

 Teo Niemirepo

CAMERA LOCALIZATION AND 3D
SURFACE RECONSTRUCTION ON LOW-

POWER EMBEDDED DEVICES

Bachelor of Science
Faculty of Information Technology and Communication Sciences

Examiner: University Lecturer Erja Sipilä
December 2021

i

ABSTRACT

Teo Niemirepo: Camera localization and 3D surface reconstruction on low-power embedded
devices
Bachelor of Science
Tampere University
Electrical Engineering
December 2021

This Thesis explores the opportunities for real-time camera localization and 3D surface
reconstruction on an embedded device and demonstrates one practical implementation of such.
Previous implementations are analyzed, and their usability on embedded platforms is discussed.
The importance of accurate and fast localization in modern and future applications is considered
and taken into account in the practical implementation of the system.

3D localization and surface reconstruction can be utilized in a vast number of use cases. Some
of the more prevalent use cases are its use in advanced robotics, security and military
applications, geo scanning, aviation industry, and the entertainment sector. The recent
advancements in extender reality and mobile devices have accelerated the adoption of high-
performance localization even further.

In its core, the problem of 3D localization involves inferring the position and rotation of the
device both in the local case in reference to the last few frames and in the global case in reference
to all of the previous frames and reconstructed 3D landmarks. Augmenting the localization
problem with the reconstruction of robust 3D point clouds and a surface adds additional
constraints to the requirements. Mainly, the importance of both local and global camera pose
consistency is accentuated due to the triangulation of the camera-space 2D image features into
world-space 3D points necessitating the fulfillment of the cheirality constraint. Additionally,
deviations in the camera poses induces unwanted noise into the point surface and causes
cumulative distortions in the form of the 3D surface.

The implemented 3D localization and reconstruction system utilizes various simultaneous
localization and mapping techniques for localizing the camera and a diverse set of structure-from-
motion algorithms for reconstructing the real-world in virtual space. Concepts from edge
computing and mobile robotics are used in speeding up the reconstruction and visualization
workflow. On a high level, the system consists of eight (8) stages: 2D feature detection and
matching, camera localization, landmark triangulation, wireless point cloud streaming, point cloud
structuration, Poisson 3D surface reconstruction, and 3D visualization.

The algorithms involved are examined in detail and considered from the viewpoint of
embedded and power constrained devices. Appropriate measures for optimization are taken
when pertinent, and the performance of the system in various scenarios is quantified by the use
of performance metrics.

The system is shown to be usable in real-world applications, and the obtained reconstruction
results are compared against state-of-the-art open-source and academic solutions. The system
is open-source under the MIT license and available on GitHub.

Keywords: Simultaneous Localization and Mapping, Structure-from-Motion, Embedded System

The originality of this thesis has been checked using the Turnitin Originality Check service.

ii

TIIVISTELMÄ

Teo Niemirepo: Kameran paikantaminen ja 3D-pinnan rekonstruointi pienitehoisilla sulautetuilla
järjestelmillä
Kandidaatintyö
Tampereen yliopisto
Sähkötekniikan tutkinto-ohjelma
Joulukuu 2021

Tämä kandidaatintyö tutki mahdollisuuksia reaaliaikaisessa kameran lokalisoinnissa ja 3D-
pinnan muodostamisessa sulautetuilla laitteilla ja demonstroi yhden käytännön toteutuksen
sellaisesta. Aikaisempia toteutuksia analysoitiin ja niiden käyttökelpoisuutta sulautetuilla
järjestelmillä tutkittiin. Tarkan ja nopean lokalisaation tärkeyttä nykyisissä ja tulevissa
sovelluksissa tarkasteltiin ja otettiin huomioon implementaatiovaiheessa.

3D-lokalisaatiota ja pinnan rekonstruointia voidaan hyödyntää useissa käyttötapauksissa.
Joitain yleisimpiä käyttötarkoituksia ovat robotiikka, turvallisuus ja sotilaalliset sovellukset,
geoskannaus, ilmailuteollisuus sekä viihdeala. Viimeaikaiset edistykset laajennetun todellisuuden
(XR, Extended Reality) sovelluksissa ja mobiililaitteiden suoritustehossa ovat kiihdyttäneet
korkeasuorituskykyisten lokalisaatiototeutusten käyttöönottoa.

3D-lokalisaatio pitää sisällään laitteen sijainnin ja asennon päättelemisen sekä lokaalissa
kehyksessä verrattuna muutamaan aikaisempaan kameran kuvaan sekä globaalissa kehyksessä
verrattuna kaikkiin aikaisempiin kameran kuviin ja rekonstruoituihin 3D-maamerkkeihin.
Lokalisaatio-ongelman suurentaminen lisäämällä tarpeen vakaille 3D-pistepilville asettaa
lisärajoitteita systeemille: sekä lokaalin että globaalin kameran asennon yhtäpitävyys ja tarkkuus
kasvattaa merkitystään kamera-avaruuden 2D-kuvapisteiden trianguloiminen 3D-avaruuteen
asettaman keiraliteettirajoituksen vuoksi. Tämän lisäksi poikkeama kameroiden asennossa saa
aikaan ei-toivottua kohinaa pistepintaan ja aiheuttaa kumulatiivisia vääristymiä 3D-pinnan
muodossa.

Toteutettu 3D-lokalisaatio- ja rekonstruointijärjestelmä käyttää erilaisia SLAM (Simultaneous
Localization and Mapping) -tekniikoita kameran lokalisointiin ja asennon havaitsemiseen sekä
monipuolisia SfM (Structure-from-Motion) -algoritmeja todellisen maailman jäljittelemiseen
virtuaalimaailmassa. Konsepteja reunalaskennasta ja mobiilirobotiikasta käytetään laskennan
nopeuttamiseen ja tulosten visualisointiin. Korkealla tasolla systeemi koostuu kahdeksasta (8)
vaiheesta: 2D-kuvapisteiden havaitseminen ja yhteensovitus, kameran lokalisaatio, 3D-
maamerkkien triangulointi, langaton pistepilven lähetys, pistepilvien rakentaminen, Poisson 3D-
pinnan rekonstruointi ja 3D-visualisointi.

Käytettyjä algoritmeja tutkittiin yksityiskohtaisesti ja niitä käsiteltiin sulautettujen järjestelmien
ja muiden tehorajoitettujen laitteiden näkökulmasta. Tarkoituksenmukaisia optimointeja käytetään
asiaankuuluvasti, ja systeemin suorituskykyä erinäisissä tilanteissa kvantifioidaan erilaisia
suorituskykymittareita käyttäen.

Systeemin näytetään olevaan käyttökelpoinen oikean maailman sovelluksissa ja saatuja
rekonstruointituloksia verrataan uusimpiin tekniikoihin. Systeemi on jaettu GitHubissa avoimena
lähdekoodina MIT-lisenssillä.

Avainsanat Simultaneous Localization and Mapping, Structure-from-Motion, Sulautetut
Järjestelmät

Tämän kandidaatintyön alkuperäisyys on tarkistettu Turnitin Originality Check palvelulla.

iii

FOREWORDS

This Bachelor’s Thesis was made for the Tampere University’s Electrical Engineering

study program during the autumn of 2021. The subject of the Thesis is camera

localization and 3D surface reconstruction on low-power embedded devices. The subject

is remarkably important, especially considering the recent advancements in the fields of

robotics, computer vision, and other mobile applications.

I would like to thank the personnel in my current workplace, Ultra Video Group, for largely

sparking my interest in real-time computer vision and its applications. I would also like to

thank Erja Sipilä for her time overseeing the writing of my thesis, and my family for their

continuous support over the years.

