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ABSTRACT 

Teo Niemirepo: Camera localization and 3D surface reconstruction on low-power embedded 
devices 
Bachelor of Science 
Tampere University 
Electrical Engineering 
December 2021 

 

This Thesis explores the opportunities for real-time camera localization and 3D surface 
reconstruction on an embedded device and demonstrates one practical implementation of such. 
Previous implementations are analyzed, and their usability on embedded platforms is discussed. 
The importance of accurate and fast localization in modern and future applications is considered 
and taken into account in the practical implementation of the system.  

3D localization and surface reconstruction can be utilized in a vast number of use cases. Some 
of the more prevalent use cases are its use in advanced robotics, security and military 
applications, geo scanning, aviation industry, and the entertainment sector. The recent 
advancements in extender reality and mobile devices have accelerated the adoption of high-
performance localization even further.  

In its core, the problem of 3D localization involves inferring the position and rotation of the 
device both in the local case in reference to the last few frames and in the global case in reference 
to all of the previous frames and reconstructed 3D landmarks. Augmenting the localization 
problem with the reconstruction of robust 3D point clouds and a surface adds additional 
constraints to the requirements. Mainly, the importance of both local and global camera pose 
consistency is accentuated due to the triangulation of the camera-space 2D image features into 
world-space 3D points necessitating the fulfillment of the cheirality constraint. Additionally, 
deviations in the camera poses induces unwanted noise into the point surface and causes 
cumulative distortions in the form of the 3D surface.  

The implemented 3D localization and reconstruction system utilizes various simultaneous 
localization and mapping techniques for localizing the camera and a diverse set of structure-from-
motion algorithms for reconstructing the real-world in virtual space. Concepts from edge 
computing and mobile robotics are used in speeding up the reconstruction and visualization 
workflow. On a high level, the system consists of eight (8) stages: 2D feature detection and 
matching, camera localization, landmark triangulation, wireless point cloud streaming, point cloud 
structuration, Poisson 3D surface reconstruction, and 3D visualization. 

The algorithms involved are examined in detail and considered from the viewpoint of 
embedded and power constrained devices. Appropriate measures for optimization are taken 
when pertinent, and the performance of the system in various scenarios is quantified by the use 
of performance metrics.  

The system is shown to be usable in real-world applications, and the obtained reconstruction 
results are compared against state-of-the-art open-source and academic solutions. The system 
is open-source under the MIT license and available on GitHub. 
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TIIVISTELMÄ 

Teo Niemirepo: Kameran paikantaminen ja 3D-pinnan rekonstruointi pienitehoisilla sulautetuilla 
järjestelmillä 
Kandidaatintyö 
Tampereen yliopisto 
Sähkötekniikan tutkinto-ohjelma 
Joulukuu 2021 

 

Tämä kandidaatintyö tutki mahdollisuuksia reaaliaikaisessa kameran lokalisoinnissa ja 3D-
pinnan muodostamisessa sulautetuilla laitteilla ja demonstroi yhden käytännön toteutuksen 
sellaisesta. Aikaisempia toteutuksia analysoitiin ja niiden käyttökelpoisuutta sulautetuilla 
järjestelmillä tutkittiin. Tarkan ja nopean lokalisaation tärkeyttä nykyisissä ja tulevissa 
sovelluksissa tarkasteltiin ja otettiin huomioon implementaatiovaiheessa.  

3D-lokalisaatiota ja pinnan rekonstruointia voidaan hyödyntää useissa käyttötapauksissa. 
Joitain yleisimpiä käyttötarkoituksia ovat robotiikka, turvallisuus ja sotilaalliset sovellukset, 
geoskannaus, ilmailuteollisuus sekä viihdeala. Viimeaikaiset edistykset laajennetun todellisuuden 
(XR, Extended Reality) sovelluksissa ja mobiililaitteiden suoritustehossa ovat kiihdyttäneet 
korkeasuorituskykyisten lokalisaatiototeutusten käyttöönottoa. 

3D-lokalisaatio pitää sisällään laitteen sijainnin ja asennon päättelemisen sekä lokaalissa 
kehyksessä verrattuna muutamaan aikaisempaan kameran kuvaan sekä globaalissa kehyksessä 
verrattuna kaikkiin aikaisempiin kameran kuviin ja rekonstruoituihin 3D-maamerkkeihin. 
Lokalisaatio-ongelman suurentaminen lisäämällä tarpeen vakaille 3D-pistepilville asettaa 
lisärajoitteita systeemille: sekä lokaalin että globaalin kameran asennon yhtäpitävyys ja tarkkuus 
kasvattaa merkitystään kamera-avaruuden 2D-kuvapisteiden trianguloiminen 3D-avaruuteen 
asettaman keiraliteettirajoituksen vuoksi. Tämän lisäksi poikkeama kameroiden asennossa saa 
aikaan ei-toivottua kohinaa pistepintaan ja aiheuttaa kumulatiivisia vääristymiä 3D-pinnan 
muodossa. 

Toteutettu 3D-lokalisaatio- ja rekonstruointijärjestelmä käyttää erilaisia SLAM (Simultaneous 
Localization and Mapping) -tekniikoita kameran lokalisointiin ja asennon havaitsemiseen sekä 
monipuolisia SfM (Structure-from-Motion) -algoritmeja todellisen maailman jäljittelemiseen 
virtuaalimaailmassa. Konsepteja reunalaskennasta ja mobiilirobotiikasta käytetään laskennan 
nopeuttamiseen ja tulosten visualisointiin. Korkealla tasolla systeemi koostuu kahdeksasta (8) 
vaiheesta: 2D-kuvapisteiden havaitseminen ja yhteensovitus, kameran lokalisaatio, 3D-
maamerkkien triangulointi, langaton pistepilven lähetys, pistepilvien rakentaminen, Poisson 3D-
pinnan rekonstruointi ja 3D-visualisointi. 

Käytettyjä algoritmeja tutkittiin yksityiskohtaisesti ja niitä käsiteltiin sulautettujen järjestelmien 
ja muiden tehorajoitettujen laitteiden näkökulmasta. Tarkoituksenmukaisia optimointeja käytetään 
asiaankuuluvasti, ja systeemin suorituskykyä erinäisissä tilanteissa kvantifioidaan erilaisia 
suorituskykymittareita käyttäen. 

