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ABSTRACT The increasing number of breast cancer survivors and their longevity has emphasized the
importance of esthetic and functional outcomes of cancer surgery and increased pressure for the surgical
treatment to achieve negative margins with minimal removal of healthy tissue. Surgical smoke has been
successfully utilized in tissue identification in laboratory conditions by using a system based on differential
mobility spectrometry (DMS) that could provide a seamless margin assessment method. In this study,
a DMS-based tissue analysis system was used intraoperatively in 20 breast cancer surgeries to assess its
feasibility in tissue identification. The effect of the system on complications and duration of surgeries was
also studied. The surgeries were recorded with a head-worn camera system for visual annotation of the
operated tissue types to enable classification of the measurement files by supervised learning. There were
statistically significant differences among the DMS spectra of the tissue types. The classification of four
tissue types (skin, fat, glandular tissue, and connective tissue) yielded a cross-validated accuracy of 44%
and exhibited high variation between surgeries. The low accuracies can be attributed to the limitations and
uncertainty of the visual annotation, high-within class variance due to the heterogeneity of tissues as well as
environmental conditions, and delays of the real-time analysis of the smoke samples. Differences between
tissues encountered in breast surgery were identified and the technology can be implemented in surgery
workflow. However, in its current state, the DMS-based system is not yet applicable to a clinical setting to
aid in margin assessment.

INDEX TERMS Biomedical engineering, biomedical measurement, breast cancer, differential mobility
spectrometry, supervised learning, surgical instruments, surgical margin, surgical smoke.

I. INTRODUCTION

Breast cancer is the most common cancer affecting
The associate editor coordinating the review of this manuscript and more than two million women worldwide annually [1].
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The prognosis of early-stage breast cancer is good — more
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than 90% of the patients are alive five years after diagno-
sis [2], [3] Thus, besides oncological outcome, esthetic and
functional outcomes are becoming increasingly important for
patients as a factor of quality of life and overall health [4], [5].

As tumors are found earlier and smaller, and larger tumors
may be operated utilizing oncoplastic methods, more patients
are likely to receive breast conserving therapy, a combina-
tion of breast conserving surgery (BCS) and whole breast
irradiation to eradicate any microscopic residual disease. The
majority of breast cancers are treated with breast conserving
therapy in Europe [6] and the United States [7].

The aim of BCS is to remove the tumor with histologically
negative margins. According to current guidelines, a negative
margin is defined as no ink on tumor for invasive carcinoma
and 2 mm histological margin for ductal carcinoma in situ
(intraductal carcinoma, DCIS) [8]-[11]. Although acceptable
margins are narrow, the tumor is resected with larger margins,
due to unevenness of the tumor borders and inability to
assess borders intraoperatively. Positive histological margin
increases the risk of local recurrence [11] and reoperation
is recommended to obtain negative margins. The average
reoperation rate is approximately 20% but it varies widely
from less than 10% [12] to more than 60% [13] between
surgeons, facilities, and cancer types [14]-[18]. Reopera-
tions may worsen the prognosis by delaying adjuvant ther-
apy [19], cause psychological stress, and impair the cosmetic
outcome of the treatment [20]. Reoperations are also asso-
ciated with higher incidence of post-operative wound com-
plications [21] and increased economic burden [22]. On the
other hand, patients with smaller excision volumes have
improved cosmetic outcomes compared to larger excision
volumes [20], [23].

The resection volumes and margins can be optimized by
intraoperative margin assessment. The surgical specimen can
be assessed by x-ray (specimen radiography) or ultrasound to
ensure that the radiologically visible tumor has been removed
with sufficient radiological margins. They enable the assess-
ment of radiologically visible borders, but not microscopic
borders. Microscopic assessment is traditionally carried out
by frozen section analysis or imprint cytology of the resection
margins. Both techniques are time-consuming and resource-
intensive, and their use is limited [24]. A solution based on
Radiofrequency spectroscopy has been approved by the Food
and Drug Administration to provide intraoperative evaluation
of the tissue at the edges of excised breast tissue. The device
measures the local electrical properties of breast tissue, which
differ between normal and malignant tissue [25] and pro-
vides a positive or negative reading for each measurement
taken [26]. It has been shown to reduce reoperation rates [27]
but has not reached wide clinical adoption [13].