Tampere, 1.12.2021

Teo Niemirepo

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. RELATED WORK ... 3

2.1 SLAM Solutions ... 3

2.2 Structure-from-Motion Solutions ... 4

2.3 RGB-D Based Approaches .. 4

3. ALGORITHM DESCRIPTIONS ... 6

3.1 Camera Calibration .. 6

3.2 2D Image Feature Detection .. 7

3.3 2D Feature Matching and Filtering ... 8

3.4 Feature Triangulation ... 11

3.5 Essential Matrix Decomposition ... 12

3.6 Perspective-n-Point .. 13

3.7 Loop Closure and Bundle Adjustment .. 13

3.8 Poisson Surface Reconstruction .. 14

4. IMPLEMENTATION .. 15

4.1 Overview .. 16

4.2 Image Acquisition ... 16

4.3 Camera Localization .. 17

4.4 Dense 3D Point Data Generation ... 18

4.5 Wireless 3D Data Stream ... 19

4.6 3D Reconstruction ... 20

4.7 Remote Visualization ... 21

5. PERFORMANCE AND QUALITY ANALYSIS ... 22

5.1 Performance Evaluation ... 22

5.2 Localization Accuracy Evaluation ... 24

5.3 3D Data Quality Analysis ... 24

6. CONCLUSIONS .. 25

7. REFERENCES ... 26

v

LIST OF IMAGES

Figure 1 – Feature matches between two images visualized. (a) Invalid matches.
(b) Good quality matches. .. 9

Figure 2 –The embedded platform with a USB hub, the camera, a WiFi module,
and a battery pack connected. ... 15

Figure 3 – A high-level overview of the architecture of the system 16
Figure 4 – A subset from the dataset used in the evaluation of the

implementation. .. 17
Figure 5 – The localized camera track and the reconstructed point cloud. 18
Figure 6 – Comparisons of different sparsity point clouds. (a) Sparse filtered

feature matches (n=1500). (b) Dense points with frame delta of 30
and n=10000. (c) Dense points with frame delta of 30 and
n=100000. .. 19

Figure 7 – The reconstructed 3D mesh with vertex colors, generated from the
combination of the sparse feature-match point cloud and the dense
projection cloud. ... 20

Figure 8 – Performance comparisons between the embedded platform and a
high-end desktop computer. The number of detected ORB
features, the matching algorithm and the FLANN MPL were varied. 22

Figure 9 – The per-stage average frame times (n=3500, FLANN, MPL = 1). Note,
"Create New Landmarks" and "Project Dense Points" were not
done every frame. .. 23

Figure 10 – The quality of the system compared against state-of-the-art related
work. (a) AliceVision MeshRoom. (b) Open3DGen. (c) Current
Thesis Implementation. .. 24

vi

LIST OF CODES

Code 1 – Feature match homography filtering, as taken from the code presented
in this Thesis. ... 10

Code 2 – The code implementation of the triangulation algorithm used in this
Thesis. ... 12

Code 3 – The code used in the implementation of the 3D data stream. 21

vii

ABBREVIATIONS

2D 2-Dimensional
3D 3-Dimensional

AKAZE Accelerated KAZE (tr. KAZE (風), Japanese: “wind”)

AR Augmented Reality
BRIEF Binary Robust Independent Elementary Features
DLT Direct Linear Transformation
E-PnP Efficient Perspective-n-Point
FAST Features from Accelerated Segment Test
FLANN Fast Library for Approximate Nearest Neighbors
fps Frames-Per-Second
IMU Inertial Measurement Unit
k-d tree k -dimensional tree
LDSO Direct Sparse Odometry with Loop Closure
LiDAR Light Detection and Ranging
LSH Locality Sensitive Hashing
MPL Multi Probe Level
ORB Oriented FAST and Rotated BRIEF
PnP Perspective-n-Point
RANSAC Random Sample Consensus
RGB-D Red Green Blue – Depth
SfM Structure from Motion
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SoC System on a Chip
SURF Speeded Up Robust Features
SVD Singular Value Decomposition
UVC USB Video Class
XR Extended Reality

1

1. INTRODUCTION

The problem of accurate, robust, affordable, and scalable localization in the realm of

robotics and computer vision has been intensely researched since the late 1980s [1].

Various sensor fusion schemes [2] utilizing IMUs (Inertial Measurement Units), LiDARs

(Light Detection and Ranging), multispectral cameras, and other sensors have been

tried, but to this day, the one style of approach showing the most promise in future

applications is solutions using pure RGB cameras and thus mimicking human

understanding of the surrounding environment. The rise of neural networks and high-

performance image processing techniques has accelerated the adoption of camera -

based implementations even further [3] [4] [5].

The use cases of high-performance and accurate localization, both in the local and global

scenario, are important in robotics applications. Other relevant use cases can be found,

for example, in the realm of security and military applications, geo scanning, drones and

other aviation technologies, and the entertainment sector.

3D localization also proves its usefulness in the mobile device software industry as well.

Augmented Reality (AR) and Extended Reality (XR) have been on the forefront of

technological progress and computer vision advancements in recent years [6], and most

of the solutions involved in the implementations require the user’s device to be localized

very accurately.

Currently, one of the main areas-of-interest for localized XR applications can be found in

the mobile world [7]. In these applications, the importance is rarely only on the

localization aspect of the system, but the 3D reconstruction element as well. This

introduces a plethora of constraints on the overall system: it must not only be accurate,

but highly performant and moreover computationally efficient. High-performance

implementations, such as the one introduced in this Thesis, will be at the leading edge

of the future of XR. While these solutions are certainly important in the mobile world, the

mobile world is hardly the only trade interested in it. Various XR technologies are used

extensively, for example, in the automotive world and industrial applications as well [8].

Monocular RGB cameras offer some notable advancements over other sensoring

devices, most evident being their relatively cheap price compared to the sensing density

and the large number of opportunities in pattern detection and signal processing [9].

2

Camera systems are also highly scalable and might not even require any new hardware,

considering how common cameras are in modern mobile electronics.

Merely localizing the camera in 3D space is usually not enough to be usable in more

advanced robotics applications. For example, a dynamically updating and high-accuracy

3D map of the environment is usually required in biped or quadrupedal robotics, where

updating the target position of the limb accurately to match the environment is vital to

prevent the robot from falling over or causing an unwanted accident [10].

In recent years, the impact of cloud computing has shifted the emphasis of data

processing to remote platforms, but with modern microprocessors the computations can

be brough to the edge [11] or done on the embedded platform itself. On most cost-

effective and mobile platforms doing all of the processing on the same device is not

feasible due to power limitations. Offloading parts of the non-critical processing to a

remote machine can often be advantageous, such as reconstructing the 3D map of the

environment. This offloading approach also shares its usefulness in swarm robotics,

where multiple mobile robots can share the same environmental map and contribute to

its growth and accuracy [12].

This technical Thesis aims to explore one such hybrid implementation, in its core utilizing

an RGB camera and a low-power embedded platform. The processing of the 3D surface

and the visualization aspect of the system are offloaded to a remote device in order to

increase the viability and runtime performance of the localization system. A practical

implementation was chosen as the central topic due to its inherent importance in the

ever-evolving and advancing technological world, particularly in the realm of mobile

robotics and modern computer vision applications. The implementation introduced in this

Thesis explores the difficulties and real-world optimizations used in the state-of-the-art

academic and commercial applications.

The remainder of this Thesis is structured as follows. Section 2 investigates the previous

most prominent academic and commercial solutions involving camera localization and

3D surface reconstruction. Section 3 provides an overview of the various algorithms used

in 3D localization in general and in Section 4, where a practical implementation of

embedded localization is detailed. Section 5 outlines the performance and reconstruction

quality evaluations, and Section 6 gives the conclusions and explores grounds for further

research.

3

2. RELATED WORK

Simultaneous localization and mapping (SLAM) techniques, alongside with structure-

from-motion (SfM) methods are well known concepts and have been previously studied

in depth. Arguably, between surface reconstruction and 3D localization, the more

important and demanding obstacle is the accurate localization of the camera. With

current techniques, it is easier to infer the 3D surface when the transformations of the

cameras are known due to the inherent nature of 3D projection and triangulation.

Additionally, as the subject of this Thesis is more closely related to 3D SLAM, various

SLAM frameworks are of particular interest.

This chapter aims to examine earlier implementations and discuss their viability on low-

power platforms and in real-time situations. Both open-source and closed-source

solutions are explored in this chapter.