Systeemin näytetään olevaan käyttökelpoinen oikean maailman sovelluksissa ja saatuja 
rekonstruointituloksia verrataan uusimpiin tekniikoihin. Systeemi on jaettu GitHubissa avoimena 
lähdekoodina MIT-lisenssillä.  

 
 
Avainsanat Simultaneous Localization and Mapping, Structure-from-Motion, Sulautetut 
Järjestelmät 
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1. INTRODUCTION 

The problem of accurate, robust, affordable, and scalable localization in the realm of 

robotics and computer vision has been intensely researched since the late 1980s [1]. 

Various sensor fusion schemes [2] utilizing IMUs (Inertial Measurement Units), LiDARs 

(Light Detection and Ranging), multispectral cameras, and other sensors have been 

tried, but to this day, the one style of approach showing the most promise in future 

applications is solutions using pure RGB cameras and thus mimicking human 

understanding of the surrounding environment. The rise of neural networks and high-

performance image processing techniques has accelerated the adoption of camera -

based implementations even further [3] [4] [5]. 

The use cases of high-performance and accurate localization, both in the local and global 

scenario, are important in robotics applications. Other relevant use cases can be found, 

for example, in the realm of security and military applications, geo scanning, drones and 

other aviation technologies, and the entertainment sector. 

3D localization also proves its usefulness in the mobile device software industry as well. 

Augmented Reality (AR) and Extended Reality (XR) have been on the forefront of 

technological progress and computer vision advancements in recent years [6], and most 

of the solutions involved in the implementations require the user’s device to be localized 

very accurately.  

Currently, one of the main areas-of-interest for localized XR applications can be found in 

the mobile world [7]. In these applications, the importance is rarely only on the 

localization aspect of the system, but the 3D reconstruction element as well. This 

introduces a plethora of constraints on the overall system: it must not only be accurate, 

but highly performant and moreover computationally efficient. High-performance 

implementations, such as the one introduced in this Thesis, will be at the leading edge 

of the future of XR. While these solutions are certainly important in the mobile world, the 

mobile world is hardly the only trade interested in it. Various XR technologies are used 

extensively, for example, in the automotive world and industrial applications as well [8].  

Monocular RGB cameras offer some notable advancements over other sensoring 

devices, most evident being their relatively cheap price compared to the sensing density 

and the large number of opportunities in pattern detection and signal processing [9]. 
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Camera systems are also highly scalable and might not even require any new hardware, 

considering how common cameras are in modern mobile electronics.  

Merely localizing the camera in 3D space is usually not enough to be usable in more 

advanced robotics applications. For example, a dynamically updating and high-accuracy 

3D map of the environment is usually required in biped or quadrupedal robotics, where 

updating the target position of the limb accurately to match the environment is vital to 

prevent the robot from falling over or causing an unwanted accident [10].  

In recent years, the impact of cloud computing has shifted the emphasis of data 

processing to remote platforms, but with modern microprocessors the computations can 

be brough to the edge [11] or done on the embedded platform itself. On most cost-

effective and mobile platforms doing all of the processing on the same device is not 

feasible due to power limitations. Offloading parts of the non-critical processing to a 

remote machine can often be advantageous, such as reconstructing the 3D map of the 

environment. This offloading approach also shares its usefulness in swarm robotics, 

where multiple mobile robots can share the same environmental map and contribute to 

its growth and accuracy [12].  

This technical Thesis aims to explore one such hybrid implementation, in its core utilizing 

an RGB camera and a low-power embedded platform. The processing of the 3D surface 

and the visualization aspect of the system are offloaded to a remote device in order to 

increase the viability and runtime performance of the localization system. A practical 

implementation was chosen as the central topic due to its inherent importance in the 

ever-evolving and advancing technological world, particularly in the realm of mobile 

robotics and modern computer vision applications. The implementation introduced in this 

Thesis explores the difficulties and real-world optimizations used in the state-of-the-art 

academic and commercial applications.  

The remainder of this Thesis is structured as follows. Section 2 investigates the previous 

most prominent academic and commercial solutions involving camera localization and 

3D surface reconstruction. Section 3 provides an overview of the various algorithms used 

in 3D localization in general and in Section 4, where a practical implementation of 

embedded localization is detailed. Section 5 outlines the performance and reconstruction 

quality evaluations, and Section 6 gives the conclusions and explores grounds for further 

research.  
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2. RELATED WORK 

Simultaneous localization and mapping (SLAM) techniques, alongside with structure-

from-motion (SfM) methods are well known concepts and have been previously studied 

in depth. Arguably, between surface reconstruction and 3D localization, the more 

important and demanding obstacle is the accurate localization of the camera. With 

current techniques, it is easier to infer the 3D surface when the transformations of the 

cameras are known due to the inherent nature of 3D projection and triangulation. 

Additionally, as the subject of this Thesis is more closely related to 3D SLAM, various 

SLAM frameworks are of particular interest.  

This chapter aims to examine earlier implementations and discuss their viability on low-

power platforms and in real-time situations. Both open-source and closed-source 

solutions are explored in this chapter.  

2.1 SLAM Solutions 

The main objective of SLAM algorithms is to accurately localize the device-of-interest, 

both locally in the immediate vicinity of the device, and globally in a larger scale, beyond 

the field-of-view of the device [13]. In practice, this means the device should be able to 

localize itself in relation to a couple of previous frames and in relation to all of the previous 

frames. These two concepts are not necessarily mutually inclusive, as the localization 

error in relation to the previous frame can usually be considered negligible, if not zero, 

but without some form of global optimization, the position error often accumulates to a 

noticeable degree. For example, in the case of large-scale 3D localization, this can often 

be observed by the position error between the first and last camera frames to have the 

magnitude of multiple meters.  

Some of the most prominent open-source SLAM frameworks are LSD-SLAM [14], 

Kimera [15], and various versions of ORB-SLAM, such as the most recent one at the 

time of writing, ORB-SLAM3 [16]. These are solutions designed mostly for high-power 

applications, where the available processing power is virtually not limited in comparison 

to embedded microprocessors. For example, ORB-SLAM3 recommends on their GitHub 

page [17] at least an intel core i7 -series processor for real-time applications. This is 
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several orders of magnitude more demanding for what is feasible on an affordable 

embedded device. 

