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Abstract

The main result presented here is that the flow associated with a

riemannian metric and a non zero magnetic field on a compact oriented

surface without boundary, under assumptions of hyperbolic type, cannot

have the same length spectrum of topologically corresponding periodic

orbits as the geodesic flow associated with another riemannian metric

having a negative curvature and the same total volume. The main tool

is a regularization inspired by U. Hamenstädt’s methods.

1 Introduction

The problems of entropic and spectral rigidity of riemannian manifolds have
been widely studied, beginning with the surfaces [23]. The works treat rie-
mannian metrics on compact surfaces [7], [9], [27], on higher dimension mani-
folds [1], [2], [8], [12], or on surfaces with singularities [21]. The related problem
of boundary rigidity of a riemannian metric features many results [25], [30], [31].
The rigidity of an absolutely continuous flow conjugacy persists in some way
with the presence of a magnetic field on a compact surface [17], and so do
entropic rigidity in this case [18]. The topological entropy of the magnetic flow
in higher dimension has also been studied [29], [6].

Unlike the geodesic flow, a conjugacy being only continuous (in fact Hölder-
continuous) between two magnetic flows on a surface had not been treated.

When the surface is compact and the Jacobi endomorphism [14] of the
magnetic flow is negative, this flow has got the Anosov property [16] ; two
such flows have got the same marked length spectrum of periodic orbits if and
only if they are C0-conjugated [17].

The main result presented here is that the flow associated with a riemannian
metric and a non zero magnetic field on a closed surface, if it has got a negative
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Jacobi endomorphism, cannot have the same marked length spectrum as the
geodesic flow associated with another riemannian metric having a negative
curvature and the same total volume. The assumption on the equality of the
total volumes is essential [17].

Theorem 10.2 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and g2 be two C∞-riemannian metrics over M whose
curvatures are negatively pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2,. Let κ1

be a C∞-magnetic field over M . The magnetic flow ψ1
t = ψg1,κ1

t is supposed to
have a negative Jacobi endomorphism. If the magnetic flow ψ1

t and the geodesic
flow ϕ2

t = ϕg2t have the same marked length spectrum, and if the surface M has
the same total volume for the two metrics, then the two metrics are isotopic,
which means that one is the image of the other by a diffeomorphism f of M
homotopic to the identity, and the magnetic field κ1 is zero.

The proof consists in coming back to the known case where there exists an
absolutely continuous conjugacy between the two flows [17]. The proof of the
regularity of the conjugacy is inspired by U. Hamenstädt’s methods [19, 20].
We construct linearizations of the universal covering of the surface, compatible
with the stable spaces of the flow. This is useful to proof that the Lyapounoff
exponents of the periodic orbits are preserved (theorem 10.1), which ensures
that the conjugacy is smooth [24]. The regularity of the conjugacy used to proof
the theorem 10.2 is valid in general for two magnetic flows (we denote T 1

i M
the unit tangent bundle of gi) :

Corollary 10.1 Let M be a closed (compact without boundary), connected, ori-
ented surface. Let g1 and g2 be two C∞-riemannian metrics over M whose cur-
vatures are negatively pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2. Let κ1, κ2

be two C∞-magnetic fields over M . The two magnetic flows ψ1
t = ψg1,κ1

t

and ψ2
t = ψg2,κ2

t are supposed to have negative Jacobi endomorphisms. If
the two magnetic flows have the same marked length spectrum, then they are
conjugated by a C∞-diffeomorphism h from T 1

1M onto T 1
2M .

A uniformization of a surface equipped with a metric with negative curva-
ture has already been constructed [13] ; it applies to an Anosov flow on a 3-
manifold, but with the condition that the stable spaces be of C1-class, which is
unlikely for the magnetic flow [28]. The uniformly quasiconformal diffeomor-
phisms present another example of uniform structures on stable spaces [22].

It seems legitimate to ask if the construction presented here is practica-
ble for other flows whose stable spaces are not necessarily of C1-class, and
particularly to which extent a C0-conjugacy between two such flows could be
differentiable.

Given a manifold M , diffeomorphic to R2, with a magnetic flow having a
negative Jacobi endomorphism and having the gradient of centre-stable and
centre-unstable spaces uniformly bounded, and given a point p ∈ M , and a
unitary vector v ∈ T 1

pM , the linearization Ev (defined in section 8) sends M
onto TpM ; the geodesic directed by v onto the straight line Rv ; and the
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horocycles associated with the centre-stable manifold of v onto the straight
lines orthogonal to v. This linearization, used as is, presents a little rigidity.

