ c) and a ⊥ (c+ b).
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The trivial perpendicularity

x ⊥0 y ⇐⇒ x = 0 ∨ y = 0

exists for every G. We call ⊥ maximal if it is not a subrelation (i.e., a subset) of any other
perpendicularity in G. Also a maximal perpendicularity always exists. Namely, if ⊥1⊆⊥2⊆ . . .

are perpendicularities inG, then∪∞i=1 ⊥i is also a perpendicularity inG and the claim now follows
from Zorn’s lemma.

If ∅ 6= A ⊆ G, the ⊥-complement of A is

A⊥ = {y ∈ G : y ⊥ A},

where y ⊥ A means that y ⊥ x for all x ∈ A. Also, B ⊥ A means that y ⊥ A for all y ∈ B.
Thus A⊥ is the maximal set perpendicular to A. In particular, G⊥ = {0} and {0}⊥ = G. We also
set ∅⊥ = G.

We complete this section by recording a lemma from [4, Proposition 4].

Lemma 2.1. If A ⊆ G, then A⊥ is a subgroup of G. If G is cyclic, then A⊥ is cyclic.

3 Dimension of an Abelian group

We define the ⊥-dimension of G as follows.

dim⊥(G) = min{card(A) : A ⊆ G such that A⊥ = {0}}

given that the minimum exists. Here card(A) is the cardinality of A. If the minimum does not
exist, we set dim⊥(G) = ∞. Note that the family {A ⊆ G : A⊥ = {0}} is nonempty, since, at
least, G is a member of it. Further, let Φ be the collection of all maximal perpendicularities in G.
As previously noted, this collection is nonempty. Then the dimension of G is

dim(G) = min
⊥∈Φ
{dim⊥(G)}

if the minimum exists; if it does not, then dim(G) =∞. This may be written equivalently as

dim(G) = inf
⊥∈Φ
{dim⊥(G)}.

It is easy to see that isomorphic Abelian groups have the same dimension.
Let us look at some concrete examples, starting with the simplest cases.

Example 1. Since the trivial perpendicularity ⊥0 is the only perpendicularity in G = {0} and
∅⊥0 = {0}, we have dim(G) = 0. If G 6= {0}, then dim⊥0(G) = 1. This follows from the fact
that, for A = {a}, where a 6= 0, we have A⊥0 = {0}.

Example 2. The Klein four-groupG = {0, a, b, c} has exactly three nontrivial perpendicularities.
One of them is such that a and b are perpendicular to one another and to 0, and c only to 0. The
other two perpendicularities are similar to this. Consequently, all of them are maximal. Now
{c}⊥ = {0} and, therefore, dim(G) = 1.
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Example 3. Further, let V = (G,+, ·, 〈·, ·〉) be an inner product space of dimension n. Then the
relation

x ⊥ y ⇐⇒ 〈x, y〉 = 0

is a perpendicularity in G. Let A = {x1, . . . , xn} be a basis of V . Then A⊥ = {0}. Moreover, if
B ⊂ G contains fewer than n elements, then B⊥ 6= {0}. Hence dim⊥(G) = n. If V is of infinite
dimension, a slight modification of the above reasoning yields that dim⊥(G) =∞.

Example 3 shows that our approach is compatible with the ordinary perpendicularity and
dimension of a vector space. From a practical point of view, it is still required that there are tools
to determine or, at least, to estimate dim⊥(G) for a given group.

Theorem 3.1. Let ⊥1 and ⊥2 be maximal perpendicularities in G. Then

dim⊥1(G) = dim⊥2(G).

Proof. Assume that ⊥1 and ⊥2 are maximal perpendicularities in G so that

n = dim⊥1(G) < dim⊥2(G). (1)

Let
A = {x1, . . . , xn}

such that A⊥1 = {0}. By (1), there is z 6= 0 so that z ∈ A⊥2 . Further, it follows from Lemma 2.1
that A⊥2 is a subgroup of G. Let H be the subgroup generated by z. Then H ⊂ A⊥2 .

Because z /∈ A⊥1 , there is xi such that xi 6⊥1 z. Let K be the subgroup of G generated by xi.
Next we show that H ∩K = {0}. Since z ∈ A⊥2 , it holds that z ⊥2 xi. It follows from axioms
A3–A5 that mz ⊥2 xi for all m ∈ Z. Further, axioms A4 and A5 imply that mz ⊥2 nxi for all
n ∈ Z. From this and axiom A2 it follows that

mz = nxi ⇐⇒ mz = nxi = 0.