2.2 Structure-from-Motion Solutions 

The state-of-the-art SfM solutions often have the aim of producing extremely high-fidelity 

and textured 3D models. This apparent scope is often more restricting than the definition 

of structure-from-motion would require: “The question addressed is how the 3-D structure 

and motion of objects can be inferred from the 2-D transformations of their projected 

images when no 3-D information is conveyed by the individual projections” [18], and 

indeed SLAM frameworks could be classified under the term SfM. Nevertheless, SfM is 

nowadays often associated with primarily recovering the 3D data of a scene, even if the 

more correct interpretation would be to classify SfM as a toolbox of various algorithms 

and implementations. 

Most of the high-fidelity SfM solutions fall under the umbrella term photogrammetry, the 

most prevalent and full-featured open-source solution being AliceVision MeshRoom [19]. 

One of the oldest and best-known closed-source solutions is Agisoft MetaShape [20].  

Photogrammetry software do not run in real-time, often requiring hours or days to 

reconstruct even smaller scenes. Real-time SfM software is often associated with either 

augmented reality or advanced robotics applications [21]. Dynamic pathfinding in 

robotics and real-time 3D scanning of environments in AR applications are common 

examples of such. In current applications, the world-under-capture is often be assumed 

to be static or rigid, and the camera is the only object in motion. 

2.3 RGB-D Based Approaches 

The quality of the created 3D mesh and the reconstruction speed of the pipeline can be 

significantly improved by introducing dedicated depth data as additional input to the 

system using RGB-D (Red Green Blue - Depth) images. With the use of a stereo camera 

pair, or a purpose-made depth camera, depth data could be acquired easily and 

efficiently. While the current implementation introduced in this Thesis will not make use 

of RGB-D images, it may prove to be an interesting ground for future research. It is also 

worth noting, most of RGB-D solutions also make use of the same approaches as 

traditional SLAM and SfM applications, thus making them relevant in this scope [22].  

Most of the solutions utilizing various depth sensing techniques are closed source or 

commercial solutions. These commonly use custom and expensive 3D scanners 

alongside with tailored software. For example, [23] and [24] are such solutions. The 
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open-source space of 3D reconstruction is decidedly lacking, there being only a handful 

of worthy implementations. The primary open-source implementations utilizing RGB-D 

images are: VoxelHashing [25], BundleFusion [26], and Open3DGen [27].  
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3. ALGORITHM DESCRIPTIONS 

There exist many different approaches to camera localization, depth estimation and 3D 

surface reconstruction. The use of an embedded platform constraints the usable 

algorithms considerably. As is often the case, elevated robustness and accuracy 

generally require more processing power. This means, some compromises must be 

made. Mainly, algorithms with low memory profile and good single-threaded execution 

speed should be emphasized. Embedded devices rarely are fortunate enough to have 

multiple cores. This proves to be problematic, as most of the algorithms introduced in 

this Thesis, such as feature detection, feature matching, and feature triangulation, are 

able to make heavy use of multi-core processors.  

This chapter will explore in detail the various algorithms used in the practical 

implementation of this Thesis. Particular care is given to consideration of execution 

performance, whenever applicable.  

3.1 Camera Calibration 

Camera calibration comprises of obtaining the camera-specific intrinsic parameters, also 

known as the camera matrix, and the distortion coefficients. To simplify the math 

involved, the pinhole camera model [28] is used in the calculations. This is not realistic 

with real-world modern cameras, which use lenses and cause barrel or pincushion 

distortion, thus creating the need for undistorting the captured image. The result of 

undistortion is an image or set of 2D points, which satisfies the perspective camera 

model 

𝒖 = 𝑷𝒙 , (1) 

where the image 2D point is 𝒖, the camera projection matrix is 𝑷 and the 3D world point 

is 𝒙. The projection matrix 𝑷 is defined as 

𝑷 = 𝒌[𝑹|𝒕] , (2) 

where 𝑹 is the camera rotation matrix and 𝒕 is the camera’s translation vector [29]. 

The most common undistortion technique involves the use of either 5 or 7 undistortion 

coefficients, using only 5 𝑘𝑛 radial distortion parameters or utilizing the additional  2 𝑝𝑛 
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tangential distortion parameters as well. In this case, only the necessary radial distortion 

coefficients will be considered. The distortion coefficient vector is in the form of 

𝒅 = [𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4]. (3) 

The camera matrix is defined as 𝒌, where 𝑓𝑥 and 𝑓𝑦 are the camera’s horizontal and 

vertical focal lengths and 𝑐𝑥 and 𝑐𝑦 are the image’s principal point, which usually 

coincides with the image’s center point. The camera intrinsic matrix [29] is defined as 

𝒌 = 
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

 . (4) 

One of the most common calibration algorithms is the one introduced by Zhegyou Zhang 

[30], which is also used in the implementation introduced in this Thesis, indirectly by the 

use of OpenCV [31]. This method requires a checkerboard image, usually printed on an 

A4 piece of paper, as a calibration reference. The checkerboard corners are detected, 

and the known relationship between the corners in 3D space is used to parametrize the 

2D-3D point correspondences. The end products are the camera calibration parameters: 

the distortion coefficients and the intrinsic matrix [30].  

To save processing time, the entire RGB images are usually not undistorted. Instead, 

the undistortion can only be done on the detected 2D feature points. The benefit of this 

is evident, when the number of points-of-interest are considered in each case: a 

1920 × 1080 RGB image has 2073600 points to undistort, whereas the length of feature 

point vectors is usually measured in the thousands. The latter is multiple orders of 

magnitude computationally lighter.  

3.2 2D Image Feature Detection 

All SLAM and SfM applications fundamentally rely on the ability to detect robust and 

consistent features in images. These image features must be reproducible, temporally 

and spatially consistent, and efficient to compute. The feature detection algorithm must 

also be able to individually describe every feature to a distinctive-enough degree, where 

the same real-world feature can be detected and distinguished when viewed through 

another viewpoint, even if the camera view is rotated and thus the orientation of the 

feature is not consistent throughout the frames [32].  

