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ABSTRACT

Tuomas Lauttia: Adaptive Monte Carlo Localization in ROS
Bachelor’s Thesis
Tampere University
Computing and Electrical Engineering
October 2021

The purpose of this work was to gain insight into the world of robot localization and to un-
derstand the characteristics of the algorithms widely used for this task. The algorithm chosen for
inspection was the Adaptive Monte Carlo Localization (AMCL) algorithm. AMCL is one of the most
popular algorithms used for robot localization.

AMCL is a probabilistic algorithm that uses a particle filter to estimate the current location and
orientation of the robot. The algorithm starts with an initial belief of the robot’s pose’s probability
distribution, which is represented by particles that are distributed according to such belief. As the
robot moves, the particles are propagated according to the robot’s motion model. Data from the
robot’s odometry sensors and range finders are used to evaluate the particles based on how likely
it is to obtain such sensor readings at the current pose estimate. The particles are then resampled,
with the higher-ranked particles having a higher likelihood of being sampled. Eventually, the lower
likelihood particles will disappear and the algorithm will converge towards a single cluster of higher
likelihood particles. If localization is successful, this would be near the true pose of the robot.

The AMCL algorithm was tested using a randomly selected subset of the HouseExpo dataset.
The HouseExpo dataset contains 2D binary maps of indoor areas. The algorithm was tested in the
specific case of global localization, where the initial particle filter estimate is a uniform distribution
over the entire map. The tests were run using Gazebo for simulating the robot, ROS for commu-
nication and controlling the robot, and Matlab for running the AMCL algorithm and visualizing the
particle filter. The localization process was done 10 times for each map, for a maximum of 100
particle filter updates. The runs were evaluated based on whether the AMCL algorithm converged
near the true position of the robot and how many steps it took until convergence.

Overall the AMCL algorithm performed quite well, converging near the true position of the
robot 878 times out of 1000 test runs. For 53 of the 100 maps, the algorithm converged to the
correct position 10 times out of the 10 test runs. The number of rooms and number of vertices per
map doesn’t seem to significantly affect whether the algorithm converges to the correct position
or not. The test results indicate a slight increases in the average amount of steps required until
convergence as the number of rooms increase. Symmetric areas and a high amount of similar-
looking rooms seem to cause the most problems for the algorithm.

Keywords: ROS, AMCL, particle filter, robot localization
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Lokakuu 2021

Tämän työn tarkoituksena oli tutkia robotin paikannuksessa käytettyjä algoritmeja ja saada
parempaa ymmärrystä niiden ominaisuuksista. Tutkinnan alle valittu algoritmi oli Adaptive Monte
Carlo Localization (AMCL) -algoritmi, joka on yksi eniten käytetyistä algoritmeista robotin paikan-
nuksessa.

AMCL on probabilistinen algoritmi, joka käyttää partikkelisuodatinta robotin paikan ja orientaa-
tion ennustamiseen. Algoritmi alustetaan todennäköisyysjakaumalla, joka edustaa arviota robotin
asennosta. Partikkelit valitaan tästä todennäköisyysjakaumasta. Kun robotti liikkuu, partikkeleiden
sijaintia ja orientaatiota päivitetään robotin liikemallin mukaisesti. Robotin tunnistimista saatavia
mittauksia käytetään partikkelien arvottamiseen siten, että sijainnit, joista on korkeampi todennä-
köisyys saada kyseinen mittaus, saavat korkeamman arvon. Partikkelit uudelleennäytteistetään
niille laskettujen painoarvojen perusteella, jolloin korkeamman todennäköisyyden saaneet partik-
kelit pysyvät mukana ja pienemmän todennäköisyyden saaneet partikkelit kuolevat pois. Lopulta
kaikki partikkelit keskittyvät yhteen rykelmään, joka sijoittuu lähelle robotin todellista sijaintia, jos
paikannus onnistui.

AMCL -algoritmia testattiin käyttämällä HouseExpo -tietoaineistosta satunnaisesti valittuja kart-
toja. HouseExpo -tietoaineisto sisältää kaksiulotteisia binäärikarttoja sisätiloista. Algoritmia testat-
tiin globaalin paikannuksen tapauksessa, jolloin partikkelisuodatin alustetaan koko kartan laajui-
sella tasajakaumalla. Testit suoritettiin käyttämällä Gazeboa robotin simulointiin, ROS:ää kommu-
nikointiin ja robotin ohjaamiseen ja Matlabia AMCL -algoritmin ajamiseen ja partikkelisuodattimen
visualisointiin. Paikannusprosessi suoritettiin 10 kertaa per kartta niin, että partikkelisuodatinta
päivitettiin maksimissaan 100 kertaa. Testiajot arvioitiin sen perusteella, kuinka monta kertaa al-
goritmi konvergoitui kohti robotin oikeaa sijaintia ja kuinka monta partikkelisuodatinpäivitystä kon-
vergoitumiseen keskimäärin vaadittiin.