Define

x ⊥ y ⇐⇒
(
x ⊥1 y

)
∨
(
x ∈ H ∧ y ∈ K

)
∨
(
x ∈ K ∧ y ∈ H

)
.

Now, x ⊥1 y implies that x ⊥ y. Moreover, xi ⊥ z. Consequently, ⊥1 is not maximal, which
is a contradiction.

In other words, knowing one maximal perpendicularity in G is sufficient for determining the
dimension of the group exactly. The next two theorems are useful in studying other cases.

Theorem 3.2. Let ⊥1 and ⊥2 be perpendicularities in G such that ⊥1⊆⊥2. Then
dim⊥1(G) ≤ dim⊥2(G).

Proof. It suffices to show that, for an arbirary A ⊆ G such that

A⊥2 = {0}, (2)

we have
A⊥1 = {0}. (3)

Let y ⊥1 A. Since ⊥1⊆⊥2, we have y ⊥2 A. This and (2) implies that y = 0. In other words, (3)
holds.
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Theorem 3.3. Let ⊥ be a perpendicularity in G with dim⊥(G) = n, n ∈ N. Then

dim(G) ≥ n.

Proof. If ⊥ is maximal, the claim holds with the equality by Theorem 3.1. If ⊥ is not
maximal, then there is a maximal perpendicularity ⊥1 containing ⊥. Then, by Theorem 3.2,
dim⊥1(G) ≥ dim⊥(G) = n.

The following example shows that sometimes it is not necessary to find a maximal perpendi-
cularity in order to determine the dimension of an Abelian group.

Example 4. Let G = (Q\{0}, ·) and a = (sgn a)
∏

p∈P p
νp(a) and b = (sgn b)

∏
p∈P p

νp(b). We
define a ⊥ b if and only if νp(a) 6= 0 implies νp(b) = 0 and νp(b) 6= 0 implies νp(a) = 0. Let
A ⊂ Q\{0} be finite. Then there is a finite set P = {p1, p2, . . . , pn} of primes with pn = max(P )

so that every element a ∈ A can be expressed as

a = (−1)α
n∏
i=1

paii , ai ∈ Z, α ∈ {0, 1}.

If p > pn is a prime, then p ∈ A⊥. Consequently, dim⊥(G) = ∞. Now, dim(G) = ∞ by
Theorem 3.3. It is easy to see that the above perpendicularity is not maximal. In fact, it is
contained into the perpendicularity such that a and b are perpendicular if and only if∑

p∈P

νp(a)νp(b) = 0.

4 Dimension and rank

For an Abelian group G = G1 ⊕ · · · ⊕Gn, we have

rank(G1 ⊕ · · · ⊕Gn) = rank(G1) + · · ·+ rank(Gn).

A natural question is whether the dimension of an Abelian group has a similar property.
The answer is negative. Above we saw that the dimension of the Klein four-group K4 is one.

On other hand, this group can be written also as Z2 ⊕ Z2, and dim(Z2) = 1. So,

dim(K4) 6= dim(Z2) + dim(Z2).

The above example also shows that rank and dimension do not always equal each other.
However, for quite many groups, they do.

Theorem 4.1. Let n ≥ 2 and G ∼= Zn. Then dim(G) = n.

Proof. Without loss of generality we may assume that G = Z ⊕ · · · ⊕ Z. We write x =

(a1, . . . , an) ∈ G and y = (b1, . . . , bn) ∈ G and define

x ⊥ y ⇐⇒ a1b1 + · · ·+ anbn = 0.

We show that ⊥ is a maximal perpendicularity with dim⊥(G) = n. The latter claim is easier to
verify. We write
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e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0),

...

en = (0, 0, . . . , 1).

Then {e1, . . . , en}⊥ = {0}. On the other hand, for any A = {x1, . . . , xn−1} ⊂ G, solving the
system of n− 1 linear equations of type

xj1b1 + xj2b2 + · · ·+ xjnbn = 0

with respect to bj’s shows that there is b 6= 0 such that b ∈ A⊥.
In showing that ⊥ is maximal, we consider first the case n = 2. Assume that there is ⊥1

strictly containing ⊥. Then there are a = (a1, a2) and c = (c1, c2) such that a ⊥1 c but a 6⊥ c.
Clearly, a, c 6= 0. Let b = (b1, b2) = (a2, (−a1)); then a ⊥ b. By axioms A2–A5 and a ⊥1 c,

a 6= kc ∧ c 6= ka (4)

for every k ∈ Z. Further, applying the definition of ⊥ we see that

b 6= kc ∧ c 6= kb (5)

for every k ∈ Z because a ⊥ b and a 6⊥ c.
Now, a straightforward calculation shows thata1 = b1x+ c1y,

a2 = b2x+ c2y
(6)

holds for x = (a2c1 − a1c2)/(b2c1 − b1c2) = r/q,

y = (a1b2 − a2b1)/(b2c1 − b1c2) = s/q.
(7)