There are two major types of feature descriptors: binary descriptors and floating-point 

descriptors. In general, floating-point descriptors, such as SIFT [33] and SURF [34] are 

slower and not as memory efficient but considerably more robust and temporally more 
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stable. For years, SIFT and SURF were the de-facto standard in many high-quality 

computer vision and SfM applications [35].  

In modern solutions, binary feature descriptors, such as AKAZE [36] (Accelerated KAZE) 

and ORB [37] (Oriented FAST (Features from Accelerated Segment Test) and Rotated 

BRIEF (Binary Robust Independent Elementary Features)), have seen an increase in 

their use due to the advent of more intelligent matching and filtering algorithms.  

Binary features are uniquely suited for use in low-power platforms, where processing 

power and the amount of available system memory is limited. The ORB feature detection 

algorithm was chosen to be used in this implementation due to its superior speed and 

memory requirements.  

The ORB feature detection algorithm is one of the fastest and more robust detection 

algorithms used [37]. It is scale and rotation invariant, making it optimal for camera 

localization. By the nature of ORB being a binary descriptor, it is also memory efficient 

[38]. This is more important on an embedded device, where the amount of system 

memory is limited to begin with.  

3.3 2D Feature Matching and Filtering 

Feature matching algorithms find correspondences between two sets of feature 

descriptors. These algorithms compare the descriptors, and using various metrics try to 

find pairs of features that are the most similar [39].  

The brute force matcher [40] is a greedy algorithm, which compares all pairs of individual 

features. While this may result in more matches, it is also computationally heavier and 

more prone to false positives. A common way of improving the quality of the matches is 

to cross-check the feature correspondences and verify, that both features match each 

other in their opposite feature sets.  

The FLANN (Fast Library for Approximate Nearest Neighbors) feature matching 

algorithm [41] finds the approximate nearest neighbor feature matches using a k-d tree 

[42]. Compared to the brute force matcher, the results are not as accurate, but 

considerably faster with large datasets. The effect of jitter and inconsistencies in the 

feature matches is mitigated to a degree with the use of RANSAC (Random Sample 

Consensus) [43] in later stages of the localization pipeline. The performance and 

accuracy of the FLANN matcher can be changed easily with the multi-probe locality-

sensitive hashing (LSH) index [44]. A higher index value will yield better and more robust 
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results with the expense of drastically reduced performance. The performance 

implications of FLANN and brute force matching is discussed in more detail in chapter 5. 

The feature matching algorithms are not perfect, and thus require the feature matches 

to be filtered for outliers. These outliers most commonly exhibit themselves as drastically 

invalid feature matches, as shown in Figure 1. Experimentally, FLANN matchers are 

usually slightly more robust in automatically only keeping the inlier feature matches, but 

often still require additional filtering due to the approximate nature of the algorithm.  

In nearly all feature matching cases, a distance ratio check is done on the matched 

features. This filters out the majority of bad matches, but still leaves some for further 

filtering. For floating point descriptors, the distance metric often used is the Euclidean 

distance, and for binary descriptors Hamming distance is used. Only the feature matches 

with the distance less than a pre-specified threshold are kept.  

In real-time SLAM applications, it can often be assumed the movement between 

subsequent frames is very small, and thus the coordinates of the matched features 

should lie very close to each other in image coordinates. This special case allows for the 

use of geometric filtering. For example, the distance between the matched feature 

coordinates can be calculated using Pythagoras theorem and matches which have a 

distance beyond a specified threshold can be removed.  

Another form of geometric filtering that can be used in this special case is homographic 

filtering. A homography matrix between the two frames can be computed from the feature 

points of the frames. The homography algorithm often makes use of RANSAC, thus 

mitigating the effect of outliers. After acquiring the homography matrix, the feature points 

of the first frame can be transformed into the space of the second frame. In the ideal 

case, the two sets of points are now identical. In the real world, these two sets of points 

are now very close to each other. By again specifying a threshold, these pointsets can 

be compared, and only points within the specified Euclidean distance are kept. This form 

of filtering is by far the more robust between the alternatives, but comes with the 

disadvantage of filtering out points, which do not fulfill the homography constraint. In 

 
Figure 1 – Feature matches between two images visualized. (a) Invalid matches. (b) 

Good quality matches. 
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practice, this means points that do not lie on a plane are removed. In urban 

environments, where flat surfaces are common, homography filtering often yields good 

enough results. The implementation for filtering feature matches with the homography 

matrix used in this Thesis, which extends on top of OpenCV [31], is shown in Code 1. 

[45]. 

  

std::vector<std::pair<uint32_t, uint32_t>> feature_matches; 

std::vector<cv::Point2f> feature_points_1, feature_points_2; 

/** ... */ 

 

// compute the homography matrix 

const cv::Mat homography = findHomography(feature_points_1, 

    feature_points_2,  cv::RANSAC, HOMOGRAPHY_RANSAC_THRESHOLD); 

 

// create a vector to hold the good matches 

std::vector<std::pair<uint32_t, uint32_t>> good_matches; 

 

// loop through the feature matches and check for homography constraint 

for (size_t ii = 0; ii < feature_matches.size(); ii++) 

{ 

    // transform the 1st point to the space of the 2nd frame 

    cv::Mat col = cv::Mat::ones(3, 1, CV_64F); 

    col.at<double>(0) = feature_points_1[ii].x; 

    col.at<double>(1) = feature_points_1[ii].y; 

    col = homography * col; 

    // homogeneous coordinate transform 

    col /= col.at<double>(2); 

 

    // calculate the Euclidean distance between the points 

    const double dist =  

        sqrt(pow(col.at<double>(0) - feature_points_2[ii].x, 2) 

        + pow(col.at<double>(1) - feature_points_2[ii].y, 2)); 

 

    // check for distance threshold 

    if (dist < HOMOGRAPHY_FILTER_MAX_DIST) 

        good_matches.push_back(matches[ii]); 

}  
 

Code 1 – Feature match homography filtering, as taken from the code presented in 
this Thesis. 
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3.4 Feature Triangulation 

The main method for triangulating 3D points from 2D correspondences and the 

respective camera projection matrices uses DLT (direct linear transformation) [46] and 

SVD (singular value decomposition) [47]. This triangulation approach is resilient against 

noise in the 2D position of the feature points and extends efficiently into multiview cases, 

where more than two feature correspondences are used. Augmenting the triangulation 

with additional camera viewpoints reduces the effect of jitter or inaccuracies caused by 

noise in the 2D feature positions while only being marginally slower, compared to only 

using two viewpoints. The DLT algorithm finds the least squares -optimal 3D point and 

minimizes the reprojection error [48]. 