Kaikenkaikkiaan AMCL -algoritmi suoriutui testeistä melko hyvin. Yhteensä 1000:sta testiajos-
ta algoritmi konvergoitui robotin oikeaan paikkaan 878 kertaa. Yhteensä 100:sta testeissä käyte-
tyistä kartoista algoritmi konvergoitui oikeaan paikkaan 10 kertaa 10:stä 53:lla eri kartalla. Kartalla
olevien huoneiden tai kulmien määrä ei näytä vaikuttavan merkittävästi algoritmin konvergoitumi-
seen. Konvergoitumiseen vaadittavien partikkelisuodatinpäivitysten määrä näyttää nousevan hie-
man huoneiden määrän kasvaessa. Symmetriset alueet ja kartat, joissa on suuri määrä saman-
kaltaisia huoneita aiheuttavat algoritmin konvergoitumiselle suurimpia haasteita.

Avainsanat: ROS, AMCL, partikkelifiltteri, robotin paikannus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

Historically, autonomous robots have used laser or sonar-based range finders to gain

information about their surroundings. Developments in the field of machine learning over

the past years have sparked interest in utilizing vision-based information in the tasks of

path planning and localization in autonomous robots. However, due to the probabilistic

nature of neural networks, machine learning based methods can never be 100% accurate

and there is always some error and noise present in the output. We would like to find out,

how this affects the algorithms used in robot localization.

The aim of the work in this thesis is to explore the existing algorithms used in robot local-

ization and analyze how they behave in different situations and what causes difficulties

for the algorithms. The goal is to gain some understanding of how vision-based measure-

ment models could be used in the task of robot localization. In chapter 2 we will take a

look at the theory and mathematics behind robot localization, specifically the Monte Carlo

Localization algorithm, which is the algorithm that is used for all of the testing in this work.

In chapter 3 we detail the testing environment and testing methods. Chapter 4 reviews

the results of the tests. Chapter 5 is the final concluding chapter.

All of the testing in this work was done by using ROS with robot simulator models by

Gazebo [1] and maps provided by the HouseExpo dataset [2]. Matlab was used for run-

ning the localization algorithm and visualizing the progress.
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Figure 1.1. Atlas robot by Boston Dynamics jumping on an obstacle course. The Atlas
robot uses depth sensors to generate point clouds of the environment and detect its
surroundings, much like the TurtleBot used in the experiments in this thesis. Image taken
from Boston Dynamics blog post by Calvin Hennick [3].
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2. ROBOT LOCALIZATION

In this chapter, we will briefly go over some of the fundamental concepts in robot local-

ization. The aim is to provide readers with no previous knowledge of robotics a brief

introduction to the topic. The information presented in this chapter should be sufficient

to understand the fundamentals of the AMCL algorithm and the premise and results of

the tests presented in chapters 3 and 4. The concepts and algorithms presented in this

chapter are taken directly from the book Probabilistic Robotics, by Thrun, Burgard, and

Fox [4]. Probabilistic Robotics is a great source of knowledge on the subject and is highly

recommended for anyone seeking to gain further understanding. Some of the algorithms

used in ROS, including the AMCL algorithm, are also taken directly from this book.

2.1 Uncertainty in robotics

Today’s robots are increasingly moving away from highly controlled environments, such as

factory lines, into more uncontrolled and unpredictable environments, such as our homes

and public roads. This means that the ability to deal with uncertainty is a requirement

for the algorithms used in today’s robots. In the book Probabilistic Robotics, by Thrun,

Burgard, and Fox, uncertainty is said to arise from five different factors: environments,

sensors, robots, models, and computation. The ability to cope with uncertainty arising

from all of these factors is critical. This has led to the development of probabilistic algo-

rithms in robotics, one of which is the algorithm that is used in this work, Monte Carlo

localization. Probabilistic Robotics has detailed descriptions of many of the algorithms

used in robotics, including Monte Carlo localization. [5]

In probabilistic robotics, uncertainty is expressed explicitly, using the mathematics of prob-

ability theory. Instead of relying on a single "best guess" to determine the state of the

robot, probabilistic algorithms represent this information as probability distributions over

the space of all possible hypotheses. This enables them to accommodate all sources of

uncertainty in a mathematically sound way.