2.1 SLAM Solutions

The main objective of SLAM algorithms is to accurately localize the device-of-interest,

both locally in the immediate vicinity of the device, and globally in a larger scale, beyond

the field-of-view of the device [13]. In practice, this means the device should be able to

localize itself in relation to a couple of previous frames and in relation to all of the previous

frames. These two concepts are not necessarily mutually inclusive, as the localization

error in relation to the previous frame can usually be considered negligible, if not zero,

but without some form of global optimization, the position error often accumulates to a

noticeable degree. For example, in the case of large-scale 3D localization, this can often

be observed by the position error between the first and last camera frames to have the

magnitude of multiple meters.

Some of the most prominent open-source SLAM frameworks are LSD-SLAM [14],

Kimera [15], and various versions of ORB-SLAM, such as the most recent one at the

time of writing, ORB-SLAM3 [16]. These are solutions designed mostly for high-power

applications, where the available processing power is virtually not limited in comparison

to embedded microprocessors. For example, ORB-SLAM3 recommends on their GitHub

page [17] at least an intel core i7 -series processor for real-time applications. This is

4

several orders of magnitude more demanding for what is feasible on an affordable

embedded device.

2.2 Structure-from-Motion Solutions

The state-of-the-art SfM solutions often have the aim of producing extremely high-fidelity

and textured 3D models. This apparent scope is often more restricting than the definition

of structure-from-motion would require: “The question addressed is how the 3-D structure

and motion of objects can be inferred from the 2-D transformations of their projected

images when no 3-D information is conveyed by the individual projections” [18], and

indeed SLAM frameworks could be classified under the term SfM. Nevertheless, SfM is

nowadays often associated with primarily recovering the 3D data of a scene, even if the

more correct interpretation would be to classify SfM as a toolbox of various algorithms

and implementations.

Most of the high-fidelity SfM solutions fall under the umbrella term photogrammetry, the

most prevalent and full-featured open-source solution being AliceVision MeshRoom [19].

One of the oldest and best-known closed-source solutions is Agisoft MetaShape [20].

Photogrammetry software do not run in real-time, often requiring hours or days to

reconstruct even smaller scenes. Real-time SfM software is often associated with either

augmented reality or advanced robotics applications [21]. Dynamic pathfinding in

robotics and real-time 3D scanning of environments in AR applications are common

examples of such. In current applications, the world-under-capture is often be assumed

to be static or rigid, and the camera is the only object in motion.

2.3 RGB-D Based Approaches

The quality of the created 3D mesh and the reconstruction speed of the pipeline can be

significantly improved by introducing dedicated depth data as additional input to the

system using RGB-D (Red Green Blue - Depth) images. With the use of a stereo camera

pair, or a purpose-made depth camera, depth data could be acquired easily and

efficiently. While the current implementation introduced in this Thesis will not make use

of RGB-D images, it may prove to be an interesting ground for future research. It is also

worth noting, most of RGB-D solutions also make use of the same approaches as

traditional SLAM and SfM applications, thus making them relevant in this scope [22].

Most of the solutions utilizing various depth sensing techniques are closed source or

commercial solutions. These commonly use custom and expensive 3D scanners

alongside with tailored software. For example, [23] and [24] are such solutions. The

5

open-source space of 3D reconstruction is decidedly lacking, there being only a handful

of worthy implementations. The primary open-source implementations utilizing RGB-D

images are: VoxelHashing [25], BundleFusion [26], and Open3DGen [27].

6

3. ALGORITHM DESCRIPTIONS

There exist many different approaches to camera localization, depth estimation and 3D

surface reconstruction. The use of an embedded platform constraints the usable

algorithms considerably. As is often the case, elevated robustness and accuracy

generally require more processing power. This means, some compromises must be

made. Mainly, algorithms with low memory profile and good single-threaded execution

speed should be emphasized. Embedded devices rarely are fortunate enough to have

multiple cores. This proves to be problematic, as most of the algorithms introduced in

this Thesis, such as feature detection, feature matching, and feature triangulation, are

able to make heavy use of multi-core processors.

This chapter will explore in detail the various algorithms used in the practical

implementation of this Thesis. Particular care is given to consideration of execution

performance, whenever applicable.

3.1 Camera Calibration

Camera calibration comprises of obtaining the camera-specific intrinsic parameters, also

known as the camera matrix, and the distortion coefficients. To simplify the math

involved, the pinhole camera model [28] is used in the calculations. This is not realistic

with real-world modern cameras, which use lenses and cause barrel or pincushion

distortion, thus creating the need for undistorting the captured image. The result of

undistortion is an image or set of 2D points, which satisfies the perspective camera

model

𝒖 = 𝑷𝒙 , (1)

where the image 2D point is 𝒖, the camera projection matrix is 𝑷 and the 3D world point

is 𝒙. The projection matrix 𝑷 is defined as

𝑷 = 𝒌[𝑹|𝒕] , (2)

where 𝑹 is the camera rotation matrix and 𝒕 is the camera’s translation vector [29].

The most common undistortion technique involves the use of either 5 or 7 undistortion

coefficients, using only 5 𝑘𝑛 radial distortion parameters or utilizing the additional 2 𝑝𝑛

7

tangential distortion parameters as well. In this case, only the necessary radial distortion

coefficients will be considered. The distortion coefficient vector is in the form of

𝒅 = [𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4]. (3)

The camera matrix is defined as 𝒌, where 𝑓𝑥 and 𝑓𝑦 are the camera’s horizontal and

vertical focal lengths and 𝑐𝑥 and 𝑐𝑦 are the image’s principal point, which usually

coincides with the image’s center point. The camera intrinsic matrix [29] is defined as

𝒌 =
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

 . (4)

One of the most common calibration algorithms is the one introduced by Zhegyou Zhang

[30], which is also used in the implementation introduced in this Thesis, indirectly by the

use of OpenCV [31]. This method requires a checkerboard image, usually printed on an

A4 piece of paper, as a calibration reference. The checkerboard corners are detected,

and the known relationship between the corners in 3D space is used to parametrize the

2D-3D point correspondences. The end products are the camera calibration parameters:

the distortion coefficients and the intrinsic matrix [30].

To save processing time, the entire RGB images are usually not undistorted. Instead,

the undistortion can only be done on the detected 2D feature points. The benefit of this

is evident, when the number of points-of-interest are considered in each case: a

1920 × 1080 RGB image has 2073600 points to undistort, whereas the length of feature

point vectors is usually measured in the thousands. The latter is multiple orders of

magnitude computationally lighter.

3.2 2D Image Feature Detection

All SLAM and SfM applications fundamentally rely on the ability to detect robust and

consistent features in images. These image features must be reproducible, temporally

and spatially consistent, and efficient to compute. The feature detection algorithm must

also be able to individually describe every feature to a distinctive-enough degree, where

the same real-world feature can be detected and distinguished when viewed through

another viewpoint, even if the camera view is rotated and thus the orientation of the

feature is not consistent throughout the frames [32].

There are two major types of feature descriptors: binary descriptors and floating-point

descriptors. In general, floating-point descriptors, such as SIFT [33] and SURF [34] are

slower and not as memory efficient but considerably more robust and temporally more

8

stable. For years, SIFT and SURF were the de-facto standard in many high-quality

computer vision and SfM applications [35].

In modern solutions, binary feature descriptors, such as AKAZE [36] (Accelerated KAZE)

and ORB [37] (Oriented FAST (Features from Accelerated Segment Test) and Rotated

BRIEF (Binary Robust Independent Elementary Features)), have seen an increase in

their use due to the advent of more intelligent matching and filtering algorithms.

Binary features are uniquely suited for use in low-power platforms, where processing

power and the amount of available system memory is limited. The ORB feature detection

algorithm was chosen to be used in this implementation due to its superior speed and

memory requirements.

The ORB feature detection algorithm is one of the fastest and more robust detection

algorithms used [37]. It is scale and rotation invariant, making it optimal for camera

localization. By the nature of ORB being a binary descriptor, it is also memory efficient

[38]. This is more important on an embedded device, where the amount of system

memory is limited to begin with.

3.3 2D Feature Matching and Filtering

Feature matching algorithms find correspondences between two sets of feature

descriptors. These algorithms compare the descriptors, and using various metrics try to

find pairs of features that are the most similar [39].