Experimental methods based on optical imaging and
mass spectrometry (MS), have shown promise in terms of
applicability for intraoperative margin detection. Among
the optical methods, optical coherence tomography and
photoacoustic tomography have achieved sensitivities of
over 90% [28], [29]. Their shortcomings are the expertise
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needed for image interpretation and reliance on ex vivo anal-
ysis of the specimen. MS analyzes the molecular content of
the specimen. Several MS-based techniques have consistently
exhibited classification accuracies of 90% in tissue identi-
fication and detection of different cancer types [30]-[33].
Of these methods, Rapid evaporative ionization mass spec-
trometry (REIMS), which is based on MS analysis of sur-
gical smoke, has been the most extensively studied, and it
has been proven to be capable of real time analysis in in
vivo studies [34]. The cost, complexity and large physical
size limit the clinical applicability of MS-based methods.
Differential mobility spectrometry (DMS) is a technology
that separates gaseous substances at a molecular level by
ionizing the sample at atmospheric pressure, after which the
sample ions are separated and measured based on their mobil-
ity characteristics in an asymmetrical high voltage electric
field [35]. Due to its freedom from the requirement of a
vacuum, and less complex design, DMS sensors are more
affordable and smaller than MS instruments, which improves
their adaptability to a clinical setting.

In previous studies, DMS-based tissue identification from
surgical smoke has been tested in laboratory conditions,
where the classification with several porcine tissues has
yielded accuracy results of over 90% [36]—[38]. In a labora-
tory study on human breast cancer identification, the DMS-
based method achieved a classification accuracy of 87 %
between benign and malignant tissues [39]. While these
results are promising, the applicability and performance of
the technology has not yet been demonstrated in vivo in a clin-
ical setting. The effect of variation in environmental factors
and sampling in clinical use on the method remains unknown.
The establishment of sufficient dataset from positive mar-
gins in vivo would require a significant number of patients
as intentional creation of positive margins is not ethically
feasible in human studies and the positive margin rate in
our institution is around 10%. Additionally, the annotation
of tissues in intraoperative use is not trivial and requires
innovative approaches. For these reasons, with a pilot study
of 20 patients, we concentrated on the feasibility of use of the
introduced technology and its abilities to identify benign tis-
sues, rather than its margin assessment performance. We also
demonstrate a novel, minimally intrusive, intraoperative tis-
sue annotation method based on video footage captured from
the point of view of the operating surgeon.

Il. METHODS

A. PATIENTS AND CLINICAL DATA

This was a prospective single-arm first-in-human single-
center study performed between 9™ of October and 26™ of
November 2019 at Tampere University Hospital, Finland.
In this study, the operating surgeon was blinded from the
measurement results and the measurements were not used to
assess the margins or guide the operation. Ethical approval
was obtained from the local Ethics Committee of Tampere
University Hospital (code R17096). The study was conducted
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in accordance with the World Medical Association’s Decla-
ration of Helsinki. Informed consent was obtained from all
patients in written. Inclusion criteria included patients over
18 years recently diagnosed with any histological type of
invasive breast cancer or DCIS or atypical ductal hyperplasia
and who were eligible for BCS. Patients with impalpable
lesions underwent ultrasound- or mammography-guided wire
localization preoperatively. All breast and axillary operations
were performed by two experienced breast-cancer-dedicated
plastic surgeons. Operations were carried out following the
national guideline [40], which is in line with international
European and North American guidelines [8], [10], [11], [41].
The removed breast tissue was assessed grossly in case of pal-
pable lesions and via specimen radiography if the tumor was
localized with a wire. Additional breast tissue was removed
if a positive margin was suspected.

Patient data was collected from electronic health records
and operation times obtained from operation room manage-
ment system. Histological data was gathered from struc-
tured histopathology report. Tumor volume was calculated
using the diameter of the tumor (in cm) as mentioned in the
pathology report and assuming spherical shape. Total resec-
tion volume (TRV) was calculated using three dimensions
of the surgical specimen and assuming ellipsoidal shape.
The optimal resection volume (ORV) was defined as the
spherical volume of the tumor itself with an added 1.0 cm
margin of healthy breast tissue. The method was adapted
from the study by Krekel et al. [18]. Oncoplastic reduction
mammoplasties were discarded from volumetric calculations
because excessive amount of breast tissue is excised due to
operation technique rather than to remove the tumor with
adequate margins. The time from the first incision to closure
and total operation room time of the surgeries were compared
to institutional averages by one sample t-test.