Consider the situation, where a robot is initialized in a random location inside a known

environment. It has an internal map of the environment, but no knowledge about its lo-

cation with respect to the environment. This particular localization problem is known as

global localization. The probabilistic paradigm represents the robot’s momentary belief
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by a probability density function over the space of all locations. The robot’s initial belief

is a uniform distribution over all locations. Now suppose the robot takes a first sensor

measurement and observes that it is next to a door. Probabilistic techniques exploit this

information to update the belief. The ‘posterior’ belief places an increased probability at

places near doors, and lower probability anywhere else. Assuming the environment has

multiple doors, the robot still does not know where it is. However, it has hypotheses that

are plausible given the sensor data. It is also possible that the robot has erroneously

sensed a door. Therefore a small, non-zero probability is placed in areas that have no

doors. The ability to maintain low-probability hypotheses is essential for attaining ro-

bustness. Now suppose the robot moves. As the robot performs control actions via its

actuators to move, it keeps a record of the actions it has performed and shifts the belief

in the direction of motion accordingly. After going through enough iterations of taking

measurements and performing control actions and updating the belief accordingly, most

of the probability mass should converge close to the actual position of the robot. Figure

2.1 illustrates this process.

2.2 Recursive State Estimation

At the core of probabilistic robotics is the idea of estimating state from sensor data. State

estimation addresses the problem of estimating quantities from sensor data that are not

directly observable, but that can be inferred. Sensors carry only partial information about

those quantities, and their measurements are corrupted by noise. State estimation seeks

to recover state variables from the data. Probabilistic state estimation algorithms compute

belief distributions over possible world states.

2.2.1 State

Environments are characterized by state. It is convenient to think of the state as the col-

lection of all aspects of the robot and its environment that can impact the future. Certain

state variables tend to change over time, such as the whereabouts of people in the vicinity

of a robot. Others tend to remain static, such as the location of walls in (most) buildings.

The state also includes variables regarding the robot itself, such as its pose, velocity,

whether or not its sensors are functioning correctly, and so on.

The main state variable considered in this work is the robot pose. Pose is comprised of

the robot’s location and orientation relative to a global coordinate frame. Rigid mobile

robots possess six such state variables, three for their Cartesian coordinates, and three

for their angular orientation (pitch, roll, and yaw). For rigid mobile robots confined to planar

environments, the pose is usually given by three variables, its two location coordinates in

the plane and its heading direction (yaw).
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Figure 2.1. A mobile robot during global localization. Image taken from Probabilistic
Robotics by Thrun, Burgard, and Fox [4].

A state xt will be called complete if it is the best predictor of the future. Completeness

entails that knowledge of past states, measurements, or controls carry no additional in-

formation that would help us predict the future more accurately.
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2.2.2 Environment interaction

There are two types of fundamental ways a robot interacts with its environment: The robot

can influence the state of the environment via its actuators, and it can gather information

about the environment via its sensors. These two types of interactions are often respec-

tively referred to as control actions and measurements. In accordance with the two types

of environment interactions, the robot has access to two different data streams: control

data and measurement data.

Control data carry information about the change of state in the environment. In mobile

robotics, a typical example of control data is the velocity of a robot. Setting the velocity

to 10 cm per second for the duration of five seconds suggests that the robot’s pose,

after executing this motion command, is approximately 50 cm ahead of its pose before

command execution. Thus, control conveys information regarding the change of state.

Control data will be denoted ut. The variable ut will always correspond to the change of

state in the time interval (t− 1; t].

Measurement data provides information about a momentary state of the environment.

Examples of measurement data include camera images, range scans, and so on. The

measurement data at time t will be denoted zt.

2.2.3 Probabilistic Generative Laws

The evolution of state and measurements is governed by probabilistic laws. In general,

the state xt is generated stochastically from the state xt−1. At first glance, the emergence

of state xt might be conditioned on all past states, measurements, and controls. However,

if the state x is complete then it is a sufficient summary of all that happened in previous

time steps. In particular, xt−1 is a sufficient statistic of all previous controls and mea-

surements up to this point in time, that is, u1:t−1 and z1:t−1. Hence, the probabilistic law

characterizing the evolution of state is given by a probability distribution of the following

form: p(xt |xt−1, ut).