The brute force matcher [40] is a greedy algorithm, which compares all pairs of individual

features. While this may result in more matches, it is also computationally heavier and

more prone to false positives. A common way of improving the quality of the matches is

to cross-check the feature correspondences and verify, that both features match each

other in their opposite feature sets.

The FLANN (Fast Library for Approximate Nearest Neighbors) feature matching

algorithm [41] finds the approximate nearest neighbor feature matches using a k-d tree

[42]. Compared to the brute force matcher, the results are not as accurate, but

considerably faster with large datasets. The effect of jitter and inconsistencies in the

feature matches is mitigated to a degree with the use of RANSAC (Random Sample

Consensus) [43] in later stages of the localization pipeline. The performance and

accuracy of the FLANN matcher can be changed easily with the multi-probe locality-

sensitive hashing (LSH) index [44]. A higher index value will yield better and more robust

9

results with the expense of drastically reduced performance. The performance

implications of FLANN and brute force matching is discussed in more detail in chapter 5.

The feature matching algorithms are not perfect, and thus require the feature matches

to be filtered for outliers. These outliers most commonly exhibit themselves as drastically

invalid feature matches, as shown in Figure 1. Experimentally, FLANN matchers are

usually slightly more robust in automatically only keeping the inlier feature matches, but

often still require additional filtering due to the approximate nature of the algorithm.

In nearly all feature matching cases, a distance ratio check is done on the matched

features. This filters out the majority of bad matches, but still leaves some for further

filtering. For floating point descriptors, the distance metric often used is the Euclidean

distance, and for binary descriptors Hamming distance is used. Only the feature matches

with the distance less than a pre-specified threshold are kept.

In real-time SLAM applications, it can often be assumed the movement between

subsequent frames is very small, and thus the coordinates of the matched features

should lie very close to each other in image coordinates. This special case allows for the

use of geometric filtering. For example, the distance between the matched feature

coordinates can be calculated using Pythagoras theorem and matches which have a

distance beyond a specified threshold can be removed.

Another form of geometric filtering that can be used in this special case is homographic

filtering. A homography matrix between the two frames can be computed from the feature

points of the frames. The homography algorithm often makes use of RANSAC, thus

mitigating the effect of outliers. After acquiring the homography matrix, the feature points

of the first frame can be transformed into the space of the second frame. In the ideal

case, the two sets of points are now identical. In the real world, these two sets of points

are now very close to each other. By again specifying a threshold, these pointsets can

be compared, and only points within the specified Euclidean distance are kept. This form

of filtering is by far the more robust between the alternatives, but comes with the

disadvantage of filtering out points, which do not fulfill the homography constraint. In

Figure 1 – Feature matches between two images visualized. (a) Invalid matches. (b)

Good quality matches.

10

practice, this means points that do not lie on a plane are removed. In urban

environments, where flat surfaces are common, homography filtering often yields good

enough results. The implementation for filtering feature matches with the homography

matrix used in this Thesis, which extends on top of OpenCV [31], is shown in Code 1.

[45].

std::vector<std::pair<uint32_t, uint32_t>> feature_matches;

std::vector<cv::Point2f> feature_points_1, feature_points_2;

/** ... */

// compute the homography matrix

const cv::Mat homography = findHomography(feature_points_1,

 feature_points_2, cv::RANSAC, HOMOGRAPHY_RANSAC_THRESHOLD);

// create a vector to hold the good matches

std::vector<std::pair<uint32_t, uint32_t>> good_matches;

// loop through the feature matches and check for homography constraint

for (size_t ii = 0; ii < feature_matches.size(); ii++)

{

 // transform the 1st point to the space of the 2nd frame

 cv::Mat col = cv::Mat::ones(3, 1, CV_64F);

 col.at<double>(0) = feature_points_1[ii].x;

 col.at<double>(1) = feature_points_1[ii].y;

 col = homography * col;

 // homogeneous coordinate transform

 col /= col.at<double>(2);

 // calculate the Euclidean distance between the points

 const double dist =

 sqrt(pow(col.at<double>(0) - feature_points_2[ii].x, 2)

 + pow(col.at<double>(1) - feature_points_2[ii].y, 2));

 // check for distance threshold

 if (dist < HOMOGRAPHY_FILTER_MAX_DIST)

 good_matches.push_back(matches[ii]);

}

Code 1 – Feature match homography filtering, as taken from the code presented in
this Thesis.

11

3.4 Feature Triangulation

The main method for triangulating 3D points from 2D correspondences and the

respective camera projection matrices uses DLT (direct linear transformation) [46] and

SVD (singular value decomposition) [47]. This triangulation approach is resilient against

noise in the 2D position of the feature points and extends efficiently into multiview cases,

where more than two feature correspondences are used. Augmenting the triangulation

with additional camera viewpoints reduces the effect of jitter or inaccuracies caused by

noise in the 2D feature positions while only being marginally slower, compared to only

using two viewpoints. The DLT algorithm finds the least squares -optimal 3D point and

minimizes the reprojection error [48].

According to the perspective camera model, the relationship of a 3D point 𝒙 in world-

space coordinates and its 2D projection in camera-space coordinates 𝒖 is

𝒖 = 𝑷𝒙. (5)

Let the same 3D point 𝒙 be

𝒖′ = 𝑷′𝒙 (6)

in the coordinates frame of another camera. These equations can be represented as

𝒖 × 𝑷𝒙 = 0, (7)

which can be expanded to

[

𝑢𝑥

𝑢𝑦

1
] × [

𝒑𝟏𝑻

𝒑𝟐𝑻

𝒑𝟑𝑻

] 𝒙 = 0. (8)

To recover the 3D point 𝒙, the equations representing the two different views can be

combined into the general form of

𝑨𝒙 = 0, (9)

where, in the case of two views, 𝑨 is represented as

𝑨 =

[

𝑢𝑥𝒑

𝟑𝑻 − 𝒑𝟏𝑻

𝑢𝑦𝒑𝟑𝑻 − 𝒑𝟐𝑻

𝑢𝑥
′ 𝒑′𝟑𝑻

− 𝒑′𝟏𝑻

𝑢𝑦
′ 𝒑′𝟑𝑻 − 𝒑′𝟐𝑻

]

. (10)

The result is a homogeneous system of linear equations, which can be solved with

singular value decomposition [48]. The code which implements this functionality can be

seen in Code 2. This code is also capable of triangulating multiview features from

different camera viewpoints, although it is worth noting this degrades the SVD

12

performance drastically. In most cases, the result of two-view triangulation is robust

enough to be considered adequate.

3.5 Essential Matrix Decomposition

By decomposing the essential matrix [49], the rotation and relative translation between

two sets of feature correspondences can be recovered by using the properties of epipolar

geometry [50]. The translation between the frames is of unit length and merely indicates

the direction of the movement.

The essential matrix is formulated from the translation vector t and the rotation matrix R

as such:

𝐄 = 𝐑 × 𝐭 (11)

In this case, the stated problem is the inverse: the translation and rotation of the camera

are unknown, but it is generally possible to obtain the essential matrix from only the

feature correspondences. Common algorithms for achieving this are the five-point

Eigen::Vector3d triangulate_multiview(

 const std::vector<Eigen::Vector2d>& feature_points,

 const std::vector<Mat34>& projection_matrices)

{

 // create the A matrix used in solving the SVD

 Eigen::Matrix4d A = Eigen::Matrix4d::Zero();

 // loop through the feature points, and add them to the A -matrix

 for (size_t ii = 0; ii < feature_points.size(); ii++)

 {

 const Vector3d point = feature_points[ii].homogeneous().normalized();

 const Mat34 term =

 projection_matrices[ii] - point * point.transpose()

 * projection_matrices[ii];

 A += term.transpose() * term;

 }

 Eigen::SelfAdjointEigenSolver<Eigen::Matrix4d> eigen_solver(A);

 // acquire the eigen vectors and take the first one, which most closely

 // resembles the true-to-life 3D point, return the triangulated 3D point

 return eigen_solver.eigenvectors().col(0).hnormalized();

}

Code 2 – The code implementation of the triangulation algorithm used in this Thesis.

13

algorithm [51], which is also used in OpenCV, or the seven-point algorithm [52]. While

there exist other methods as well, these are one of the more usual ones.