According to the perspective camera model, the relationship of a 3D point 𝒙 in world-

space coordinates and its 2D projection in camera-space coordinates 𝒖 is  

𝒖 = 𝑷𝒙. (5) 

Let the same 3D point 𝒙 be  

𝒖′ = 𝑷′𝒙 (6) 

in the coordinates frame of another camera. These equations can be represented as  

𝒖 × 𝑷𝒙 = 0, (7) 

which can be expanded to 

[

𝑢𝑥

𝑢𝑦

1
] × [

𝒑𝟏𝑻

𝒑𝟐𝑻

𝒑𝟑𝑻

] 𝒙 = 0. (8) 

To recover the 3D point 𝒙, the equations representing the two different views can be 

combined into the general form of  

𝑨𝒙 = 0, (9) 

where, in the case of two views, 𝑨 is represented as 

𝑨 =

[
 
 
 
 
𝑢𝑥𝒑

𝟑𝑻 − 𝒑𝟏𝑻

𝑢𝑦𝒑𝟑𝑻 − 𝒑𝟐𝑻

𝑢𝑥
′ 𝒑′𝟑𝑻

− 𝒑′𝟏𝑻

𝑢𝑦
′ 𝒑′𝟑𝑻 − 𝒑′𝟐𝑻

]
 
 
 
 

. (10) 

The result is a homogeneous system of linear equations, which can be solved with 

singular value decomposition [48]. The code which implements this functionality can be 

seen in Code 2. This code is also capable of triangulating multiview features from 

different camera viewpoints, although it is worth noting this degrades the SVD 
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performance drastically. In most cases, the result of two-view triangulation is robust 

enough to be considered adequate.  

3.5 Essential Matrix Decomposition 

By decomposing the essential matrix [49], the rotation and relative translation between 

two sets of feature correspondences can be recovered by using the properties of epipolar 

geometry [50]. The translation between the frames is of unit length and merely indicates 

the direction of the movement.  

The essential matrix is formulated from the translation vector t and the rotation matrix R 

as such:  

𝐄 = 𝐑 ×  𝐭 (11) 

In this case, the stated problem is the inverse: the translation and rotation of the camera 

are unknown, but it is generally possible to obtain the essential matrix from only the 

feature correspondences. Common algorithms for achieving this are the five-point 

Eigen::Vector3d triangulate_multiview( 

    const std::vector<Eigen::Vector2d>& feature_points, 

    const std::vector<Mat34>& projection_matrices) 

{ 

    // create the A matrix used in solving the SVD 

    Eigen::Matrix4d A = Eigen::Matrix4d::Zero(); 

 

    // loop through the feature points, and add them to the A -matrix 

    for (size_t ii = 0; ii < feature_points.size(); ii++) 

    { 

        const Vector3d point = feature_points[ii].homogeneous().normalized(); 

        const Mat34 term = 

            projection_matrices[ii] - point * point.transpose() 

            * projection_matrices[ii]; 

 

        A += term.transpose() * term; 

    } 

 

    Eigen::SelfAdjointEigenSolver<Eigen::Matrix4d> eigen_solver(A); 

 

    // acquire the eigen vectors and take the first one, which most closely 

    // resembles the true-to-life 3D point, return the triangulated 3D point 

    return eigen_solver.eigenvectors().col(0).hnormalized(); 

}  
 

Code 2 – The code implementation of the triangulation algorithm used in this Thesis. 

 
 
 
 
 
 



13 
 

algorithm [51], which is also used in OpenCV, or the seven-point algorithm [52]. While 

there exist other methods as well, these are one of the more usual ones. 

After obtaining the essential matrix, it must be decomposed, and the relative pose must 

be extracted from it. This is done using singular value decomposition. The 

implementation in this Thesis uses the solution given by OpenCV. After decomposing 

the essential matrix, the result is four possible poses, of which only one fulfills the 

cheirality constraint, i.e., the pose results in positive and non-infinite triangulation. These 

four cases must be handled individually, and the solution which results in front-side 

triangulation is picked.  

The unit-length translation -characteristic makes essential matrix decomposition only 

suitable for inferring the initial camera conditions of the first two frames in the system. 

Without supplementary sensor data, such as accelerometer data acquired from an IMU, 

or some other method for setting the scale, the first two frames must be used to set to 

unit scaling. While there are intelligent ways to infer realistic scaling from a set of camera 

views, for the sake of simplicity those will not be considered.  

3.6 Perspective-n-Point 

For the consecutive frames after the first two, the PnP (Perspective-n-Point) algorithm 

[53] is used to recover the pose of the camera. There are multiple different 

implementations of the basic PnP algorithm, the one preferred in modern SfM and 

multiview geometry solutions is the Efficient PnP (E-PnP) [54] algorithm. By design, the 

E-PnP algorithm has the complexity of O(n), making it usable on low-power platforms 

and real-time applications.  

Most PnP algorithms are not inherently robust when given high-noise feature points or 

false feature correspondences as input. Thus, RANSAC is often used in conjunction with 

various feature filtering mechanisms to reduce the effect of outliers and produce good 

quality camera poses. 

3.7 Loop Closure and Bundle Adjustment 

When RGB cameras are used, it is often necessary to solve for loop closure when robust 

global localization is required. For example, in the case of SfM solutions, non-rigid space 

deformation [55] is a valid method of optimizing the camera locations and the generated 

3D map of the world. Traditionally with RGB SLAM, gradient decent and non-linear 

minimization has been used, in the form of bundle adjustment [56]. While accurate, 

bundle adjustment is also extremely slow and mostly unusable if the number of points is 
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large. While there have been faster and more optimized algorithms, such as LDSO [57] 

(Direct Sparse Odometry with Loop Closure), it is not realistically possible to use in real-

time and low-power applications.  