Theorem 10.3 Let M be an oriented surface diffeomorphic to R2, equipped
with two C∞-riemannian metrics g1 and g2 whose curvatures are negatively
pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2. Let κ1, κ2 be two C∞-magnetic

fields over M . The two magnetic flows ψ1
t = ψg1,κ1

t and ψ2
t = ψg2,k2t are

supposed to have pinched negative Jacobi endomorphisms (the C1-norms of κ1

and κ2 are thus bounded), and the gradient of the centre-stable u−,i spaces
and the gradient of the centre-unstable u+,i spaces for i = 1, 2 are supposed
to be uniformly bounded. If there exist a diffeomorphism f : M → M and a
point p ∈M satisfying

∀v ∈ T 1
1,pM ∃v′ ∈ T 1

2,f(p)M E2
v′ ◦ f = E1

v ,

then the two metrics are images one of each other by f , and so are the two
magnetic fields : κ2 = κ1 ◦ f .

When metrics and magnetic fields are invariants under a cocompact group,
the rigidity of the linearization is stronger in some way.

Theorem 10.4 Let M be a closed (compact without boundary), connected, ori-
ented surface. Let g1 and g2 be two C∞-riemannian metrics over M whose cur-
vatures are negatively pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2. Let κ1, κ2

be two C∞-magnetic fields over M . The two magnetic flows ψ1
t = ψg1,κ1

t

and ψ2
t = ψg2,κ2

t are supposed to have negative Jacobi endomorphisms. If there

exist two vectors v1 ∈ T 1
1 M̃ , v2 ∈ T 1

2 M̃ and a C1-diffeomorphism f : M → M

homotopic to the identity, of which a lift f̃ over M̃ satisfies E2
v2

◦ f̃ = E1
v1

,
then the two metrics are isotopic, transported by f , and so are the two magnetic
fields : κ2 = κ1 ◦ f .

Using the tools of the construction of the linearization, we also get a result of
constancy of (future) Lyapounoff exponents along the centre-stable manifolds
(theorem 6.1).

2 Notations and background

In the following, M denotes a complete, connected, oriented surface, equipped
with a C∞-riemannian metric whose curvature is negatively pinched : −k2

0 ≤
K ≤ −k2

1 < 0. The Cartan-Hadamard theorem ([15], p.138) implies that the

universal cover M̃ is diffeomorphic to R2, with cover mapping Π : M̃ → M .
Within sections 4, 5, 7, 8 and 9, the surface M is simply connected, thus equal
to M̃ . The projection of TM and T 1M on M is written down π. The cover
mapping is Π : M̃ →M .

The surface M is said closed if it is compact (without boundary).
Let N be the rotation of angle +π/2 in the tangent space TM .
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For a curve c : R →M , the equation of the magnetic flow ψt = ψg,κt = ψκt
associated with a magnetic field κ : M → R is [17] :

Dc

dt
= κ(c(t)) N

(
dc

dt

)
.

The flow is a one-parameter group of diffeomorphisms acting on T 1M . The
magnetic field κ is supposed to be smooth.

The Jacobi endomorphism associated with this second order differential
equation [14] is the application [17] :

q : T 1M → R
v 7→ K(π(v)) + κ(π(v))2 − 〈N(v), (grad κ)(π(v))〉 .

When the surfaceM is compact (closed), saying that the Jacobi endomorphism
is negative is equivalent to saying that it is pinched between two strictly neg-
ative constants. In the following, the real function κ : M → R is a magnetic
field such that the associated Jacobi endomorphism q satisfies the pinching
condition, which means that there exist two positive constants q0 et q1 verify-
ing :

− q20 ≤ q ≤ −q21 < 0. (1)

Definition 2.1 [17] With the assumption (1), to a vector v ∈ T 1M are
associated the stable j−(v, t) and unstable j+(v, t) Jacobi fields along the or-
bit of v, with components (x−(v, t), y−(v, t)) and (x+(v, t), y+(v, t)) in the
base (ψtv,N(ψtv)) satisfying

x−(v,+∞) = 0, y−(v,+∞) = 0, y−(v, 0) = 1 ;
x+(v,−∞) = 0, y+(v,−∞) = 0, y+(v, 0) = 1.