After obtaining the essential matrix, it must be decomposed, and the relative pose must

be extracted from it. This is done using singular value decomposition. The

implementation in this Thesis uses the solution given by OpenCV. After decomposing

the essential matrix, the result is four possible poses, of which only one fulfills the

cheirality constraint, i.e., the pose results in positive and non-infinite triangulation. These

four cases must be handled individually, and the solution which results in front-side

triangulation is picked.

The unit-length translation -characteristic makes essential matrix decomposition only

suitable for inferring the initial camera conditions of the first two frames in the system.

Without supplementary sensor data, such as accelerometer data acquired from an IMU,

or some other method for setting the scale, the first two frames must be used to set to

unit scaling. While there are intelligent ways to infer realistic scaling from a set of camera

views, for the sake of simplicity those will not be considered.

3.6 Perspective-n-Point

For the consecutive frames after the first two, the PnP (Perspective-n-Point) algorithm

[53] is used to recover the pose of the camera. There are multiple different

implementations of the basic PnP algorithm, the one preferred in modern SfM and

multiview geometry solutions is the Efficient PnP (E-PnP) [54] algorithm. By design, the

E-PnP algorithm has the complexity of O(n), making it usable on low-power platforms

and real-time applications.

Most PnP algorithms are not inherently robust when given high-noise feature points or

false feature correspondences as input. Thus, RANSAC is often used in conjunction with

various feature filtering mechanisms to reduce the effect of outliers and produce good

quality camera poses.

3.7 Loop Closure and Bundle Adjustment

When RGB cameras are used, it is often necessary to solve for loop closure when robust

global localization is required. For example, in the case of SfM solutions, non-rigid space

deformation [55] is a valid method of optimizing the camera locations and the generated

3D map of the world. Traditionally with RGB SLAM, gradient decent and non-linear

minimization has been used, in the form of bundle adjustment [56]. While accurate,

bundle adjustment is also extremely slow and mostly unusable if the number of points is

14

large. While there have been faster and more optimized algorithms, such as LDSO [57]

(Direct Sparse Odometry with Loop Closure), it is not realistically possible to use in real-

time and low-power applications.

In the case of the solution introduced in this Thesis, loop closure and bundle adjustment

are skipped for the sake of simplicity and to save processing power. It is also worth

noting, the cumulative error can rarely develop to unmanageable levels when the

environment is small, for example a small room, and the old 3D key points can be reused.

3.8 Poisson Surface Reconstruction

The Poisson surface reconstruction algorithm [58] generates smooth and watertight 3D

surfaces from discrete point clouds. The Poisson surface reconstruction algorithm

computes an approximation of the surface. The accuracy to which the surface is

computed can be set parametrically. The Poisson surface algorithm uses an octree for

capturing the 3D detail.

The Poisson surface reconstruction algorithm was chosen over the alternatives, such as

the ball-pivoting algorithm [59], because it generates watertight and envelope 3D

surfaces. It also produces exemplary results with sparse input point clouds. Many of the

alternatives require a uniform point surface in order to produce adequate results. The

implementation of the Poisson algorithm was provided by the intel Open3D library [60].

15

4. IMPLEMENTATION

The embedded development platform used in the implementation is the BeagleBone

Pocket Beagle [61], utilizing an Octavo Systems OSD3358-SM SoC (system on a chip)

with a 1 GHz ARM Cortex-A8 high-power core, an ARM Cortex-M3 low-power core and

512 MB of RAM. Wi-Fi connectivity is added to the system with a USB add-on. Similarly,

a USB camera is used for the real-time image acquisition. The camera used is the

Arducam IMX477 12MP “Raspberry Pi HQ Camera” with an additional USB conversion

board attached [62]. The camera is used with the resolution of 1280 × 720 and

theoretical framerate of 100 𝑓𝑝𝑠. The experimental setup is shown in Figure 2.

The second principal part of the system is the high-power remote device, which is used

for point cloud structuration, 3D-surface reconstruction and all visualization functionality.

In the case of all results demonstrated in this Thesis, the remote device utilizes an AMD

Ryzen 5900X processor with 64 GB of RAM. The code for this project can be found under

the MIT open-source license at github.com/teo3n/BScEmbeddedLocalization.

Figure 2 –The embedded platform with a USB hub, the camera, a WiFi module, and

a battery pack connected.

16

4.1 Overview

On a high level, the architecture of the entire system can be divided into three main

components: the localization component, the point cloud stream component, and the

visualization component. From these, only the localization component is mandatory for

the functioning of the system. The overview of the system architecture can be seen in

Figure 3. The division of the different processing parts into multiple platforms was

mandatory, in order to achieve reasonable performance on the embedded system.

In addition to image acquisition, feature detection, matching, camera localization, and

landmark triangulation is all done on the embedded system. Separating these into further

parts and offloading the processing to the remote platform does not make sense from a

performance perspective, as the camera localization and landmark triangulation steps

use an insignificant amount of processing power. Additionally, offloading feature

detection and matching to the remote device would require large amounts of data to be

transmitted, if the image data is not compressed. In the case good-quality compressions

would be used, the performance saved in feature detection and matching would be lost

on the compression part, making the tradeoff often not feasible.

4.2 Image Acquisition

The first algorithmic stage of the reconstruction pipeline is the image acquisition stage.

In Figure 4, a set of camera frames from the evaluation dataset are visualized. The

testing and evaluation dataset is 248 frames long, and the frames have the resolution of

Figure 3 – A high-level overview of the architecture of the system

17

1280 × 720. The dataset is captured outdoors in a setting, where there are a lot of good-

quality feature points to track.

When run in real-time, the system uses the connected RGB camera to acquire the

frames. While the implemented system theoretically supports any UVC (USB Video

Class) compatible camera, there are some important considerations that must be taken

into account. For example, a traditional low-cost webcam with relatively low framerate

(15 − 30 frames-per-second) often exhibits large amounts of motion blur, making the

frames acquired often useless. Instead, a high-quality and high-performance camera

was used in a high framerate mode, even though the system is not capable of fully

utilizing the hardware available.

4.3 Camera Localization

The algorithm used in localizing the camera is dependent on how many frames are

already localized. For the first two frames, the algorithm used decomposes the essential

matrix, and for the rest of the frames PnP is used. On the grounds of reducing difficult to

reproduce issues, selecting the first two frames is done manually. In practice, this means

the user of the system must specify two frames, which are far enough apart from each

other to achieve good triangulation, but still close enough to find a large number of robust

feature matches. There are automated algorithms to evaluate the quality of the initial

Figure 4 – A subset from the dataset used in the evaluation of the implementation.

18

condition [63], but due to runtime performance constraints, these are not considered in

this Thesis.

After the new frame has been localized, new landmarks can be created from the feature

correspondences between the two most recent frames. It is important to note, the

transformation between the two most recent frames is not guaranteed to be large enough

for a robust triangulation. Instead, the detected 2D feature is added to a track of features,

and the track is triangulated only after enough movement between the frames has been

detected. This track has the additional benefit of resulting in more accurate 3D

triangulations, due to additional data points through the use of multiview triangulation.

The camera projection matrix is defined as

𝑷 = 𝒌 [𝑹𝐓|(−𝑹𝐓𝒕)], (12)

which differs slightly from the equation given in chapter 3.1. This is due to the difference

in the global-local reference frame. A track of localized cameras with the length of 200

frames, along with a triangulated point cloud, is shown in Figure 5. The choosing of the

first two frames for the initial localization using essential matrix decomposition can clearly

be seen in the top left corner of the figure.

4.4 Dense 3D Point Data Generation

The point cloud generated by triangulating heavily filtered feature matches is sparse and

only contains points from regions rich with distinctive feature areas. In applications,

where high-quality 3D surface is not required, this may be enough, but in most other

cases a denser cloud is necessary. Without the use dedicated depth data, the easiest

Figure 5 – The localized camera track and the reconstructed point cloud.

19

method for obtaining less-sparse 3D data is by the use of dense depth projection [64].

Effectively, this is dense feature triangulation done on the entire image.