For modeling the process by which measurements are being generated, if xt is complete,

the probability distribution becomes: p(zt |xt). In other words, the state xt is sufficient to

predict the (potentially noisy) measurement zt. Knowledge of any other variable, such as

past measurements, controls, or even past states, is irrelevant if xt is complete.

The probability p(xt |xt−1, ut) is called the state transition probability. It specifies how

environmental state evolves over time as a function of robot controls ut. Robot environ-

ments are stochastic, which is reflected by the fact that p(xt |xt−1, ut) is a probability

distribution, not a deterministic function.

The probability p(zt |xt) is called the measurement probability. The measurement prob-
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ability specifies the probabilistic law according to which measurements z are generated

from the environment state x. It is appropriate to think of measurements as noisy projec-

tions of the state.

The state transition probability and the measurement probability together describe the

dynamical stochastic system of the robot and its environment.

2.2.4 Belief distributions

In probabilistic robotics, the state of the robot is represented by belief distributions. A

belief reflects the robot’s internal knowledge about the state of the environment. Since

state cannot be measured directly, and must instead be inferred from data, we make a

distinction between the true state and the robot’s internal belief regarding that state.

Probabilistic robotics represents beliefs through conditional probability distributions. A

belief distribution assigns a probability (or density value) to each possible hypothesis with

regards to the true state. Belief distributions are posterior probabilities over state variables

conditioned on the available data. We will denote belief over a state variable xt by bel(xt),

which is an abbreviation for the posterior bel(xt) = p(xt | z1:t, u1:t). This posterior is the

probability distribution over the state xt at time t, conditioned on all past measurements

z1:t and all past controls u1:t.

Occasionally, it is useful to calculate a posterior before incorporating zt, just after execut-

ing the control ut. Such a posterior is denoted as follows: bel(xt) = p(xt | z1:t−1, u1:t).

This probability distribution is often referred to as prediction in the context of probabilistic

filtering. This terminology reflects the fact that bel(xt) predicts the state at time t based on

the previous state posterior, before incorporating the measurement at time t. Calculating

bel(xt) from bel(xt) is called correction or the measurement update.

2.2.5 The Bayes filter algorithm

The most general algorithm for calculating beliefs is given by the Bayes filter algorithm.

This algorithm calculates the belief distribution bel from measurement and control data.

Algorithm 1 depicts the basic Bayes filter in pseudo-algorithmic form.

Algorithm 1: The Bayes filter algorithm

1 Algorithm Bayes_filter(bel(xt−1, ut, zt):
2 for all xt do
3 bel(xt) =

∫︁
p(xt |ut, xt−1) bel(xt−1) dxt−1

4 bel(xt) = η p(zt |xt) bel(xt)

5 end for
6 return bel(xt)
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The Bayes filter is recursive, that is, the belief bel(xt) at time t is calculated from the belief

bel(xt−1) at time t− 1. Its input is the belief bel at time t− 1, along with the most recent

control ut and the most recent measurement zt. Its output is the belief bel(xt) at time t.

The Bayes filter algorithm possesses two essential steps. In line 3, it processes the

control ut. It does so by calculating a belief over the state xt based on the prior belief

over state xt−1 and the control ut. In particular, the belief bel(xt) that the robot assigns

to state xt is obtained by the integral (sum) of the product of two distributions: the prior

assigned to xt−1, and the probability that control ut induces a transition from xt−1 to xt.

The second step of the Bayes filter is called the measurement update. In line 4, the

Bayes filter algorithm multiplies the belief bel(xt) by the probability that the measurement

zt may have been observed. It does so for each hypothetical posterior state xt. As

will become apparent further below when actually deriving the basic filter equations, the

resulting product is generally not a probability. It may not integrate to 1. Hence, the result

is normalized, by virtue of the normalization constant η. This leads to the final belief

bel(xt), which is returned in line 6 of the algorithm.

To compute the posterior belief recursively, the algorithm requires an initial belief bel(x0)

at time t = 0 as boundary condition. If one knows the value of x0 with certainty, bel(x0)

should be initialized with a point mass distribution that centers all probability mass on the

correct value of x0, and assigns zero probability anywhere else. If one is entirely ignorant

about the initial value x0, bel(x0) may be initialized using a uniform distribution over the

domain of x0 (or a related distribution from the Dirichlet family of distributions). Partial

knowledge of the initial value x0 can be expressed by non-uniform distributions; however,

the two cases of full knowledge and full ignorance are the most common ones in practice.