The stable and unstable spaces are determined by the mappings :

v 7→ (w−(v), u−(v)) = (x−(v, 0), y−
′(v, 0)) ,

v 7→ (w+(v), u+(v)) = (x+(v, 0), y+
′(v, 0)) .

The tangential component of the stable space at v ∈ T 1M satisfies the
relation [17] :

w−(v) = x−(v, 0) =

∫ 0

t=+∞

κ(πψκt v)y−(v, t) dt. (2)

Writing

C1 = 1 +
‖κ‖∞ + ‖κ‖2

∞

q1
+ q0, (3)

yields as in [18], section 3.2 :

‖j−(v, t)‖ + ‖j′
−

(v, t)‖ ≤ C1y−(v, t). (4)
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LetWS(v),WCS(v),WU (v) andWCU (v) be respectively the stable, centre-
stable, unstable, centre-unstable manifolds associated with the unitary vec-
tor v. The stable horocycle of the magnetic flow associated with v is Hκ

v (0) =
Hv(0) = πWS(v). The stable horocycle associated with ψtv is Hκ

v (t) = Hv(t).
The Busemann function associated with v is the mapping Bv : M → R
such that Bv(Hv(t)) = t. Under the assumption (1), the centre-stable and
centre-instable spaces identified to the Ricatti applications u−(v) = y′

−
(v, 0)

and u+(v) = y′+(v, 0) are of C1-class over T 1M and T 1M̃ ; the horizontal (or-
thogonal) component of the stable ((v, t) 7→ y−(v, t)) and instable ((v, t) 7→

y+(v, t)) jacobi fields are of C1-class over T 1M ×R and T 1M̃ ×R ; the circle

at infinity ∂M̃ admits also a differential structure of C1-class ([17], section 7).
Let vκ+∞

= v+∞ be the point at infinity corresponding to the future orbit

of v ∈ T 1M̃ (and identified with its centre-stable manifold). Given two distinct
points x ∈ M and y ∈ M ∪ ∂M , we denote vκ(x, y) = v(x, y) as the unitary
vector tangent to M at x, directing the unique curve solution joining x to y
(in this order).

3 Liouville measure and symplectic structure

on the space of orbits

Let M be a complete connected oriented surface, equipped with a riemannian
metric g of C∞-class with pinched negative curvature −k2

0 ≤ K ≤ −k2
1 , and

with a uniformly bounded magnetic field κ, of C∞-class, with its Jacobi en-
domorphism satisfying the pinching condition (1). Using the method of the
second order differential equations of Foulon [18], let X(κ) be the generating
field of the magnetic flow,H0 be the horizontal field, Y0 be the vertical field ; to-
gether, they constitute a basis field of the bundle TT 1M , tangent to the unitary
tangent bundle. Let (X(κ)⋆, H⋆

0 , Y
⋆
0 ) be the dual basis field. Let v be in T 1M

and ji = xiψ
κ
t v + yiN(ψκt v) for i = 1, 2 be two Jacobi fields, with x′i = κyi ;

they are associated to the tangent vectors ξi = xiX(κ) + yiH0 + y′iY0 at every
point of the orbit of v. The wronskian form

Ω = H⋆
0 ∧ Y ⋆0

applied to the pair of Jacobi fields yields

Ω(j1, j2) = y1y
′

2 − y2y
′

1.

This is an invariant 2-form under the magnetic flow on T 1M . It gives a sym-
plectic form on the space of orbits of the magnetic flow. Its absolute value is
equal to the Liouville measure on the space of orbits [17, 18]. We have :

Ω (j−(v, ·), j+(v, ·)) = (u+ − u−)(v) = y−(v, t)(u+ − u−)(ψκt v)y+(v, t) (5)

for every t ∈ R. This quantity lays between 2q1 and 2q0.
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4 Curvature of the horocycles

Theorem 4.1 On a complete, connected, simply connected, oriented surface M ,
equipped with a C∞-riemannian metric g whose curvature is negatively pinched :
−k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ whose C1-norm is

bounded, with Jacobi endomorphism satisfying the pinching condition (1), and
such that the gradient of the centre-stable u− (respectively centre-unstable u+)
spaces is uniformly bounded, the geodesic curvature of the stable (respectively
unstable) horocycles of the magnetic flow is uniformly bounded.