The dense feature triangulation is a performance intensive process and prone to noise

artifacting due to how disparity maps are calculated. The non-stereo configuration of the

cameras in world space reduces the feasibility of this even further. In practice, this means

the camera frames are not located parallel to each other and with a known distance

between them. More advanced and robust methods are not doable on low-power

platforms due to their processing and memory requirements.

A more feasible approach is to still triangulate feature matches, but more densely and

without extensive filtering. As these points are not used in localization, the accuracy and

robustness are not critical. In essence, the workflow is the same as in normal feature

matching and triangulation, but in this case the maximum number of feature matches is

increased. This induces a significant loss of performance, and is thus done rarely, for

example, only every 20 − 40 frames (frame delta). It is also worth noting, dispatching this

dense projection every frame would not improve the quality or density of the final point

cloud significantly due to the amount of overlap in the consequent frames, and thus, the

triangulated points of consequent frames. The difference in point contributions is shown

in Figure 6 with the feature projection densities of 𝑛 = 0, 𝑛 = 10000 and 𝑛 = 100000

respectively.

4.5 Wireless 3D Data Stream

The embedded platform is not powerful enough to generate high-quality 3D meshes in

real-time, in addition to handling the camera localization. This introduces the need to

offload some key processing to a remote platform, in this case a computer in the same

local network. The data is transmitted wirelessly over Wi-Fi using WebSockets and

TCP/IP utilizing the Boost Asio C++ library [65]. This approach makes it possible to use

Figure 6 – Comparisons of different sparsity point clouds. (a) Sparse filtered feature

matches (n=1500). (b) Dense points with frame delta of 30 and n=10000. (c) Dense
points with frame delta of 30 and n=100000.

20

the remote system even from far away, given the embedded platform has an active

internet connection.

To faithfully reproduce the 3D geometry, the camera locations and the triangulated points

are transferred uncompressed. With higher density points, or if more processing power

was available, the point clouds could be compressed or downsampled to reduce the

required network bandwidth. In this case, it is not mandatory due to the low camera

localization frequency and thus the low wireless data throughput.

4.6 3D Reconstruction

The 3D mesh reconstruction phase can be divided into two stages: point cloud

structuration from the wireless data stream and 3D mesh reconstruction using the

Poisson surface algorithm. The point cloud structuration step synchronizes a localized

camera to the corresponding point stream.

From this restructured point cloud, a 3D mesh is generated using the Poisson algorithm.

Due to the sparse nature of the point cloud, the mesh reconstruction uses a low value

for the k-d octree. The reconstructed mesh is therefore not of high quality, but easily

usable in mobile robotics applications.

Figure 7 shows the reconstructed mesh, along with a camera track. The mesh uses

vertex colors for additional clarity. As can be seen from the figure, the mesh has a large

“envelope” around it. This is a distinct characteristic of the Poisson surface reconstruction

algorithm and produces advantageous results with the input point cloud at hand.

Figure 7 – The reconstructed 3D mesh with vertex colors, generated from the com-

bination of the sparse feature-match point cloud and the dense projection cloud.

21

4.7 Remote Visualization

The final reconstructed 3D mesh along with the camera track is visualized on the remote

device. A view from the remote visualizer can be seen in Figure 7. As with the rest of the

system, the visualizer is written in modern C++.

In the same way as the point cloud streaming component running on the embedded

device, the receiver uses the Boost Asio library for all networking functionality. The 3D

rendering is done using the intel Open3D library [60]. The data is sent as a continuous

floating-point buffer and the streaming -side implementation is shown in Code 3.

const std::vector<Eigen::Vector3d>& points, colors;

const std::shared_ptr<Frame> frame;

/* ... */

// stream buffer: frame pos + frame rot (mat3x3) + pts len + colors len

std::vector<float> data_buffer;

data_buffer.reserve(3 + 3 * 3 + points.size() * 3 + colors.size() * 3);

// loop through the 3D points and add their xyz values to the buffer

for (int ii = 0; ii < points.size(); ii++)

 for (int kk = 0; kk < 3; kk++)

 data_buffer.push_back(points[ii](kk));

// loop through the point colors and add their rgb values to the buffer

for (int ii = 0; ii < colors.size(); ii++)

 for (int kk = 0; kk < 3; kk++)

 data_buffer.push_back(colors[ii](kk));

// add the camera frame position (xyz) values to the buffer

for (int ii = 0; ii < 3; ii++)

 data_buffer.push_back(frame->position(ii));

// add the camera frame rotation matrix (3x3) to the buffer

for (int xx = 0; xx < 3; xx++)

 for (int yy = 0; yy < 3; yy++)

 data_buffer.push_back(frame->rotation(xx, yy));

auto send_buffer = boost::asio::buffer(data_buffer);

const uint32_t send_bytes = send_buffer.size();

// transmit a 4 byte stream containing the length of the data stream

boost::asio::write(*stream_handle.stream_socket,

 boost::asio::buffer({ send_bytes }), boost::asio::transfer_exactly(4));

// transmit the actual data

boost::asio::write(*stream_handle.stream_socket, send_buffer,

 boost::asio::transfer_exactly(send_buffer.size()));

Code 3 – The code used in the implementation of the 3D data stream.

22

5. PERFORMANCE AND QUALITY ANALYSIS

Evaluating the performance of the system is a vital part in classifying its capabilities and

use cases. The main three types of performance metrics used in appraising the

implementation are: runtime performance, localization accuracy, and reconstruction

quality.

The aims of this chapter are to gauge the viability of the implemented system in real-

world applications and to evaluate the reconstruction quality of the system. The rest of

this chapter is as follows. In chapter 5.1 the runtime performance with different quality

settings of the system is evaluated and compared against a high-power computer. In

chapter 5.2 the camera localization accuracy of the system is evaluated approximately.

In chapter 5.3 the quality of the 3D point clouds is compared against other state-of-the-

art solutions.

5.1 Performance Evaluation

The runtime performance of the system was evaluated both on the BeagleBone

embedded platform and on a high-performance desktop computer with an AMD Ryzen

5900X 12 core processor. The system reconstructed a scene with the length of 180

frames and the frame times were recorded. The variables changed between runs were

the number of detected ORB features, either 3500 or 10000, the feature matching

algorithm, either FLANN or a brute force matcher, and the FLANN multi probe level -

variable, either 2, 1 or 0. The average frame times for all runs can be seen in . The best

tradeoff between reconstruction quality and execution performance is to use 3500 ORB

features and the FLANN feature matcher with multi probe level (MPL) of 1.

Figure 8 – Performance comparisons between the embedded platform and a high-

end desktop computer. The number of detected ORB features, the matching algorithm
and the FLANN MPL were varied.

23

As can be seen from Figure 8, the system cannot be considered to be “real-time” on the

embedded device, as real-time speed would require a framerate of 24 𝑓𝑝𝑠 or 30 𝑓𝑝𝑠,

which would correspond to 42 ms or 33 ms frame times respectively [66]. This is not

necessarily to the detriment of the system, as 1.4 𝑓𝑝𝑠 when using FLANN with MPL of 1

is still very good, considering the severe limitations of the platform. While this

performance is not enough in XR applications, in robotics and mapping use cases it

would nevertheless often be usable. With a more modern SoC, such as a Snapdragon

865 mobile SoC, achieving real-time performance would be possible, as can be seen

from the vast number of real-time computer vision and augmented reality applications

that exist in the current mobile device ecosystem. The system achieved very respectable

performance when run on the high-end desktop processor.

In Figure 9 the embedded localization per-stage frame times are shown. The metrics

were captured with the number of detected features being 𝑛 = 3500 and by using the

FLANN feature matcher with multi probe level 𝑀𝑃𝐿 = 1. The creation of new landmarks

and dense point projections (𝑛 = 10000) were not done every frame. Instead, new

landmark creation was run once every eight (8) frames and dense point projection was

done twice throughout the entire sequence of 180 frames. The feature detection phase

contributes by far the most to the average frame time. Exploring possible optimizations

for the ORB algorithm is not within the scope of this Thesis.

Figure 9 – The per-stage average frame times (n=3500, FLANN, MPL = 1). Note,

"Create New Landmarks" and "Project Dense Points" were not done every frame.