In the case of the solution introduced in this Thesis, loop closure and bundle adjustment 

are skipped for the sake of simplicity and to save processing power. It is also worth 

noting, the cumulative error can rarely develop to unmanageable levels when the 

environment is small, for example a small room, and the old 3D key points can be reused.  

3.8 Poisson Surface Reconstruction 

The Poisson surface reconstruction algorithm [58] generates smooth and watertight 3D 

surfaces from discrete point clouds. The Poisson surface reconstruction algorithm 

computes an approximation of the surface. The accuracy to which the surface is 

computed can be set parametrically. The Poisson surface algorithm uses an octree for 

capturing the 3D detail.  

The Poisson surface reconstruction algorithm was chosen over the alternatives, such as 

the ball-pivoting algorithm [59], because it generates watertight and envelope 3D 

surfaces. It also produces exemplary results with sparse input point clouds. Many of the 

alternatives require a uniform point surface in order to produce adequate results. The 

implementation of the Poisson algorithm was provided by the intel Open3D library [60]. 
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4. IMPLEMENTATION 

The embedded development platform used in the implementation is the BeagleBone 

Pocket Beagle [61], utilizing an Octavo Systems OSD3358-SM SoC (system on a chip) 

with a 1 GHz ARM Cortex-A8 high-power core, an ARM Cortex-M3 low-power core and 

512 MB of RAM. Wi-Fi connectivity is added to the system with a USB add-on. Similarly, 

a USB camera is used for the real-time image acquisition. The camera used is the 

Arducam IMX477 12MP “Raspberry Pi HQ Camera” with an additional USB conversion 

board attached [62]. The camera is used with the resolution of 1280 × 720 and 

theoretical framerate of 100 𝑓𝑝𝑠. The experimental setup is shown in Figure 2. 

The second principal part of the system is the high-power remote device, which is used 

for point cloud structuration, 3D-surface reconstruction and all visualization functionality. 

In the case of all results demonstrated in this Thesis, the remote device utilizes an AMD 

Ryzen 5900X processor with 64 GB of RAM. The code for this project can be found under 

the MIT open-source license at github.com/teo3n/BScEmbeddedLocalization. 

  

 
Figure 2 –The embedded platform with a USB hub, the camera, a WiFi module, and 

a battery pack connected. 
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4.1 Overview 

On a high level, the architecture of the entire system can be divided into three main 

components: the localization component, the point cloud stream component, and the 

visualization component. From these, only the localization component is mandatory for 

the functioning of the system. The overview of the system architecture can be seen in 

Figure 3. The division of the different processing parts into multiple platforms was 

mandatory, in order to achieve reasonable performance on the embedded system. 

In addition to image acquisition, feature detection, matching, camera localization, and 

landmark triangulation is all done on the embedded system. Separating these into further 

parts and offloading the processing to the remote platform does not make sense from a 

performance perspective, as the camera localization and landmark triangulation steps 

use an insignificant amount of processing power. Additionally, offloading feature 

detection and matching to the remote device would require large amounts of data to be 

transmitted, if the image data is not compressed. In the case good-quality compressions 

would be used, the performance saved in feature detection and matching would be lost 

on the compression part, making the tradeoff often not feasible.  

4.2 Image Acquisition 

The first algorithmic stage of the reconstruction pipeline is the image acquisition stage. 

In Figure 4, a set of camera frames from the evaluation dataset are visualized. The 

testing and evaluation dataset is 248 frames long, and the frames have the resolution of 

 
Figure 3 – A high-level overview of the architecture of the system 
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1280 × 720. The dataset is captured outdoors in a setting, where there are a lot of good-

quality feature points to track.   

When run in real-time, the system uses the connected RGB camera to acquire the 

frames. While the implemented system theoretically supports any UVC (USB Video 

Class) compatible camera, there are some important considerations that must be taken 

into account. For example, a traditional low-cost webcam with relatively low framerate 

(15 − 30 frames-per-second) often exhibits large amounts of motion blur, making the 

frames acquired often useless. Instead, a high-quality and high-performance camera 

was used in a high framerate mode, even though the system is not capable of fully 

utilizing the hardware available.  

4.3 Camera Localization 

The algorithm used in localizing the camera is dependent on how many frames are 

already localized. For the first two frames, the algorithm used decomposes the essential 

matrix, and for the rest of the frames PnP is used. On the grounds of reducing difficult to 

reproduce issues, selecting the first two frames is done manually. In practice, this means 

the user of the system must specify two frames, which are far enough apart from each 

other to achieve good triangulation, but still close enough to find a large number of robust 

feature matches. There are automated algorithms to evaluate the quality of the initial 

 
Figure 4 – A subset from the dataset used in the evaluation of the implementation. 
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condition [63], but due to runtime performance constraints, these are not considered in 

this Thesis.  

After the new frame has been localized, new landmarks can be created from the feature 

correspondences between the two most recent frames. It is important to note, the 

transformation between the two most recent frames is not guaranteed to be large enough 

for a robust triangulation. Instead, the detected 2D feature is added to a track of features, 

and the track is triangulated only after enough movement between the frames has been 

detected. This track has the additional benefit of resulting in more accurate 3D 

triangulations, due to additional data points through the use of multiview triangulation.  

The camera projection matrix is defined as 

𝑷 = 𝒌 [𝑹𝐓|(−𝑹𝐓𝒕)], (12) 

which differs slightly from the equation given in chapter 3.1. This is due to the difference 

in the global-local reference frame. A track of localized cameras with the length of 200 

frames, along with a triangulated point cloud, is shown in Figure 5. The choosing of the 

first two frames for the initial localization using essential matrix decomposition can clearly 

be seen in the top left corner of the figure.  

4.4 Dense 3D Point Data Generation 

The point cloud generated by triangulating heavily filtered feature matches is sparse and 

only contains points from regions rich with distinctive feature areas. In applications, 

where high-quality 3D surface is not required, this may be enough, but in most other 

cases a denser cloud is necessary. Without the use dedicated depth data, the easiest 

 
Figure 5 – The localized camera track and the reconstructed point cloud. 
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method for obtaining less-sparse 3D data is by the use of dense depth projection [64]. 