B. MEASUREMENT SYSTEM

Automatic tissue analysis system (ATAS), previously
described in Kontunen et al. 2021 [38], was used in the study.
The function of ATAS is based on a surgical smoke pre-
processing unit and a DMS sensor. The system can, with
minor modifications, be attached to any commercially avail-
able diathermy units and smoke evacuation devices. In short,
the operation principle of ATAS is as follows: 1) Surgeon
operates tissue with a diathermy instrument. 2) Induced cur-
rent from the dispersive electrode of the diathermy system is
measured by an encased induction coil. If the induced current
exceeds a pre-determined threshold, the system interprets
that tissue has been cut and triggers a DMS measurement.
3) A small fraction of the surgical smoke sample that is evac-
uated from the surgical area is taken into the pre-processing
unit where it is diluted and filtered by an electric filter to
remove contaminating particulate matter. 4) The filtered sam-
ple is measured by the DMS sensor (ENVI-AMC, Environics
Oy, Finland) approximately five seconds after the trigger
signal has been received. The measurement data are stored
to the local database of the system, after which the process
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(starting from step 1) can repeat for a subsequent measure-
ment. In this study, the operating surgeon was blinded from
the measurement results and the measurements were not used
to assess the margins or guide the operation.

The duration of the DMS measurement is approximately
5 seconds, which means that together with the start delay of
5 seconds, the minimum time for one measurement cycle is
10 seconds. As its output, the system produces a measurement
file that contains the DMS measurement data, the diathermy
current measurement data, and current measurement data
from the electric filter. The system and its simplified oper-
ation principle are depicted in Fig. 1. For a more in-depth
description and schematic representations of the measure-
ment system, the reader is referred to Kontunen et al. [38].
The diathermy power unit that was used alongside the sys-
tem was a Berchtold Elektrotom 530 Electrosurgical Unit
(Stryker Corp, USA) and the surgical smoke evacuator was
a SafeAir® Smoke Evacuator compact (Stryker Corp, USA)
that was operated at a power setting of 7/10 and in continuous
evacuation mode.

DMS measurement

Particle filtration and
dilution

FIGURE 1. Simplified operation principle of the measurement system
(left) and the measurement system in an operation room (right).

1) Surgical smoke is produced by the diathermy instrument. 2) Induced
current from the dispersive electrode triggers the measurement.

3) Surgical smoke sample is taken into the pre-processing unit for
particle filtering and dilution. 4) The filtered sample is measured by the
DMS sensor, and the result is stored to internal memory. The duration of
one measurement loop is approximately 10 seconds.

C. ANNOTATION SYSTEM AND STATISTICAL TOOLS
The result of the smoke sample measurement was not inter-
preted in real time in this study, since the study functioned
as a pilot for in vivo DMS-based tissue identification, and
thus a pre-trained model for tissue classification was not
available. Instead, the data produced during the surgeries
was annotated and classified post-operatively based on video
footage of the operation. Each surgery was recorded by
a head-mounted camera (Pupil Core, Pupil Labs GmbH,
Germany) that was worn by the operating surgeon [42]. The
video footage recorded by the camera was stored locally to a
dedicated mobile device (Motorola XT1929-8 Moto Z3 Play,
Motorola, USA) during the surgery, from which the footage
was transferred to an encrypted hard disc drive for storage
and later data analysis.

The statistical analysis was done in R software
environment [43], integrated development environment
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RStudio [44], and Matlab (version R2019a, MathWorks,
USA). Before tissue annotation, the raw video data was also
processed with Matlab. The video footage was synchronized
with the measurement data by creating an individual video
clip for each measurement based on the recorded time labels.
In addition, each clip was also overlayed with the graphs and
DMS spectrum of the corresponding measurement to aid in
the timing for the annotation of the samples. An example still
image of a video clip that was used in tissue annotation is
presented in Fig. 2.

9B 99 %0 s sz
Time (s)

Scanning at 939.2

"Pag Scan ID: 21929
N

FIGURE 2. Still image of a video file that was used in tissue annotation.
The DMS spectrum of the measurement is overlayed in the bottom right
corner and the current of the electric corona filter and the measured
induction current from the dispersive diathermy electrode can be seen in
the upper right corner. The round dot in the incision area is from the gaze
tracking feature of the Pupil core camera.

D. ANNOTATION WORKFLOW

In total, the number of individual video clips was 1131. Due
to the high amount of annotatable data, the totality of the
video material was annotated by only one medical expert.
To investigate the potential subjectivity of only one observer,
the inter-rater agreement in the video-based annotation was
studied with a subset of the measurement data.

The annotation based on the video footage was initially
tested by observing two surgeons as they viewed and anno-
tated 30 samples of a randomly selected operation. Without
specific instructions, the variation between the annotators was
high in terms of terminology, assigned class and determi-
nation of sufficient sample. Thus, a protocol for the video
annotation for the full data set was made.