Proof : The unstable case is similar to the stable case ; we only consider this

vc(s)
S

c(s)

c(s)

0c(  )

N

T

N

TS

v=v

0

t

0

s

Figure 1:

last one. Let :

i) v be in T 1M ,

ii) s→ vs be a smooth curve from ]−ε, ε[ toWS(v) such that
〈
∂
∂s
πvs, N(vs)

〉
=

1 for every s ∈] − ε, ε[,
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iii) c(s) = πvs,

iv) ct(s) = πψκt vs,

v) T (s, t) = D
dt
ct(s), N(s, t) = N(T (s, t)),

vi) S(s, t) = D
ds
ct(s) = x−(v, t)T + y−(v, t)N ,

vii) Y(s, t) = ∂
∂s
y−(vs, t),

viii) u−(ψκt vs) = y−(vs, t)
−1 ∂

∂t
y−(vs, t) = ∂

∂t
ln y−(vs, t),

ix) W(s, t) = y−(vs, t)
−1Y(s, t) = ∂

∂s
ln y−(vs, t),

x) Ls0(ct) be the length of the curve ct on the interval [0, s].

We have W(s, 0) = 0 for all s and

W ′(s, t) =
∂

∂t
W(s, t) =

∂

∂s
u−(ψκt vs).

The equations (3), (4), imply

|W ′(s, t)| ≤ ‖∇u−‖∞ C1 y−(vs, t). (6)

Thus we have for all t ≥ 0 and all s :

|W(s, t)| ≤ C1‖∇u−‖∞

∫ t

τ=0

e−q1τ dτ ≤
C1‖∇u−‖∞

q1
,

|Y(s, t)| ≤
C1‖∇u−‖∞

q1
y−(vs, t), (7)

With the assumption 〈S,N(T )〉 (s, 0) = 1 for all s ∈] − ε, ε[, there comes :

dc

ds
(s) = S(s, 0) = w−(vs)vs +N(vs), (8)

thus

1 ≤

∥∥∥∥
dc

ds
(s)

∥∥∥∥ ≤ C1.

We have also :

Dvs
ds

=
D

dt

⌋

t=0

S = (y′
−

+ κx−)(s, 0)N(vs) = (u−(vs) + κ(c(s))w−(vs))N(vs).

(9)
From the relations (8) and (9) comes :

D

ds

dc

ds
(s) =

[
dw−(vs)

ds
− (u− + κw−)

]
vs + (u− + κw−)w−N(vs). (10)
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In order to estimate the curvature of c, the norm of dw−(vs)/ds should be
controlled. The equation (2) gives :

dw−(vs)

ds
=

∫ 0

t=+∞

(〈∇κ, S〉 y−(vs, t) + κY(s, t)) dt.

The upper estimate (4) implies :

‖S(s, t)‖ ≤ C1y−(vs, t) ≤ C1e
−q1t.

With the equation (7), this yields for all s ∈ [−ε, ε] :

∣∣∣∣
dw−(vs)

ds

∣∣∣∣ ≤
‖∇κ‖∞

2q1
C1 + ‖κ‖∞

C1‖∇u−‖∞
q21

.

Let this last constant be written down C2. The geodesic curvature of the
horocycle c(s) is

κ−(s) =

det

(
dc

ds
,
D

ds

dc

ds

)

∥∥∥∥
dc

ds

3∥∥∥∥
.

From the equalities (8) and (10) we deduce

κ−(1 + w2
−

)
3

2 = (1 + w2
−

)(u− + κw−) −
dw−(vs)

ds
,

thus
|κ−| ≤ (q0 + ‖κ‖∞‖w−‖∞) + C2.

In conclusion, the geodesic curvature of the stable horocycles is uniformly
bounded, and so is the geodesic curvature of the unstable horocycles. ⋄

The proof of the following result is left to the reader as an exercise.

Corollary 4.1 With the assumptions of the theorem 4.1, there exists a map-
ping f : R+ → R+, continuous at 0 and which annulates at 0, such that for
all horocycle H of the magnetic flow, every diffeomorphism c : R → H and
all a, b ∈ R, we have

Lba(c) ≤ f (d (c(a), c(b))) .