Effectively, this is dense feature triangulation done on the entire image. 

The dense feature triangulation is a performance intensive process and prone to noise 

artifacting due to how disparity maps are calculated. The non-stereo configuration of the 

cameras in world space reduces the feasibility of this even further. In practice, this means 

the camera frames are not located parallel to each other and with a known distance 

between them. More advanced and robust methods are not doable on low-power 

platforms due to their processing and memory requirements. 

A more feasible approach is to still triangulate feature matches, but more densely and 

without extensive filtering. As these points are not used in localization, the accuracy and 

robustness are not critical. In essence, the workflow is the same as in normal feature 

matching and triangulation, but in this case the maximum number of feature matches is 

increased. This induces a significant loss of performance, and is thus done rarely, for 

example, only every 20 − 40 frames (frame delta). It is also worth noting, dispatching this 

dense projection every frame would not improve the quality or density of the final point 

cloud significantly due to the amount of overlap in the consequent frames, and thus, the 

triangulated points of consequent frames. The difference in point contributions is shown 

in Figure 6 with the feature projection densities of 𝑛 = 0, 𝑛 = 10000 and 𝑛 = 100000 

respectively.  

4.5 Wireless 3D Data Stream 

The embedded platform is not powerful enough to generate high-quality 3D meshes in 

real-time, in addition to handling the camera localization. This introduces the need to 

offload some key processing to a remote platform, in this case a computer in the same 

local network. The data is transmitted wirelessly over Wi-Fi using WebSockets and 

TCP/IP utilizing the Boost Asio C++ library [65]. This approach makes it possible to use 

 
Figure 6 – Comparisons of different sparsity point clouds. (a) Sparse filtered feature 

matches (n=1500). (b) Dense points with frame delta of 30 and n=10000. (c) Dense 
points with frame delta of 30 and n=100000. 
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the remote system even from far away, given the embedded platform has an active 

internet connection. 

To faithfully reproduce the 3D geometry, the camera locations and the triangulated points 

are transferred uncompressed. With higher density points, or if more processing power 

was available, the point clouds could be compressed or downsampled to reduce the 

required network bandwidth. In this case, it is not mandatory due to the low camera 

localization frequency and thus the low wireless data throughput.  

4.6 3D Reconstruction 

The 3D mesh reconstruction phase can be divided into two stages: point cloud 

structuration from the wireless data stream and 3D mesh reconstruction using the 

Poisson surface algorithm. The point cloud structuration step synchronizes a localized 

camera to the corresponding point stream.  

From this restructured point cloud, a 3D mesh is generated using the Poisson algorithm. 

Due to the sparse nature of the point cloud, the mesh reconstruction uses a low value 

for the k-d octree. The reconstructed mesh is therefore not of high quality, but easily 

usable in mobile robotics applications.  

Figure 7 shows the reconstructed mesh, along with a camera track. The mesh uses 

vertex colors for additional clarity. As can be seen from the figure, the mesh has a large 

“envelope” around it. This is a distinct characteristic of the Poisson surface reconstruction 

algorithm and produces advantageous results with the input point cloud at hand.  

 
Figure 7 – The reconstructed 3D mesh with vertex colors, generated from the com-

bination of the sparse feature-match point cloud and the dense projection cloud. 
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4.7 Remote Visualization 

The final reconstructed 3D mesh along with the camera track is visualized on the remote 

device. A view from the remote visualizer can be seen in Figure 7. As with the rest of the 

system, the visualizer is written in modern C++.  

In the same way as the point cloud streaming component running on the embedded 

device, the receiver uses the Boost Asio library for all networking functionality. The 3D 

rendering is done using the intel Open3D library [60]. The data is sent as a continuous 

floating-point buffer and the streaming -side implementation is shown in Code 3.  

const std::vector<Eigen::Vector3d>& points, colors; 

const std::shared_ptr<Frame> frame; 

/* ... */ 

 

// stream buffer: frame pos + frame rot (mat3x3) + pts len + colors len 

std::vector<float> data_buffer; 

data_buffer.reserve(3 + 3 * 3 + points.size() * 3 + colors.size() * 3); 

 

// loop through the 3D points and add their xyz values to the buffer 

for (int ii = 0; ii < points.size(); ii++) 

    for (int kk = 0; kk < 3; kk++) 

        data_buffer.push_back(points[ii](kk)); 

// loop through the point colors and add their rgb values to the buffer 

for (int ii = 0; ii < colors.size(); ii++) 

    for (int kk = 0; kk < 3; kk++) 

        data_buffer.push_back(colors[ii](kk)); 

         

// add the camera frame position (xyz) values to the buffer 

for (int ii = 0; ii < 3; ii++) 

    data_buffer.push_back(frame->position(ii)); 

// add the camera frame rotation matrix (3x3) to the buffer 

for (int xx = 0; xx < 3; xx++) 

    for (int yy = 0; yy < 3; yy++) 

        data_buffer.push_back(frame->rotation(xx, yy)); 

 

auto send_buffer = boost::asio::buffer(data_buffer); 

const uint32_t send_bytes = send_buffer.size(); 

 

// transmit a 4 byte stream containing the length of the data stream 

boost::asio::write(*stream_handle.stream_socket,  

    boost::asio::buffer({ send_bytes }), boost::asio::transfer_exactly(4)); 

// transmit the actual data 

boost::asio::write(*stream_handle.stream_socket, send_buffer, 

    boost::asio::transfer_exactly(send_buffer.size()));  
 

Code 3 – The code used in the implementation of the 3D data stream. 
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5. PERFORMANCE AND QUALITY ANALYSIS 

Evaluating the performance of the system is a vital part in classifying its capabilities and 

use cases. The main three types of performance metrics used in appraising the 

implementation are: runtime performance, localization accuracy, and reconstruction 

quality.  

The aims of this chapter are to gauge the viability of the implemented system in real-

world applications and to evaluate the reconstruction quality of the system. The rest of 

this chapter is as follows. In chapter 5.1 the runtime performance with different quality 

settings of the system is evaluated and compared against a high-power computer. In 

chapter 5.2 the camera localization accuracy of the system is evaluated approximately. 