According to the protocol, the viewer should assign the
type of the measured tissue, when the DMS measurement was
initiated, i.e., approximately five seconds after the trigger sig-
nal has been received. In an annotatable video clip, this was
indicated by the appearance of the spectrum to the lower right
corner (Fig. 2). The possible assigned tissue classes were
determined as: skin, fat, glandular tissue, connective tissue,
muscle, blood, and empty (i.e., no cutting occurs during DMS
measurement). In addition, the protocol stated that the viewer
should evaluate the sufficiency of the smoke sample and add
notes regarding possible irregularities. The visual sufficiency
estimate was included in the protocol as a possible exclusion
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criterium for final analysis. Table 1 shows an example output
of the annotation process for four measurements.

TABLE 1. Example annotations.

Annotator: Surgeon 1

queo Tissue Sample Notes
clip quantity
Part . No cutting during
23 Empty Insufficient DMS measurement
Part . .
24 Skin Sufficient
Part The diathermy was
Empty Insufficient  activated accidentally
25 o .
in its holding bag
Pza6rt Glandular  Sufficient

The efficiency of the annotation protocol in terms of
inter-rater agreement was estimated by the Fleiss’ kappa
metric [45]. In practice, this means that a randomly selected
statistically sufficient portion of the measurement footage
was annotated by three individuals, after which the Fleiss’
kappa was calculated for the annotation matrix to see the rate
of agreement. The power calculations were done by utilizing
the R package kappaSize by Rotondi [46]. The sample size
for the inter-rater agreement was based on a power calculation
with the following parameters: the null hypothesis (kappa0)
for the kappa test was set to 0.01, the alternative hypothesis
(kappal) to 0.2, the type I error rate (alpha) to 0.001, and the
desired level of statistical power (power) to 0.95. The antic-
ipated prevalence of different classes (props) was estimated
based on already completed annotations by one observer.

E. DATA ANALYSIS
The full annotation data from one observer was utilized in
further statistical analysis and tissue classification. How-
ever, additional data curation was deemed necessary due
to the highly variable nature of the diathermy activations
during surgery and failed measurements. In the first two
surgeries, the surgical evacuator was operated with the max-
imum power, but the pressure ejector system in the sam-
ple pre-processing unit was not optimized to overcome the
suction, i.e., the entirety of the smoke went to the surgical
evacuator. In operations 13 and 14, the video data was not
saved due to a malfunction in the process of saving the data to
the memory card of the mobile device from the Pupil camera
system. The exclusion criteria are presented in Fig. 3. After
all exclusion steps, the number of measurement files was 611
(fat, N = 395; glandular tissue, N = 129; skin, N = 52;
connective tissue, N = 35).

The final DMS measurement files were classified with
a regularized linear discriminant analysis (LDA). LDA
is a relatively simple supervised method that tries to
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Exclusion criteria

Process step Rationale

Test measurements before

Was the measurement triggered
operations, N = 25

from the diathermy blade?

i

Sampling Yes [ (N=1258)

Duplicate measurements
due to malfunction in
system database
manager, N = 14

Did the measurement receive a
unique measurement ID?

Yes | (N=1244)

Malfunction in storing the
video data from the Pupil
camera system, N = 113

Is there video data of the
measurement?

Annotation

Overexposure, poor
lighting, camera out of
focus (blurry), or camera
not filming the incision
area, N = 197

Can the operated tissue be
annotated based on the video?

Yes | (N=934)

Annotated "Insufficient”
or less than one second
of cutting during the

measurement
based on diathermy
current data, N = 314

Is the smoke sample sufficient?

Yes | (N=620)

s there enough samples for each
class to build a cross-validated
model?

Yes | (N=611)

Tissue types "Muscle" and
"Blood" had 5 and 4
amples, respectively, N =

Data analysis

Final result analysis
N=61

FIGURE 3. The exclusion criteria for the DMS measurement data.

maximize class separation based on a linear projection of the
feature space [47]. LDA assumes equal covariance between
the classes and the class of a sample is determined based on
its distance from the class mean after the linear projection.
LDA has previously been used both in MS and DMS-based
tissue classification [34], [39]. In this study, the classification
was done based on the DMS spectra that consisted of the
measured values of positive ions. Each spectrum was mea-
sured with the DMS compensation field voltages of —0.8 V
to 5V, in 25 steps and separation field voltages of 340 V
to 740 V, in 8 steps, resulting in 200 values for each DMS
measurement. The classification performance was analyzed
with leave-one-surgery-out cross-validation to alleviate over-
fitting. However, due to the unbalanced ratio between the
tissue types and variation between surgeries, each surgery
was also classified individually using leave-one-sample-out
cross-validation.