5 Fluctuation of the stable Jacobi fields

Theorem 5.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C∞-riemannian metric g whose curvature is nega-
tively pinched : −k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ

whose C1-norm is bounded, with Jacobi endomorphism satisfying the pinch-
ing condition (1), and such that the gradient of the centre-stable space u−
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is uniformly bounded. For θ ∈ ∂M and (p′, p) ∈ M2, the family of map-
pings y−(v(p′, θ), t)/y−(v(p, θ), t) converges when t grows to +∞, uniformly on
the compacts of ∂M ×M2, to a mapping X (θ, p, p′), continuous on ∂M ×M2,
and which admits a partial derivative with respect to p, p′ in the direction M2,
continuous on ∂M ×M2.

Proof : Let :

i) θ belong to ∂M ,

ii) p belong to M ,

iii) c(s) be a smooth parametrization of the horocycle πWS(v(p, θ)) such
that c(0) = p and

〈
dc
ds
, N(v(c(s, θ))

〉
= 1,

iv) pθ(r, s) = πψκr v(c(s), θ) the smooth parametrization of M by R2

which follows from it for all θ ∈ ∂M ,

v) Tθ(s, t) = ∂
∂t
pθ(t, s), Nθ(s, t) = N(Tθ(s, t)), Sθ(s, t) = ∂

∂s
pθ(t, s),

vi) Z(θ, r, s, t) =
y−(v(pθ(r, s), θ), t)
y−(v(p, θ), t)

,

vii) Y(θ, s, t) = ∂
∂s
y−(v(c(s), θ), t),

viii) W(θ, s, t) = y−(v(c(s), θ), t)−1Y(θ, s, t) = ∂
∂s

ln y−(v(c(s), θ), t),

ix) Lba(pθ(r, .)) be the length of the curve s 7→ pθ(r, s) on the interval [a, b].

For all real numbers r, s, t we have :

Z(θ, r, s, t) =
y−(v(pθ(r, s), θ),−r)

y−(v(pθ(r, 0), θ),−r)
Z(θ, 0, s, t+ r). (11)

The mapping (θ, r, s, t) 7→ y−(v(pθ(r, s), θ), t) is continuous on ∂M × R3 and
admits partial derivatives with respect to r, s, t, continuous on ∂M×R3. Study-
ing the uniform convergence of W when t tends to +∞ is thus sufficient to
proof the derivability of X (θ, p, p′) with respect to p′.

We have Z(θ, 0, 0, t) = 1 for all t, θ, and Z(θ, r, s, 0) = 1 for all r, s, θ ;
thus W(θ, s, 0) = 0 for all s, θ. The relation

W ′(θ, s, t) =
∂

∂t
W(θ, s, t) =

∂

∂s
u−(ψκt v(c(s), θ))

and the equation (4) imply

|W ′(θ, s, t)| ≤ ‖∇u−‖∞C1y−(v(c(s), θ), t). (12)
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Thus we have for all t ≥ 0 and all s :

|W(θ, s, t)| ≤ ‖∇u−‖∞C1

∫ t

τ=0

e−q1τ dτ ≤
C1‖∇u−‖∞

q1
,

|Y(θ, s, t)| ≤
C1‖∇u−‖∞

q1
y−(v(c(s), θ), t),

∣∣∣∣
D

ds
Z(θ, 0, s, t)

∣∣∣∣ ≤
C1‖∇u−‖∞

q1
Z(θ, 0, s, t).

Integrating the last inequality with respect to s gives

exp

(
−
C1‖∇u−‖∞

q1
|s|

)
≤ |Z(θ, 0, s, t)| ≤ exp

(
C1‖∇u−‖∞

q1
|s|

)
.

Because of |s| ≤ Ls0(c) ≤ C1|s|, we obtain

|Z(θ, 0, s, t) − 1| ≤ exp

(
C1‖∇u−‖∞

q1
Ls0(c)

)
− exp

(
−
C1‖∇u−‖∞

q1
Ls0(c)

)
.

Even by changing the horocycle, there comes for all t ≥ 0 and all r, s :

|Z(θ, r, s, t) − 1|

≤ exp

(
C1‖∇u−‖∞

q1
Ls0(pθ(r, .))

)
− exp

(
−
C1‖∇u−‖∞

q1
Ls0(pθ(r, .))

)
.