Observe that (4) and (5) imply that q, r, s ∈ Z \ {0} in (7). Therefore, application of (6) with x, y
given in (7) implies

qa = rb+ sc.

This leads to a contradiction, because a ⊥1 b implies that a ⊥1 rb and a ⊥1 c implies that
a ⊥1 sc, and these together imply that a ⊥1 qa and, finally, qa ⊥1 qa.

The general case n ≥ 2 follows in a similar way. First, it is easy to find a set {b1, . . . , bn−1}
for which a ⊥ bi and bi ⊥ bj whenever i 6= j. Then assuming that there is ⊥1 containing ⊥ and
that there is an element c such a ⊥1 c, a 6⊥ c, and c 6= kbi or bi 6= kc, one can write

qa = r1b1 + · · ·+ rn−1bn−1 + rnc

and derive a contradiction with axiom A2.

Theorem 4.2. Let G ∼= Z⊕ Z⊕ · · · . Then dim(G) =∞.

Proof. Without loss of generality we may assume that G = Z ⊕ Z ⊕ · · · . We write x =

(a1, a2, . . .) ∈ G and y = (b1, b2, . . .) ∈ G and define

x ⊥ y ⇐⇒ a1b1 + a2b2 + · · · = 0.
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Then ⊥ is a perpendicularity in G. Let A ⊂ G be a set containing n, n ≥ 2, elements. Then
there is m ∈ N such that every x ∈ A can be written as

x = (x1, x2, . . . , xm, 0, 0, . . .).

Let y = (0, 0, . . . , 0, ym+1, 0, 0, . . .), where ym+1 6= 0. Now, y 6= 0 and y ∈ A⊥. Consequently,
dim⊥(G) > n. The claim of the theorem follows from Theorem 3.3 since n can be arbitrary
large.

Theorem 4.3. Let G ∼= Zm1 ⊕ · · · ⊕ Zmn , where gcd(mi,mj) = 1 whenever i 6= j. Write
x = (a1, . . . , an) and y = (b1, . . . , bn). Then

x ⊥ y ⇐⇒ ∀i : ai = 0 ∨ bi = 0

is the unique maximal perpendicularity in G. Moreover, dim(G) = 1.

Proof. The maximality of ⊥ has been proven in [4, Theorem 14]. Let a = (1, 1, . . . , 1). Then
a 6= 0 and {a}⊥ = {0}.

A reason for the different values of dimension and rank is that the dimension of G describes
the ‘richness’ of the perpendicularity structure throughout G. Given a finitely generated Abelian
group, rank ignores completely the eventual torsion subgroup in a direct sum, whereas dimension
can be remarkably affected by a single finite subgroup of the torsion group. As the following
example demonstrates, the existence of a subgroup with a high ⊥-dimension does not imply that
the group itself has a high dimension.

Example 5. Let ⊥ be the same perpendicularity in Zn as in the proof of Theorem 4.1; then

dim(Zn) = dim⊥(Zn) = n.

An extension of ⊥ to G = Zn ⊕ Z2 can be constructed as follows. We write

(x1, . . . , xn, xn+1) = (x, xn+1)

and
(y1, . . . , yn, yn+1) = (y, yn+1),

and define

(x, xn+1) ⊥1 (y, yn+1) ⇐⇒ (x ⊥ y ∧ (xn+1 = yn+1 = 0)) ∨ ((x, xn+1) = 0) ∨
((y, yn+1) = 0).

Then dim⊥1(G) = 1 because {(0, . . . , 0, 1)}⊥1 = {0}.
However, ⊥1 is not a maximal perpendicularity in G. It can be extended further to such a

perpendicularity by letting (0, . . . , 0, 1) be perpendicular to every element of Zn ⊕ {0} and vice
versa. In other words, we define

(x, xn+1) ⊥2 (y, yn+1) ⇐⇒ (x ⊥ y ∧ (xn+1 = yn+1 = 0)) ∨ ((x, xn+1) = 0) ∨
((y, yn+1) = 0) ∨ (xn+1 = 0 ∧ y = 0) ∨ (x = 0 ∧ yn+1 = 0).