The algorithm Bayes filter can only be implemented in the form stated here for very simple

estimation problems. In particular, we either need to be able to carry out the integration

in line 3 and the multiplication in line 4 in closed form, or we need to restrict ourselves to

finite state spaces, so that the integral in line 3 becomes a (finite) sum.

2.3 The Particle Filter

The particle filter is a nonparametric implementation of the Bayes filter. Particle filters

approximate the posterior by a finite number of parameters. The key idea of the particle

filter is to represent the posterior bel(xt) by a set of random state samples drawn from

this posterior. Such a representation is approximate, but it is nonparametric, and therefore

can represent a much broader space of distributions than, for example, Gaussians.

In particle filters, the samples of a posterior distribution are called particles and are de-

noted
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Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t

Each particle x
[m]
t (with 1 ≤ m ≤ M ) is a concrete instantiation of the state at time t.

Put differently, a particle is a hypothesis as to what the true world state may be at time t.

Here M denotes the number of particles in the particle set Xt. In practice, the number of

particles M is often a large number, e.g., M = 1, 000.

The intuition behind particle filters is to approximate the belief bel(xt) by the set of parti-

cles Xt. Ideally, the likelihood for a state hypothesis xt to be included in the particle set

Xt shall be proportional to its Bayes filter posterior bel(xt):

x
[m]
t ∼ p(xt | z1:t, u1:t)

Just like the basic Bayes filter algorithm, the particle filter algorithm constructs the belief

bel(xt) recursively from the belief bel(xt−1) one time step earlier. Since beliefs are rep-

resented by sets of particles, this means that particle filters construct the particle set Xt

recursively from the set Xt−1.

The most basic variant of the particle filter algorithm is shown in Algorithm 2. The input of

this algorithm is the particle set Xt−1, along with the most recent control ut and the most

recent measurement zt. The algorithm then first constructs a temporary particle set X̄

that represented the belief bel(xt). It does this by systematically processing each particle

x
[m]
t−1 in the input particle set Xt−1. Subsequently, it transforms these particles into the set

Xt, which approximates the posterior distribution bel(xt). In detail:

Algorithm 2: Basic particle filter algorithm

1 Algorithm Particle_filter(Xt−1, ut, zt):
2 X̄ t = Xt = ∅
3 for m = 1 to M do
4 sample x

[m]
t ∼ p(xt |ut, x

[m]
t−1)

5 w
[m]
t = p(zt |x[m]

t )

6 Xt
¯ = Xt

¯ + ⟨x[m]
t , w

[m]
t ⟩

7 end for
8 for m = 1 to M do
9 draw i with probability ∝ w

[i]
t

10 add x
[i]
t to Xt

11 end for
12 return Xt

1. Line 4 generates a hypothetical state x
[m]
t for time t based on the particle x

[m]
t−1 and

the control ut. The resulting sample is indexed by m, indicating that it is generated

from the m-th particle in Xt−1. This step involves sampling from the state transition

distribution p(xt |ut, xt−1). To implement this step, one needs to be able to sample

from this distribution. The set of particles obtained after M iterations is the filter’s
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representation of bel(xt).

2. Line 5 calculates for each particle x
[m]
t the so-called importance factor, denoted

w
[m]
t . Importance factors are used to incorporate the measurement zt into the par-

ticle set. The importance, thus, is the probability of the measurement zt under the

particle x
[m]
t , given by w

[m]
t = p(zt |x[m]

t ). If we interpret w[m]
t as the weight of a

particle, the set of weighted particles represents (in approximation) the Bayes filter

posterior bel(xt).

3. The real “trick” of the particle filter algorithm occurs in lines 8 through 11. These

lines implemented what is known as resampling or importance sampling. The algo-

rithm draws with replacement M particles from the temporary set X̄ t. The proba-

bility of drawing each particle is given by its importance weight. Resampling trans-

forms a particle set of M particles into another particle set of the same size. By

incorporating the importance weights into the resampling process, the distribution

of the particles change: Whereas before the resampling step, they were distributed

according to bel(xt), after the resampling they are distributed (approximately) ac-

cording to the posterior bel(xt) = η p(zt |x[m]
t )bel(xt). In fact, the resulting sample

set usually possesses many duplicates, since particles are drawn with replacement.

More important are the particles no longer contained in Xt: Those tend to be the

particles with lower importance weights.