We get for all t, τ ≥ 0 and all s ∈ [−ε, ε] :

|Z(θ, 0, s, t+ τ) −Z(θ, 0, s, t)| = |Z(θ, 0, s, t)| |Z(θ, t, s, τ) − 1|

≤ exp

(
C1‖∇u−‖∞

q1
Ls0(c)

)

×

[
exp

(
C1‖∇u−‖∞

q1
Ls0(pθ(t, .))

)
− exp

(
−
C1‖∇u−‖∞

q1
Ls0(pθ(t, .)

)]
.

From the upper estimate Ls0(pθ(r, .)) ≤ Ls0(c)e
−q1t results the existence of a

constant C3 depending only from ‖∇u−‖∞, ‖κ‖∞, Lε
−ε(c), q1 and q0 such that

for all t, τ positive and s ∈ [−ε, ε] we have

|Z(θ, 0, s, t+ τ) −Z(θ, 0, s, t)| ≤ C3L
s
0(pθ(t, .)) ≤ C3L

ε
−ε(c)e

−q1t. (13)

From the corollary 4.1, the equations (11) and (13) imply :

|Z(θ, r, s, t+ τ) −Z(θ, r, s, t)| =

∣∣∣∣
y−(v(pθ(r, s), θ), t+ τ)

y−(v(p, θ), t+ τ)
−
y−(v(pθ(r, s), θ), t)

y−(v(p, θ), t)

∣∣∣∣

≤
y−(v(pθ(r, s), θ),−r)

y−(v(pθ(r, 0), θ),−r)
C3f(d(c(−ε), c(ε)))e−q1t.
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The uniform Cauchy criterion on the compacts of ∂M×M2 implies the conver-
gence when t goes to +∞ of Z(θ, r, s, t) to a fonction X (θ, p, pθ(r, s)) continuous
on ∂M ×M2.

The equation (11) ensures the existence and continuity of the partial deriva-
tive of X (θ, p, pθ(r, s)) with respect to r.

The equation (12) implies the upper estimate for t, τ ≥ 0 :

|W(θ, s, t+ τ) −W(θ, s, t)| ≤

∫ t+τ

ρ=t

C1e
−q1ρ ‖∇u−‖∞ dρ

thus

|W(θ, s, t+ τ) −W(θ, s, t)| ≤ e−q1t
C1

q1
‖∇u−‖∞ , (14)

which ensures the convergence, uniform over the compacts of ∂M × R, of the
family of mappings W(θ, s, t), when t goes to +∞, to a continuous mapping
of θ, s. The relations (11), (14) and

∂

∂s
Z(θ, 0, s, t) = W(θ, s, t)Z(θ, 0, s, t)

imply the uniform convergence, over the compacts of ∂M × R2, of the fam-
ily of mappings ∂Z/∂s(θ, r, s, t), when t goes to +∞, to a continuous map-
ping. This gives the condition of derivability with respect to s for the func-
tion X (θ, p, pθ(r, s)), thus the derivability with respect to p′ anounced for the
function X (θ, p, p′). The trivial relation

X (θ, p, p′) · X (θ, p′, p) = 1 (15)

gives the derivability with respect to p. ⋄

Definition 5.1 With the assumptions of the theorem 5.1, for v ∈ T 1M , v′ ∈
WCS(v), the limit mapping calculated in the theorem 5.1 is called stable trans-
fer from v′ to v and is written down :

X(v, v′) = lim
t→+∞

y−(v′, t)

y−(v, t)
= X (v+∞, πv, πv

′).

The extended stable transfer from v′ to v is the mapping which to ξ ∈ Tπv′M
associates

X̃(v, v′)ξ = X(v, v′)〈ξ,N(v′)〉N(v) + 〈ξ, v′〉v.

Corollary 5.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C∞-riemannian metric g whose curvature is negatively
pinched : −k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ whose C1-norm

is bounded, with Jacobi endomorphism satisfying the pinching condition (1),
and such that the gradient of the centre-stable space u− is uniformly bounded.
The stable transfer and extended stable transfer are of C1-class on a given
centre-stable manifold.
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Proof : This follows from the derivability of the stable transfer stated in the
theorem 5.1. ⋄

The symplectic structure of the space of geodesics (section 3) leads to the
following result.