To further analyze the differences between the DMS spec-
tra of the tissue types, the distributions of the dispersion
plot values were subjected to the Kolmogorov-Smirnov test
to identify features that are statistically different among the
classes [48]. The statistical significance was determined at a
significance level of 0.05 and the p-values were Bonferroni-
corrected by the number of dimensions (200). This means that
a p-value of 0.00025 was considered statistically significant.

Ill. RESULTS

A total of 20 women were operated. A summary of demo-
graphic data and clinical characteristics are depicted in
Table 2. Four patients (20%) underwent lumpectomy, ten
patients (50%) level 1 oncoplastic breast conserving surgery,
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one patient (5%) oncoplastic breast conserving surgery com-
bined with reduction mammoplasty of the healthy breast,
and five patients (25%) oncoplastic reduction mammoplasty
combined with reduction mammoplasty of the healthy breast.
Surgeon 1 operated 13 (65%) patients and surgeon 2 seven
(35%) patients. Average operating time from skin incision
to skin closure and total operation room time were similar
to the institutional average (Table 2) as determined by the
one sample t-test, which produced p-values that indicated no
statistically significant difference between the means.

On histopathological analysis, all but one patient had
sufficient histological margins both from invasive ductal car-
cinoma (IDC) and DCIS. One patient, diagnosed preoper-
atively with 8 mm grade 1 pure DCIS, had DCIS grade 1
sized 11 mm with positive lateral margin on histopatholog-
ical analysis. The patient had re-resection and final patho-
logical analysis revealed 6 mm more of DCIS grade 1 but
the margins were sufficient. One patient had a diagnosis of
2 mm pleomorphic lobular carcinoma in situ (LCIS) on final
histopathological analysis, although preoperative diagnosis
had been DCIS grade 3, and smallest lateral 1 mm margin
was accepted. Therefore, reoperation rate was 5%. Exclud-
ing oncoplastic reduction mammoplasties the average lateral
margin on histopathological analysis was 16.4 mm from IDC
and 11.5 mm from DCIS. Anterior and posterior margins
were sufficient in all cases. The extent of lateral margin
widths is further depicted in Table 3. Excluding oncoplastic
reduction mammoplasties, the amount of tissue removed was
49.3 cm? on average, when 24.2 cm? would have been theo-
retically optimal if 1 cm macroscopic margins were used. The
TRV:ORV-ratio was thus, on average, 2.0.

Closest lateral tumor margin from both invasive and intra-
ductal carcinoma (all tumors), from invasive ductal carci-
noma (IDC) and from pure ductal carcinoma in situ (DCIS)
or DCIS component of invasive carcinoma. DCIS includes
one patient with pleomorphic lobular carcinoma in situ.
Patients receiving oncoplastic reduction mammoplasty were
excluded.

A. COMPLICATIONS

One patient (5%) suffered wound infection and dehiscence
postoperatively. The patient was treated conservatively in
outpatient setting and received oral antibiotics. One patient
(5%) had a small hematoma that required one postopera-
tive puncture. One patient out of 18 (5.6%), who underwent
sentinel lymph node biopsy, suffered lymphedema of the
ipsilateral arm. The patient received both physical therapy
and compression garment.

B. INTER-OBSERVER AGREEMENT

From the total of 1131 annotatable video files, the inter-rater
agreement assessment was done with a subset of 72 files. For
these files, the three observers annotated the samples to five
classes as instructed. The inter-rater agreement results based
on the Fleiss’ kappa metric are presented in Table 4.
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TABLE 2. Summary of patient demographics and clinical characteristics.

N Mean Range Percentage
Age (years) - 64.2 50-80 -
General
Body mass index, kg/m? - 28.1 20.8-38.3 -
Mammogram - 13.6 6-25 -
Tumor size on Ultrasound - 14.2 6-40 -
imaging (mm)
MRI - 23.7 11-50 -
Palpation 3 - - 15%
Tumor localization Wire-guided
S 17 - - 85%
localization
IDC 16 - - 80%
Final DCIS 3 . . 15%
diagnosis
LCIS 1 - - 5%
<10 mm 4 - - 20%
Tumqr size (greatest 10-20 mm 12 ) ) 60%
dimension)
>20 mm 4 - - 20%
Postoperative infection 1 - - 5%
Follow-up
Reoperations 1 - - 5%
0:53
Incision—closure - (Institutional average - -
1:04)
One sample t-test p- ) 020 ) )
Duration of value '
lumpectomy (h:min) 1:44
Operation room time - (Institutional average - -
1:47)
One sample t-test p- ) 0.66 ) _
value
1:50
Incision—closure - (Institutional average - -
1:42)
Duration of One sample {-test p- 0.60 . ;
oncoplastic BCS
(h:min) 2:44
' Operation room time - (Institutional average - -
2:31)
One sample t-test p- ) 042 ) _

value

Abbreviations: MRI (magnetic resonance imaging), IDC (invasive ductal carcinoma), DCIS (ductal carcinoma in situ), LCIS

(lobular carcinoma in situ).