2.4 Monte Carlo Localization

One of the most popular localization algorithms that utilise the particle filter is Monte Carlo

Localization, or MCL. MCL is applicable to both local and global localization problems. It

is easy to implement and tends to work well for a broad range of localization problems.

The amcl package in ROS [4] implements the adaptive (or KLD-sampling) Monte Carlo

localization approach.

2.4.1 The MCL Algorithm

Algorithm 3 shows the basic MCL algorithm, which is obtained by substituting the appro-

priate probabilistic motion and perceptual models into the basic particle filter algorithm

(Algorithm 2). The basic MCL algorithm represents the belief bel(xt) by a set of M par-

ticles Xt = {x[1]
t , x

[2]
t , ..., x

[M ]
t }. Line 4 in the algorithm samples from the motion model,

using particles from present belief as starting points. The measurement model is then

applied in line 5 to determine the importance weight of that particle. The initial belief

bel(x0) is obtained by randomly generating M such particles from the prior distribution

p(x0), and assigning the uniform importance factor M−1 to each particle. The functions

sample_motion_model and measurement_model implement a motion model and a
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Algorithm 3: basic MCL algorithm

1 Algorithm MCL(Xt−1, ut, zt,m):
2 X̄ t = Xt = ∅
3 for m = 1 to M do
4 x

[m]
t = sample_motion_model(ut, x

[m]
t−1)

5 w
[m]
t = measurement_model(zt, x

[m]
t ,m)

6 Xt
¯ = Xt

¯ + ⟨x[m]
t , w

[m]
t ⟩

7 end for
8 for m = 1 to M do
9 draw i with probability ∝ w

[i]
t

10 add x
[i]
t to Xt

11 end for
12 return Xt

measurement model respectively. The parameter m in measurement_model is the map

of the environment. In theory, the MCL algorithm supports any kind of sensor, as long

as the appropriate models are implemented. At the time of writing the amcl package in

ROS [4] only supports laser scans and laser maps.

2.4.2 Properties of MCL

MCL can approximate almost any distribution of practical importance. Increasing the total

number of particles increases the accuracy of the approximation. The number of particles

M is a parameter that enables the user to trade-off the accuracy of the computation and

the computational resources necessary to run MCL. A common strategy for setting M is

to keep sampling until the next pair ut and zt has arrived. In this way, the implementation is

adaptive with regards to the computational resources: the faster the underlying processor,

the better the localization algorithm. However, care has to be taken that the number of

particles remains high enough to avoid filter divergence.

2.4.3 KLD-Sampling

The size of the sample sets used to represent beliefs is an important parameter for the

efficiency of particle filters. Unfortunately, to avoid divergence due to sample-depletion in

MCL, one has to choose large sample sets so as to allow a mobile robot to address both

the global localization and the position tracking problem. This can be a waste of compu-

tational resources. While a high number of particles (e.g. 100,000) might be necessary

during the early stages of localization, only a small fraction of this number is sufficient to

track the position of the robot once it knows where it is.

KLD-sampling is a variant of MCL that adapts the number of particles over time. The
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name KLD-sampling is derived from the Kullback-Leibler divergence, which is a measure

of the difference between two probability distributions. The idea behind KLD-sampling is

to determine the number of particles based on a statistical bound on the sample-based

approximation quality.
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3. EXPERIMENTS

Testing was done by running the AMCL algorithm in a simulated environment using

100 different randomly selected binary occupancy grids obtained from the HouseExpo

dataset [2]. Gazebo [1] was used for simulating the environment and the robot. Matlab

was used to send commands to the robot via ROS, running the AMCL algorithm and plot-

ting the results. The 3D environments used in the simulation were generated from 2D

binary occupancy maps by using map2gazebo [6].

3.1 Test environment

The test environment was a virtual machine running Ubuntu Bionic 18.04 with ROS

Melodic installed. The virtual machine was obtained from the MathWorks website [7].

The virtual machine contains a working installation of ROS Melodic and ROS 2 Dashing

with a variety of sample scripts and launch files usable with ROS. The Gazebo simulator

is also preinstalled on the virtual machine. Matlab with ROS Toolbox was used on the

host machine to communicate with the robot over LAN and run the test scripts.

3.2 Data preparation

HouseExpo is a large-scale dataset of indoor layouts. The dataset contains 35,126 2D

floor plans with 252,550 rooms total [2]. 100 of these maps were randomly selected and

used for testing the AMCL algorithm. Figure 3.1 shows an example .png image from the

dataset. Entirely black walls were removed, as initial testing showed that these caused

problems for the AMCL algorithm. This is because for particles enclosed completely

inside a wall, a large range of measurements are equally likely and therefore the fully

enclosed particles gain a high likelihood and the algorithm can start converging inside the

walls of the map. Figure 3.2 shows the same map but with the black area removed.