24

5.2 Localization Accuracy Evaluation

Due to the inherent flaw of not implementing bundle adjustment, the resulting camera

poses will always drift over time. As it stands, the resulting camera track is reasonably

accurate in the immediate vicinity of the area-of-interest, i.e., in the local space. The

cumulative positional error caused by the spatial drift makes this system more difficult to

use in large-scale applications, or in applications, where absolute accuracy is required.

The implemented system is still not without its uses. It is still highly usable in small-scale

positional applications, for example in the case of in aforementioned in Chapter 1

quadrupedal robotics feet positioning, or in the case of applications, where the device

does not need to leave the area-of-interest.

5.3 3D Data Quality Analysis

Evaluating the 3D reconstruction quality of the system is decidedly difficult due to the

sparsity of the point data. Instead, the 3D point clouds were compared against two

different style of 3D reconstruction software: a high-quality photogrammetry software

called AliceVision MeshRoom [19] and a state-of-the-art and real-time RGB-D 3D

reconstruction software Open3DGen [27]. All solutions used the same set of RGB

images, with Open3DGen receiving the additional depth data as its input. As

Open3DGen uses true-to-life dense depth data, its output can be assumed to be as close

to reality as possible.

As can be seen from the comparisons in Figure 10, the surface accuracy of the Thesis

implementation is good. It is important to note, all the results shown only contain the

point clouds, the use of extremely dense depth data in the case of Open3DGen merely

makes the result look like a triangle surface. The overall sparsity of the feature points to

the side of the rock, inherent to how the ORB feature detection algorithm functions, is

the largest difference in quality. No other evident disadvantages can be observed.

Figure 10 – The quality of the system compared against state-of-the-art related work.

(a) AliceVision MeshRoom. (b) Open3DGen. (c) Current Thesis Implementation.

25

6. CONCLUSIONS

In this Thesis, the opportunities and use cases of accurate localization on embedded

devices, augmented reality applications and mobile robotics were considered.

Additionally, a system for localizing a camera in 3D space was implemented for a low-

power embedded system. The 3D localization system incorporates an almost full

structure-from-motion pipeline and a multitude of principles from simultaneous

localization and mapping. In addition, a remote 3D surface reconstructing and

visualization software was created for easy evaluation of the camera track and the

reconstructed 3D data.

The runtime execution performance and the quality of the 3D data produced by the

system were evaluated. When run on the embedded evaluation platform, the runtime

performance was shown to be usable in basic robotics and mapping applications, where

1 − 2 Hz reconstruction frequency is sufficient, and the system does not need to adhere

to a real-time constraint. With a more modern SoC the system could be drastically more

viable in real-world applications. Further optimizations are unlikely to improve the

performance of the system to a noticeable degree, unless a more efficient feature

detection algorithm is developed.

Despite the sparsity of the reconstructed data, the accuracy of the 3D point cloud when

reconstructed using short RGB sequences was proved to be comparable to the state-of-

the-art monocular and depth-workflow 3D reconstruction software, despite the lack of a

separate bundle adjustment stage. The distinct lack of processing power was the main

limiting factor in considering the density of the reconstructed point cloud, and thus the

estimated 3D surface.

By utilizing a dedicated RGB-D camera and by implementing bundle adjustment and loop

closure detection the largest disadvantages in quality and accuracy of the system could

be remedied. Implementing these may prove to be interesting grounds for future work.

26

7. REFERENCES

[1] R. C. Smith, M. Self, P. Cheeseman, "On the representation and estimation of spatial
uncertainty", The International Journal of Robotics Research, Vol. 5, Iss. 4, 1986, pp. 56-
68.

[2] X. Zhang, A. B. Rad, Y. Wong, Y. Liu, X. Ren, "Sensor fusion for SLAM based on
information theory", Journal of Intelligent & Robotic Systems, Vol. 59, 2010, pp. 241-267.

[3] R. Aarthi, S.Harini, "A Survey of Deep Convolutional Neural Network Applications in
Image Processing", 2018, International Journal of Pure and Applied Mathematics, Vol.
118, No. 7.

[4] C. Morikawa, M. Kobayashi, M. Satoh, Y. Kuroda, T. Inomata, H. Matsuo, T. Miura, M.
Hilaga, "Image and video processing on mobile devices: a survey", Visual Computer,
June, 2021.

[5] M. Yazdi, T. Bouwmans, "New Trends on Moving Object Detection in Video Images
Captured by a moving Camera: A Survey", Computer Science Review, Elsevier, 2018,
28, pp.157-177.

[6] Business Finland, "Mixed reality report 2017", [Online], Available:
https://www.businessfinland.fi/globalassets/finnish-customers/02-build-your-
network/digitalization/mixed-reality/mixed-reality-report-2017.pdf.

[7] Qualcomm, "The mobile future of extended reality (XR)", [Online], Available:
https://www.qualcomm.com/media/documents/files/the-mobile-future-of-extended-
reality-xr.pdf.

[8] S. Doolani, C. Wessels, V. Kanal, C. Sevastopoulos, A. Jaiswal, H. Nambiappan, F.
Makedon, "A review of extended reality (XR) technologies for manufacturing training",
Technologies, 10 Dec., 2020, vol. 8, iss. 4, pp.77.

[9] R. Radke, "A Survey of Distributed Computer Vision Algorithms", Handbook of Ambient
Intelligence and Smart Environments, Boston, 2010.

[10] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, Y. Xia, "Survey of Robot 3D Path Planning
Algorithms", Journal of Control Science and Engineering, July, 2016.

[11] Edge computing, [Online], https://www.microsoft.com/en-us/research/project/edge-
computing/.

[12] L. Qingqing, F. Yuhong, J. Peña Queralta, T. N. Gia, H. Tenhunen, Z. Zou, T.
Westerlund, "Edge Computing for Mobile Robots: Multi-Robot Feature-Based Lidar
Odometry with FPGAs", November, 2019, International Conference on Mobile
Computing and Ubiquitous N.

[13] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J. J.
Leonard, "Past, Present, and Future of Simultaneous Localization and Mapping: Toward
the Robust-Perception Age", IEEE Transactions on robotics, vol. 32, no. 6, December,.

[14] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale direct monocular SLAM,”
in Proc. European Conf. on Comp. Vision (ECCV), Sep. 2014, Zürich, Switzerland.

[15] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-source library for real-
time metric-semantic localization and mapping,” in Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), Aug. 2020, Paris, France.

[16] C. Campos, R. Elvira, J. J. Gómez, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM3: an
accurate open-source library for visual, visual-inertial and multi-map SLAM,” arXiv
preprint arXiv:2007.11898, July 2020.

[17] ORB-SLAM3 Source Code, [Online], Available: https://github.com/UZ-
SLAMLab/ORB_SLAM3.

[18] S. Ullman, "The interpretation of structure from motion", Oct. 1976, Proceedings of the
Royal Society of London, Ser. B, VOl. 203, Iss. 1153, pp. 405-426.

[19] AliceVision Meshroom. [Online]. Available: https://alicevision.org#meshroom.

27

[20] Agisoft Metashape. [Online]. Available: https://www.agisoft.com/.

[21] M. R. U. Saputra, A. Markham, N. Trigoni, "Visual SLAM and structure from motion in
dynamic environments: a survey", Jun. 2018, ACM Computing Surveys, Vol. 51, Iss. 2,
pp. 1-36.

[22] K. Litomisky, "Consumer RGB-D Cameras and their Applications", University of
California, Riverside, 2012, [Online], Available:
http://alumni.cs.ucr.edu/~klitomis/files/RGBD-intro.pdf.

[23] Artec Eva, [Online], Available: https://www.artec3d.com/portable-3d-scanners/artec-
eva-v2.

[24] EinScan HX, [Online], Available: https://www.einscan.com/handheld-3d-
scanner/einscan-hx/.

[25] M. Nießner, M. Zollhöfer, S. Izadi, M. Stamminger. "Real-time 3D reconstruction at scale
using voxel hashing", ACM Transactions on Graphics 2013.

[26] Dai Angela, Niessner Matthias, Zollöfer Michael, Izadi Shahram, Theobalt Christian.
"BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface
re-integration", ACM Transactions on Graphics 2017.