Also now dim⊥2(G) = 1 because {(1, 1, . . . , 1)}⊥2 = {0}. Therefore, dim⊥(G) = 1.
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Example 1 and Theorem 4.1 above showed that, for every n ≥ 0, there is a finite or finitely
generated Abelian group G with dim(G) = n. Further, Theorem 4.3 showed that the dimension
of a finite cyclic group is one. Example 6 below shows that the dimension of a finite group can,
however, differ from one. Consequently, it seems that dimension has a higher resolution to detect
dimensional differences among finitely generated and even finite Abelian groups than rank has.

Example 6. Let G = Z3 ⊕ Z3 and define ⊥ so that subgroups G1 = {(0, 0), (1, 0), (2, 0)}
and G2 = {(0, 0), (0, 1), (0, 2)}, respectively, and G3 = {(0, 0), (1, 1), (2, 2)} and G4 =

{(0, 0), (1, 2), (2, 1)}, respectively, are perpendicular to each other in both directions. Then, for
every {a}, there is b 6= 0 such that b ∈ {a}⊥, and {(0, 1), (1, 0)}⊥ = {(0, 0)}. Therefore, by
Theorem 3.3,

dim(G) ≥ 2.

Actually, ⊥ is also maximal which implies that the dimension of G equals two. To see the
maximality of ⊥, it suffices to notice that, if one takes two nonzero elements a ∈ Gi and b ∈ Gj

with i 6= j, then every x ∈ G can be written as x = ma + nb, where m,n ∈ Z. Therefore, a
nonzero element y ∈ Gk, k /∈ {i, j}, cannot be perpendicular to a or b; otherwise, axioms A4 and
A5 would imply that y were perpendicular to itself which violates axiom A2.

It is unknown to us whether, for every n > 2, there is a finite Abelian group G such that
dim(G) = n.

5 Dimension and homomorphisms

We conclude this article by recording two theorems. The first one shows that dimension gives a
lower bound for the number of cyclic subgroups with trivial pairwise intersections. This theorem
may be especially useful for handling the Abelian groups that cannot be decomposed into a direct
sum; given such a group G with dim(G) = n, it can, nevertheless, be divided into, at least, n
maximally disjoint cyclic subgroups.

Theorem 5.1. Let G be an Abelian group with dim(G) = n, n ≥ 2. Then there are cyclic
subgroups

G1, . . . , Gn ⊂ G,

where Gi ∩Gj = {0} whenever i 6= j.

Proof. Let ⊥ be a maximal perpendicularity in G. We begin by showing that there is a set
A = {x1, . . . , xn} of nonzero elements of G such that A⊥ = {0} and xi ⊥ xj whenever i 6= j.
First, we choose x1 ∈ G, x1 6= 0 and set A1 = {x1}. Then, by Lemma 2.1, A⊥1 is a subgroup of
G with, at least, one nonzero element x2. Indeed, the assumption dim(G) = n ≥ 2 implies that
A⊥1 is nonzero. Now, we have two nonzero elements x1, x2 such that x1 ⊥ x2.

Assume then that Ak = {x1, . . . , xk}, 1 ≤ k < n, satisfying xi ⊥ xj whenever i 6= j. Then,
again by Lemma 2.1, A⊥k is a subgroup of G with, at least, one nonzero element xk+1. This
element possesses the property xk+1 ⊥ Ak. In this way, we finally obtain the set A = An.
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Now, we take Gi = 〈xi〉, and show that Gi ∩ Gj = {0} whenever i 6= j. Let i 6= j. Since
xi ⊥ xj , application of the axioms of perpendicularity shows that mixi ⊥ mjxj for all integers
mi,mj , which implies that the elements mixi and mjxj are distinct whenever they are nonzero.
This proves the claim.

Theorem 5.2. Let G be an Abelian group with dim(G) = n. Let H be an Abelian group and
φ : G→ H an injective group homomorphism. Then dim(φ(G)) = n.

Proof. The claim follows from the fact that G and φ(G) are now isomorphic.

Theorem 5.2 is seemingly trivial but it underlines the fact that an n-dimensional group can
be injectively embedded in an m-dimensional group such that m < n, cf. Example 5. A similar
result does not hold for rank.
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