The 2D images were converted into 3D meshes usable in Gazebo by using map2gazebo.

Map2gazebo generates 2 meter high walls in the occupied areas of the 2D binary occu-

pancy grid [6]. Figure 3.3 shows the map inside Gazebo.

The maps in the HouseExpo dataset are defined by a set of 2D vertices, based on which

the binary occupancy maps are generated. The maps have varying numbers of vertices
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Figure 3.1. Example map from the HouseExpo dataset

Figure 3.2. The same map as Figure 3.1, but with the black area removed

and a varying number of rooms. Figures 3.4 and 3.5 show histograms for the number of

vertices and the number of rooms per map, respectively.

3.3 Test setup

A sample MATLAB® script was used and adapted for usage with different maps. The

sample script uses AMCL to localize a simulated TurtleBot robot inside an office envi-

ronment. The current MATLAB® AMCL implementation can be applied to any differential

drive robot equipped with a range finder [8].

The Gazebo TurtleBot uses a simulated range finder, with noise variance set to 0.01 and

maximum range increased from the default value of 3 meters to 35 meters for testing.

Most of the AMCL parameters used for testing were the same as the sample script, ex-

cept for SensorLimits and MaxLikelihoodDistance, which were increased to match the
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Figure 3.3. Map from figure 3.1 inside Gazebo

values of the simulated range finder. SensorLimits determines the range of measure-

ments that are used for the likelihood calculation. MaxLikelihoodDistance limits the area

for searching for obstacles in the binary occupancy grid.

The test script takes as parameter a binary occupancy grid and drives the robot around

randomly while avoiding obstacles. The controllerVFH class is used for driving the robot

while avoiding obstacles. This class uses vector field histograms to compute an obstacle-

free steering direction given laser scan readings and a target direction to drive toward [9].

The particle filter is only updated when the displacement of the robot exceeds a set

threshold, defined by amcl.UpdateThresholds. The particle distribution is resampled after

every update and the AMCL algorithm is run for a maximum of 100 updates. The algo-

rithm is considered converged when 90% of all of the particles are within 0.3 meters of the

true pose of the robot. This threshold was chosen arbitrarily based on values observed

when running the script. The test is run 10 times for each map. The tests are evaluated

based on how many times the particle filter converged to the correct position and the

number of steps it took for the algorithm to converge.

The particles were initialized using a uniform distribution over the binary occupancy grid,

with the lower and upper bounds for the particle count set to 500 and 50,000 respectively.
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Figure 3.4. Vertex count histogram. Vertex count means the number of vertices used to
define the map in the HouseExpo dataset. The HouseExpo dataset defines a map as a
set of 2D vertices [2].

Figure 3.5. Room count histogram
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4. RESULTS

The metrics recorded from the test runs were the number of runs where the algorithm con-

verged, mean and variance for the number of steps it took until convergence if the algo-

rithm converged to the correct position, and the mean estimated distance from the ground

truth. The minimum and maximum step counts until convergence were also recorded. In

this chapter, the word "converge" is used to indicate a successful localization. Note that

the AMCL algorithm always converges, but not necessarily to the correct position.

Out of the total of 1000 (10 per each of the 100 maps) test runs, the AMCL algorithm

converged to the correct location 878 times. The median number of converged runs

per map was 10. Figure 4.1 shows a collage of all of the 100 maps and the amount of

converged test runs per map. Note that the maps are not to scale. Figure 4.2 shows

a histogram of the number of converged runs per map. Overall the algorithm seems

to perform quite well, with 53 of the tested maps converging to the correct position 10

out of 10 times. Figure 4.3 shows the mean number of converged runs plotted against

the number of rooms. Figure 4.4 shows the mean number of converged runs plotted

against the number of vertices. Based on these plots it is fairly safe to say that there is no

correlation between the number of converged test runs and the room count or the number

of vertices of the map.

Figure 4.5 shows the mean number of steps until convergence against the number of

rooms for the converged runs. Figure 4.6 shows the mean number of steps until con-

vergence against the number of vertices. These plots show a slight upward trend as the

number of rooms and number of vertices increase.