C. CLASSIFICATION

The leave-one-patient-out cross-validated LDA classification
of the accepted dataset produced a mean classification accu-
racy of 44.3% for four tissue types (skin, fat, glandular, and
connective tissue). The results of the leave-one-sample-out

168360

cross-validated LDA classification of each surgery are pre-
sented in Table 5.

Pair-wise comparison between tissue classes revealed
statistically significant differences between fat and the
other tissue types, and between skin and glandular tissue.
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TABLE 3. Closest lateral tumor margins.

All tumors IDC DCIS
Positive 1 6.7% 0 0% 1 14.3%
No ink on
margin—1.9 1 6.7% 0 0% 1 14.3%
mm
2-4.9 mm 3 20.0% 2 18.2% 1 14.3%
5-9.9 mm 4 26.7% 4 36.4% 1 14.3%
10-19.9 mm 4 26.7% 3 27.3% 3 42.9%
>20 mm 2 13.3% 2 18.2% 0 0%
Total 15 11 7

Closest lateral tumor margin from both invasive and intraductal carcinoma
(all tumors), from invasive ductal carcinoma (IDC) and from pure ductal
carcinoma in situ (DCIS) or DCIS component of invasive carcinoma.
DCIS includes one patient with pleomorphic lobular carcinoma in situ.

Patients receiving oncoplastic reduction mammoplasty were excluded.

TABLE 4. Fleiss’ kappa for the inter-rater agreement of three observers
and 72 samples.

Connective
Skin Fat Glandular . Empty
Tissue
Kappa for
0.7126 0.3649 0.3561 0.3709 0.5350
class
P-value <0.0001  <0.0001 <0.0001 <0.0001 <0.0001
Fleiss’
0.4198
kappa
Confidence
X 0.3982-0.4415
interval
Agreement® Moderate

*Agreement based on Landis, J. R. and Koch, G. G. (1977)
[65]

However, there were no statistically significant difference in
the features between glandular and connective tissue, or skin
and connective tissue. The differing dispersion plot features
along with an example DMS dispersion plot are highlighted
in Fig. 4.

IV. DISCUSSION

The study showed that DMS can be implemented into the
surgical workflow and demonstrated differences between sig-
nals from different tissues. The classification accuracy in
this study did not reach the level of laboratory-based ex
vivo studies [34], [38]. This underlines the challenges of
macroscopic annotation of tissues and the importance of rapid
measurement speed to obtain reliable results.
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FIGURE 4. An average DMS spectrum of fat alongside features of the
spectra that have a statistically significant difference between the tissue
classes.

We identified statistically significant different features
between the spectrums of most tissue types. The most relevant
is the difference between glandular and fat tissue that are
met concurrently in areas that are also prone to positive
margins. Despite differences in spectra, there was wide vari-
ation in classification accuracy, ranging from 37% to 100%.
The overall classification result with leave-one-surgery-out
cross-validation was 44% with four tissue types. The leave-
one-sample-out cross-validated results for each individual
surgery showed that there is high variance in the classification
accuracy between surgeries. This is largely explained by the
varying number of accepted measurements between the surg-
eries and the annotated tissue classes. The highest accuracy
was naturally acquired in surgeries, where the number of
classes was two or three, since the classification problem was
simplified. Studies on MS-based methods have approached
the classification problem differently and the in vivo results
are often not reported in terms of diagnostic accuracy, but
rather as comparisons and statements that in vivo MS spectra
were successfully acquired and that they resemble the ex
vivo measurements [32], [34], [49]. However, in a recent
REIMS study, a diagnostic accuracy of 90% was reported
for binary in vivo classification of diseased and non-diseased
rectal tissues in transanal minimally invasive surgery [33].
Thus, even though the study material and setting are different,
it is apparent that the diagnostic performance of DMS in its
current form does not match that of MS devices. However, the
DMS sensor that was used in this study, is a prototype device
that was initially designed for longer term monitoring of
volatile organic and inorganic compounds, rather than rapid
measurements of surgical smoke. By optimizing the sensor
hardware for the specific medical application, better results
could likely be achieved.