[27] T. T. Niemirepo, M. Viitanen, and J. Vanne, “Open3DGen: Open-Source software for
reconstructing textured 3D models from RGB-D images,” ACM Multimedia Syst. Conf.,
Istanbul, Turkey, Sept.-Oct. 2021.

[28] R. Hartley, A. Zisserman, "Multiple View Geometry in computer vision", Cambridge
University Press, 2003.

[29] R. Hartley, A. Zisserman, "Multiple View Geometry in Computer Vision Second Edition",
Cambridge University Press, March, 2004.

[30] Zhengyou Zhang, "A Flexible New Technique for Camera Calibration", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 11, Nov. 2000.

[31] OpenCV: Open Computer Vision Library, [Online], Available: https://opencv.org.

[32] Y. Li, S. Wang, Q. Tian, X. Ding, "A survey of recent advances in visual feature
detection", Neurocomputing, Vol. 149, Part B, February, 2015, pp. 736-751.

[33] D. Lowe, “Distinctive image features from scale invariant keypoints”, InternationalJournal
of Computer Vision, vol. 60, pp. 91–110, 2004.

[34] H. Bay, A. Ess, T. Tuytelaars, L. Gool, "Speeded-Up Robust Features (SURF)",
Computer Vision and Image Understanding, Vol. 110, Issue 3, Jun. 2008, Zürich,
Switzerland.

[35] T. Tuytelaars, K. Mikolajczyk, "Local Invariant Feature Detectors: A Survey",
Foundations and Trends in Computer Graphics and Vision, Vol. 3, No. 3, 2007, pp.177-
280.

[36] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for accelerated features
in nonlinear scale spaces,” in Proc. British Machine Vision Conference, Sep. 2013,
Bristol, England.

[37] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alternative to SIFT
or SURF,” in Proc. IEEE Int. Conf. on Comp. Vision (ICCV), Mar. 2011, Barcelona, Spain.

[38] E. Karami, S. Prasad, M. Shehata, "Image Matching Using SIFT, SURF, BRIEF and
ORB: Performance Comparison for Distorted Images", Newfoundland Electrical and
Computer Engineering Conference, St. Johns, Canada, November, 2015.

[39] C. Leng, H. Zhang, B. Li, G. Cai, Z. Pei, L. He, "Local Feature Descriptor for Image
Matching: A Survey", IEEE Access, Vol. 7, December, 2018.

[40] A. Jakubovic, J. Velagic, "Image feature matching and object detection using brute-force
matchers", Sep. 2018, International Symposium ELMAR, Zadar, Croatia.

[41] M. Muja, D. G. Lowe, "Fast approximate nearest neighbors with automatic algorithm
configuration", International Conference on Computer Vision Theory and Applications,
2009.

[42] J. L. Bentley, "MUltidimensional binary search trees used for associative searching",
Communications of the ACM, Sep. 1975, Vol. 18, Iss. 9, pp. 509-517.

28

[43] H. Cantzler, "Random sample consensus (RANSAC)", Jun. 1981, Institute for
Perception, Action and Behaviour, Division of Informatics, University of Edinburgh.

[44] Q. LV, W. Josephons, Z. Wang, M. Charikar, "Multi-probe LSH: efficient indexing for
high-dimensional similarity search", Proceedings of the 33rd International Conference on
Very Large Data Bases, Sep. 2007, Vienna, Austria.

[45] D. Monnin, E. Bieber, G. Schmitt, A. Schneider, "An effective rigidity constraint for
improving RANSAC in homography estimation", 2010, Advanced Concepts for Intelligent
Vision Systems, pp. 203-214.

[46] Y. I. Abdel-Aziz, H. M. Karara, "Direct linear transformation from comparator coordinates
into object space coordinates in close-range photogrammetry", Feb. 2015,
Photogrammetric Engineering & Remote Sensing, Vol. 2, pp. 103-107.

[47] G. H. Golub, C. F. Van Loan, (1996). "Matrix Computations (3rd ed.)", Johns Hopkins
University Press, 1996.

[48] D. Bardsley, B. Li, "3D Reconstruction Using the Direct Linear Transform with a Gabor
Wavelet Based .

[49] D. Nister (2004), ”An efficient solution to the five-point relative pose problem”, IEEE
Transactions on Pattern Analysis and Machine Intelligence (Volume: 26, Issue: 6, June
2004).

[50] R. Hartley, A. Zisserman, "Multiple view geometry in computer vision", 2003, Cambridge
University Press.

[51] D. Nister, "An efficient solution to the five-point relative pose problem," IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 6, June 2004, pp. 756–777.

[52] S. Feng, J. Kan, Y. Wu, "An improved method to estimate the fundamental matrix based
on 7-point algorithm", Journal of Theoretical and Applied Information Technology, Dec.
2012, Vol. 46, No. 1, pp. 212-217.

[53] M. A. Fischler, R. C. Bolles, "Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography", Communications of the
ACM, Vol. 24, Iss. 6, Jun. 1981, pp. 381–395.

[54] Lepetit, V.; Moreno-Noguer, M.; Fua, P. (2009). "EPnP: an accurate O(n) solution to the
PnP problem". International Journal of Computer Vision. 81 (2): 155–166.

[55] T. Whelan, M. Kaess, J.J. Leonard, and J.B. McDonald, "Deformation-based Loop
Closure for Large Scale Dense RGB-D SLAM", IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, IROS, Tokyo, Japan, November 2013.

[56] G. Sibley, C. Mei, I. Reid, P. Newman, "Adaptive Relative Bundle Adjustment", Robotics:
Science and Systems, 2009.

[57] X. Gao, R. Wang, N. Demmel, D. Cremers, "LDSO: Direct Sparse Odometry with Loop
Closure", International Conference on Intelligent Robots and Systems, 2018.

[58] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Proc.
Eurographics Symp. on Geometry Processing (SGP), June 2006, Cagliari, Sardinia,
Italy.

[59] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting
algorithm for surface reconstruction,” IEEE Trans. on Visualization and Comp. Graphics,
vol. 5, no. 4, Nov. 1999, pp. 349-359.

[60] Q. Zhou, J. Park, and V. Koltun, "Open3D: a modern library for 3D data processing,"
arxiv.org/abs/1801.09847, Jan. 2018.

[61] BeagleBone PocketBeagle, [Online], Available: https://beagleboard.org/pocket.

[62] Arducam IMX477, [Online], Available: https://www.arducam.com/product/arducam-uvc-
camera-adapter-board-for-12mp-imx477-raspberry-pi-hq-camera/.

[63] J. L. Schönberger, J. Frahm, "Structure-from-motion revisited, IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[64] X. Huang, L. Fan, J. Zhang, Q. Wu, C. Yuan, "Real time complete dense depth
reconstruction for a monocular camera", IEEE Conference on Computer Vision and
Pattern Recognition Workshops, Jul. 2016.

29

[65] Boost.Asio, [Online], Available:
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_asio.html.

[66] S. Akramullah, "Video coding performance", In: Digital video concepts, methods, and
metrics, pp. 161-208, Apress, Berkeley, Oct. 2014.

	1. Introduction
	2. Related Work
	2.1 SLAM Solutions
	2.2 Structure-from-Motion Solutions
	2.3 RGB-D Based Approaches

	3. Algorithm Descriptions
	3.1 Camera Calibration
	3.2 2D Image Feature Detection
	3.3 2D Feature Matching and Filtering
	3.4 Feature Triangulation
	3.5 Essential Matrix Decomposition
	3.6 Perspective-n-Point
	3.7 Loop Closure and Bundle Adjustment
	3.8 Poisson Surface Reconstruction

	4. Implementation
	4.1 Overview
	4.2 Image Acquisition
	4.3 Camera Localization
	4.4 Dense 3D Point Data Generation
	4.5 Wireless 3D Data Stream
	4.6 3D Reconstruction
	4.7 Remote Visualization

	5. Performance and Quality Analysis
	5.1 Performance Evaluation
	5.2 Localization Accuracy Evaluation
	5.3 3D Data Quality Analysis

	6. Conclusions
	7. References