The three maps with the worst performance are plotted in Figure 4.7. The worst perform-

ing map was bb2cee7cd62bcbbc10e4b79d7c632267. For this map, the AMCL algorithm

converged to the correct location only 2 times out of 10. It is quite easy to see why this

would be the case, as all 4 rooms on the map look nearly identical. Figure 4.8 shows the

particle filter during one of the test runs after the 10th particle filter update. Figure 4.9

shows the final particle filter update and the true position of the robot after 100 updates.

Even though none of the rooms are entirely symmetric, they are similar enough so that

due to the probabilistic nature of the algorithm, the algorithm can start converging towards

the wrong position. Figure 4.10 shows an "easy" map where the AMCL algorithm con-
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Figure 4.1. All of the tested maps with the number of test runs where the robot was
localized successfully for each map.

verged to the correct position 10 times out of 10 and a "medium" map where the algorithm

converged to the correct position 6 times out of 10.

Figure 4.11 shows one of the maps in Gazebo and the robot’s view of the world visualized

in rviz. Rviz is a 3D visualization tool for ROS [10]. Note that some of the sensor readings

are on the robot itself. Sensor readings that are shorter than the robot’s diameter are

ignored in the AMCL probability calculations.

4.1 Detailed analysis

Figures 4.12 and 4.13 show two example test runs for one of the maps for which the

AMCL algorithm converged to the correct position only 5 times out of 10. The actual

trajectory of the robot’s movement is plotted in magenta. Figure 4.12 shows a test run
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Figure 4.2. Histogram of converged test runs per map

where the algorithm converged to the wrong position and failed to recover. Figure 4.13

shows a successfully converged test run on the same map.

Finally, the map was tested by changing the number of particles and running the tests

with an upper particle limit of 50,000 and 100,000, for 300 test runs each. With the upper

particle limit set to 50,000, the AMCL algorithm converged to the correct position 197

times out of 300. With an upper limit of 100,000 particles, the algorithm converged to the

correct position 291 times out of 300. Based on these results, at least for this particular

map, the number of particles seems to have a noticeable effect on the performance of the

AMCL algorithm. The results are plotted in figure 4.14.
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Figure 4.3. Mean number of converged runs per number of rooms

Figure 4.4. Mean number of converged runs per number of vertices
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Figure 4.5. Mean step count to convergence per number of rooms

Figure 4.6. Mean step count to convergence per number of vertices
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Figure 4.7. The three maps with the worst performance. For the leftmost map, the AMCL
algorithm converged to the correct position only 2 times out of 10. For the other two, the
algorithm converged to the correct position 3 times out of 10.

Figure 4.8. Particle filter after 10th update
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Figure 4.9. The particle filter and the true position of the robot after a test run where the
AMCL algorithm converged to the wrong position.

Figure 4.10. For the map on the left, the AMCL algorithm converged to the correct posi-
tion 10 times out of 10. For the map on the right, the algorithm converged to the correct
position 6 times out of 10.



24

Figure 4.11. A map in Gazebo and the robot’s view of the world visualized with rviz. The
red dots are laser scan measurements.
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Figure 4.12. A test run where the AMCL algorithm failed to converge to the correct
position and failed to recover. The estimated pose of the robot is plotted in green. The
actual trajectory of the robot is plotted in magenta.
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Figure 4.13. A test run where the AMCL algorithm successfully converged to the correct
position. The estimated pose of the robot is plotted in green. The actual trajectory of the
robot is plotted in magenta.
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Figure 4.14. The number of converged test runs with the upper particle limit set to 50,000
and 100,000 respectively. The tests were run a total of 300 times for each set of parame-
ters, using the same map for all of the tests. Increasing the number of particles seems to
have a noticeable positive impact on the accuracy of the AMCL algorithm.
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5. CONCLUSION

In this work, we have examined the inner workings of the AMCL algorithm as it is used for

robot localization and tested the performance of the algorithm on random maps picked

from the HouseExpo dataset using MATLAB® and ROS. The tests show that overall the

algorithm performs quite well for the maps in this dataset.

The number of rooms or the number of vertices in the map did not seem to affect the

performance of the algorithm significantly. The worst performance happens in maps that

have a high degree of symmetry or similarity between multiple areas of the map. In these

cases, the AMCL algorithm can begin to converge towards the wrong position and be

unable to recover with further sensor updates.

Overall the AMCL algorithm is very robust to noise and can recover from bad initial esti-

mates in many cases. This suggests that for example computer vision-based measure-

ments could integrate quite well with the algorithm.
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