As the DMS-based system is ultimately intended for intra-
operative margin assessment, it makes sense to compare it
to techniques already available. Specimen radiography is
widely used for documenting the removal of the targeted
lesion but is conducted ex vivo and cannot be utilized
continuously during the surgery. It also does not clearly
improve the rates of reoperation for positive margins [50].
Ultrasound improves situational awareness of the surgeon
and significantly reduces margin involvement and excision
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TABLE 5. The leave-one-sample-out classification results for each surgery.

Surgery Cl:zziliirczlzlct;on N Nllll:::el; of Tissue classes (N per class)

1 No data 0 0 No data

2 No data 0 0 No data

3 65.4% 52 4 Fat (26), glandular (20), skin (3), connective tissue (3)

4 67.5% 40 4 Fat (22), glandular (8), skin (2), connective tissue (8)

5 65.2% 46* 3 Fat (34), skin (6), connective tissue (6)

6 100.0% 14* 2 Fat (3), glandular (11)

7 68.8% 64 4 Fat (45), glandular (12), skin (5), connective tissue (2)
80.8% 26* 3 Fat (9), glandular (14), skin (3)

9 66.7% 39 4 Fat (25), glandular (5), skin (6), connective tissue (3)

10 63.0% 73 4 Fat (61), glandular (3), skin (4), connective tissue (5)

11 60.5% 43 4 Fat (29), glandular (4), skin (5), connective tissue (5)

12 91.7% 36 3 Fat (25), glandular (9), skin (2)

13 No data 0 0 No data

14 No data 0 0 No data

15 75.0% 16 3 Fat (7), glandular (7), skin (2)

16 36.8% 19 4 Fat (6), glandular (9), skin (2), connective tissue (2)

17 87.5% 48 3 Fat (39), glandular (6), skin (3)

18 70.6% 17 3 Fat (12), glandular (3), skin (2)

19 88.6% 44 3 Fat (33), glandular (9), skin (2)

20 48.4% 31 3 Fat (19), glandular (8), skin (4)

*Qperations 5, 6, and 8 had only one instance of glandular, skin, and connective tissue, respectively. These classes were omitted
from the analysis, since leave-one-sample-out cross-validation requires at least two samples per class.

volumes in palpable and non-palpable tumors [51]-[53].
However, only half of the nonpalpable lesions can be
visualized by ultrasound [54]. The use of intraoperative
pathology requires pathology expertise intraoperatively and
does not provide continuous feedback [50], [55]. Radiofre-
quency spectroscopy is fast (appr. 5-7 minutes), can be used
by the surgeon and has achieved more than 50% reduc-
tion of reoperation rates for both invasive and intraductal
carcinoma [26], [56]. Its shortcoming is the need for an addi-
tional probe during resection and a disruption of workflow to
examine the resected tissue during the operation.

There remains a need for a reliable, fast, and cost-effective
method for intraoperative assessment of surgical margins to
reduce the rate of reoperations, excised breast volumes and
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mastectomy rates. An ideal device is coupled to the resection
tool so that there is no interruption to standard workflow.
It should detect cancer cells in real time guiding the resection
in vivo and offer the surgeon the possibility to alter tissue
excision. Moreover, it should be cost-effective and affordable
globally. DMS-based system functioned reliably throughout
the twenty surgeries. The malfunctions faced were all related
to human errors or annotation system. The overall response
of the operation room staff towards the system was positive.
However, the noise of the pump system in the sample pre-
processing unit was criticized by persons who were in close
vicinity of the device during the operations. The system was
placed near the patients’ legs next to the surgical evacuator
and diathermy unit, and while the size in its current state was
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larger than the other instruments, the placement, preparation
for use, and moving of the system between surgeries did not
cause significant delays compared to normal operations.

The reoperation rate in our study was relatively low at 5%,
but is in line with studies from another Finnish breast surgery
unit [12], [57]. A study by Krekel et. al showed that TRV in
BCS was median 2.5 times higher than would have theoreti-
cally been necessary to achieve sufficient margins [18]. In our
series of lumpectomies and level 1 oncoplastic procedures
the TRV:ORV ratio was 2.0, suggesting that low reoperation
rate may at least partly be due to aggressive resections. The
volume of excised tissue and the esthetic outcome of the oper-
ation are inversely proportional and excision volumes exceed-
ing 50-85 cm”3 anticipate a cosmetic failure of BCS [23],
[58]-[60]. On average, the resection volumes in this study
remained under this threshold. Rate of surgical site infections
and wound complications after breast cancer surgery vary
from less than 5% to more than 30% depending on timing
and definition [21], [61], [62]. In our series, the rate of
infection or wound complications (5%), was similar to other
studies [63], [64].