In chapter 5.3 the quality of the 3D point clouds is compared against other state-of-the-

art solutions. 

5.1 Performance Evaluation 

The runtime performance of the system was evaluated both on the BeagleBone 

embedded platform and on a high-performance desktop computer with an AMD Ryzen 

5900X 12 core processor. The system reconstructed a scene with the length of 180 

frames and the frame times were recorded. The variables changed between runs were 

the number of detected ORB features, either 3500 or 10000, the feature matching 

algorithm, either FLANN or a brute force matcher, and the FLANN multi probe level -

variable, either 2, 1 or 0. The average frame times for all runs can be seen in . The best 

tradeoff between reconstruction quality and execution performance is to use 3500 ORB 

features and the FLANN feature matcher with multi probe level (MPL) of 1. 

 
Figure 8 – Performance comparisons between the embedded platform and a high-

end desktop computer. The number of detected ORB features, the matching algorithm 
and the FLANN MPL were varied. 
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As can be seen from Figure 8, the system cannot be considered to be “real-time” on the 

embedded device, as real-time speed would require a framerate of 24 𝑓𝑝𝑠  or 30 𝑓𝑝𝑠, 

which would correspond to 42 ms or 33 ms frame times respectively [66]. This is not 

necessarily to the detriment of the system, as 1.4 𝑓𝑝𝑠 when using FLANN with MPL of 1 

is still very good, considering the severe limitations of the platform. While this 

performance is not enough in XR applications, in robotics and mapping use cases it 

would nevertheless often be usable. With a more modern SoC, such as a Snapdragon 

865 mobile SoC, achieving real-time performance would be possible, as can be seen 

from the vast number of real-time computer vision and augmented reality applications 

that exist in the current mobile device ecosystem. The system achieved very respectable 

performance when run on the high-end desktop processor.  

In Figure 9 the embedded localization per-stage frame times are shown. The metrics 

were captured with the number of detected features being 𝑛 = 3500 and by using the 

FLANN feature matcher with multi probe level 𝑀𝑃𝐿 = 1. The creation of new landmarks 

and dense point projections (𝑛 = 10000) were not done every frame. Instead, new 

landmark creation was run once every eight (8) frames and dense point projection was 

done twice throughout the entire sequence of 180 frames. The feature detection phase 

contributes by far the most to the average frame time. Exploring possible optimizations 

for the ORB algorithm is not within the scope of this Thesis.  

  

 
Figure 9 – The per-stage average frame times (n=3500, FLANN, MPL = 1). Note, 

"Create New Landmarks" and "Project Dense Points" were not done every frame. 
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5.2 Localization Accuracy Evaluation 

Due to the inherent flaw of not implementing bundle adjustment, the resulting camera 

poses will always drift over time. As it stands, the resulting camera track is reasonably 

accurate in the immediate vicinity of the area-of-interest, i.e., in the local space. The 

cumulative positional error caused by the spatial drift makes this system more difficult to 

use in large-scale applications, or in applications, where absolute accuracy is required.  

The implemented system is still not without its uses. It is still highly usable in small-scale 

positional applications, for example in the case of in aforementioned in Chapter 1 

quadrupedal robotics feet positioning, or in the case of applications, where the device 

does not need to leave the area-of-interest.  

5.3 3D Data Quality Analysis 

Evaluating the 3D reconstruction quality of the system is decidedly difficult due to the 

sparsity of the point data. Instead, the 3D point clouds were compared against two 

different style of 3D reconstruction software: a high-quality photogrammetry software 

called AliceVision MeshRoom [19] and a state-of-the-art and real-time RGB-D 3D 

reconstruction software Open3DGen [27]. All solutions used the same set of RGB 

images, with Open3DGen receiving the additional depth data as its input. As 

Open3DGen uses true-to-life dense depth data, its output can be assumed to be as close 

to reality as possible. 

As can be seen from the comparisons in Figure 10, the surface accuracy of the Thesis 

implementation is good. It is important to note, all the results shown only contain the 

point clouds, the use of extremely dense depth data in the case of Open3DGen merely 

makes the result look like a triangle surface. The overall sparsity of the feature points to 

the side of the rock, inherent to how the ORB feature detection algorithm functions, is 

the largest difference in quality. No other evident disadvantages can be observed.  

 
Figure 10 – The quality of the system compared against state-of-the-art related work. 

(a) AliceVision MeshRoom. (b) Open3DGen. (c) Current Thesis Implementation. 
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6. CONCLUSIONS 

In this Thesis, the opportunities and use cases of accurate localization on embedded 

devices, augmented reality applications and mobile robotics were considered. 

Additionally, a system for localizing a camera in 3D space was implemented for a low-

power embedded system. The 3D localization system incorporates an almost full 

structure-from-motion pipeline and a multitude of principles from simultaneous 

localization and mapping. In addition, a remote 3D surface reconstructing and 

visualization software was created for easy evaluation of the camera track and the 

reconstructed 3D data.  

The runtime execution performance and the quality of the 3D data produced by the 

system were evaluated. When run on the embedded evaluation platform, the runtime 

performance was shown to be usable in basic robotics and mapping applications, where 

1 − 2 Hz reconstruction frequency is sufficient, and the system does not need to adhere 

to a real-time constraint. With a more modern SoC the system could be drastically more 

viable in real-world applications. Further optimizations are unlikely to improve the 

performance of the system to a noticeable degree, unless a more efficient feature 

detection algorithm is developed.  

Despite the sparsity of the reconstructed data, the accuracy of the 3D point cloud when 

reconstructed using short RGB sequences was proved to be comparable to the state-of-

the-art monocular and depth-workflow 3D reconstruction software, despite the lack of a 

separate bundle adjustment stage. The distinct lack of processing power was the main 

limiting factor in considering the density of the reconstructed point cloud, and thus the 

estimated 3D surface. 

By utilizing a dedicated RGB-D camera and by implementing bundle adjustment and loop 

closure detection the largest disadvantages in quality and accuracy of the system could 

be remedied. Implementing these may prove to be interesting grounds for future work.  
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