The reasons for the relatively low tissue classification
results can be partially attributed to annotation. Firstly, the
visual annotation of tissues based on video footage does not
provide as definitive ground truth of the tissue class as histol-
ogy does. There was a delay of 5 seconds between the recep-
tion of the trigger signal from the diathermy knife and the
start of the DMS measurement, and the measurement itself
took 5 seconds, meaning that the recorded signal represents
the average of tissues operated in the period, which in some
cases included more than one tissue. We found moderate
agreement between the three annotators [65]. The inter-rater
agreement is similar to grading of breast cancers according
to histology [66]. This means that while there is a relative
agreement of the tissue types that were operated in this study,
a substantial degree of uncertainty remains, limiting the per-
formance of the classifier as some samples are likely classi-
fied incorrectly by the annotator, giving inconsistent signals
to the classification algorithm. This is a universal problem
to methods that rely on machine learning, and we encourage
authors to assess and report inter-observer agreements.

In addition to annotation, tissue heterogeneity and envi-
ronmental factors are likely to play a role in the classifica-
tion accuracy. We noted significant heterogeneity within the
tissue classes and the issue has also been reported in other
studies. For example, a recent REIMS study has shown that
the molecular profile of stromal tissue is highly dependent
on the distance from the tumor [67]. This means that by
limiting the class division to four general classes, the clas-
sification problem suffers from high within-class variance,
which ultimately affects the classification performance, when
the DMS profiles of different classes share characteristics.
The high within-class variance due to the tissue heterogene-
ity, further complicate the classification, when the number of
available training samples is low. Due to the nature of the
surgeries, some of the tissue classes are more common than
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others, which leads to disproportion between the classes and
insufficiency of training samples to create a fully generaliz-
able model. In addition, the regularized LDA classification
might not be the optimal method for the identification of the
tissues due to its simplicity, even though it has previously
performed well in a more controlled setting. More complex
and robust machine learning methods such as convolutional
neural networks, could better compensate the heterogeneity
of the samples and changes in environmental conditions, and
work better if the number of training samples were increased
to several thousands.

An additional source of within-class variance is the varia-
tion of environmental conditions between measurement days.
The day-to-day variation has proven to be a limitation for
the DMS-based system in previous studies, where the gen-
eralizability of the classification models has decreased, if the
environmental conditions have varied between measurement
sets [37], [38]. The operation room was assumed to be a more
controlled environment in terms of humidity and temperature
than a standard research lab. However, in this study, the vari-
ance in the operation room relative humidity was surprisingly
high, ranging from 12% to 37% between operation days. The
values do not match the recommendations of international
standards. For example, the American Institute of Archi-
tects guidelines for Design and Construction of Hospital and
Health Care Facilities recommend that the relative humidity
should be between 30% to 60% [68].

To our knowledge, this was the first time a head-mounted
system with gaze-tracking was used intraoperatively in oper-
ation room setting to help annotate operated tissues. The
system provided a minimally intrusive method to record
surgeries and although gaze-tracking was not used in the
analysis of data, it could, in the future, be used to audit
and study the work of different surgeons with varying lev-
els of experience to see if their concentration on the oper-
ation area has variation and if there are general aspects
in the operation room environment that can distract the
operation.

In the future, emphasis should be placed on higher sam-
pling frequency and annotation and enhanced control of envi-
ronmental factors to reduce the day-to-day variation. With
optimized hardware we expect significantly improved perfor-
mance that could challenge that of MS. The improved system
should subsequently be validated in a larger clinical trial,
where a classification model for positive margins could also
be created. If the performance matches or exceeds previous
ex vivo results [39], the technology could be implemented to
clinical practice to aid in margin assessment and to reduce
avoidable reoperations.

V. CONCLUSION

In this study, we demonstrated the feasibility of intraoperative
DMS-based tissue identification for the first time. We iden-
tified significant differences between the tissues operated
during breast surgery. The use of the device did not prolong
operation times or add complications. The results in tissue
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identification do not yet warrant the use of the technology in
a clinical application. There are multiple technical aspects of
the system that can be improved, most significant of which is
the measurement delays that can be overcome with a purpose-
built DMS sensor that is better suited for real time mea-
surements. In the future, the video-based annotation process
should also be improved as the current inter-rater agreement
was only moderate and likely had a significant decreasing
effect on the classification accuracy.
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