Theorem 5.2 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C∞-riemannian metric g whose curvature is nega-
tively pinched : −k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ

whose C1-norm is bounded, with Jacobi endomorphism satisfying the pinching
condition (1), and such that the gradient of the centre-stable u− (respectively
centre-unstable u+) spaces is uniformly bounded. For a given point θ at infin-
ity, and unitary vectors v, v′ belonging to the centre-stable manifold WCS(θ)
determined by θ, the family of mappings (v, v′) 7→ y+(v′, t)/y+(v, t) converges
uniformly when t goes to +∞ to a continuous mapping. The limit mapping
admits a partial derivative with respect to v′ (in the direction WCS(θ)), con-
tinuous with respect to (v, v′).

Proof : Following the formula (5), for v, v′ ∈ T 1M , t ∈ R+, we have

y+(v′, t)

y+(v, t)
=

(u+ − u−)(v′) · (u+ − u−)(ψκt v) · y−(v, t)

(u+ − u−)(ψκt v
′) · y−(v′, t) · (u+ − u−)(v)

.

Because the gradient of (u+ − u−) is uniformly bounded, the quotient (u+ −
u−)(ψκt v)/(u+ − u−)(ψκt v

′) tends to one uniformly over the compacts, when t
goes to +∞, this fact implying the uniform convergence over the compacts :

y+(v′, t)

y+(v, t)
−→
t→+∞

(u+ − u−)(v′)

(u+ − u−)(v)
X(v′, v).

The regularity of the limit results from the theorem 5.1. ⋄

Definition 5.2 With the assumptions of the theorem 5.2, for v ∈ T 1M , v′ ∈
WCS(v), the limit mapping calculated in the theorem 5.2 is called unstable
transfer from v′ to v and is written down :

X(v, v′) = lim
t→+∞

y+(v′, t)

y+(v, t)
=

(u+ − u−)(v′)

(u+ − u−)(v)
X(v′, v).

The extended unstable transfer from v′ to v is the mapping which to ξ ∈ Tπv′M
associates

X̃(v, v′)ξ = X(v, v′)〈ξ,N(v′)〉N(v) + 〈ξ, v′〉v.

The following result is immediate.

Corollary 5.2 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C∞-riemannian metric g whose curvature is nega-
tively pinched : −k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ

whose C1-norm is bounded, with Jacobi endomorphism satisfying the pinching
condition (1), and such that the gradient of the centre-stable u− (respectively
centre-unstable u+) spaces is uniformly bounded. The unstable transfer and the
extended unstable transfer are of C1-class on a given centre-stable manifold.

12



6 Lyapounoff exponents

Theorem 6.1 Let M be a compact, connected, oriented, surface, equipped
with a C∞-riemannian metric g whose curvature is negatively pinched : −k2

0 ≤
K ≤ −k2

1 < 0, and with a C∞-magnetic field κ with Jacobi endomorphism
satisfying the pinching condition (1). If the (future) Lyapounoff exponents of
the magnetic flow are defined at an element v of T 1M , then they are defined
and constant along its centre-stable manifold WCS(v).

Proof : The compacity insures the uniform bounds over the gradients of κ, u+

and u−. It is sufficient to pass to the universal cover of M and to apply the
theorems 5.1 and 5.2. ⋄

7 Horocyclic transport

In this section are collected some tools for the section 8 ; the notations and
the assumptions are those of the section 5, particularly of the proof of the
theorem 5.1. Let τ(θ, s, t) be the parallel transport along the curve pθ(t, .)
which sends Tpθ(t,s)M onto Tpθ(t,0)M . Let ζ(θ, s, t) be the angle between the
vectors τ(θ, s, t)·Tθ(s, t) and Tθ(0, t). Composing τ with the rotation of angle ζ
yields the isometry

χ(θ, s, t) = ρζ(θ,s,t)τ(θ, s, t)

which sends the direct orthonormal basis (Tθ(s, t), Nθ(s, t)) onto the direct
orthonormal basis (Tθ(0, t), Nθ(0, t)).

Definition 7.1 The mapping χ(θ, s, t) is called horocyclic transport.

Remark 7.1 The horocyclic transport is continuous on ∂M × R2.

In this section the control of χ is precised in different ways.

Lemma 7.1 With the above notations, we have for all θ ∈ ∂M , s ∈ [−ε, ε],
t ∈ R+ : ∥∥∥∥

D

dt
χ(θ, s, t)

∥∥∥∥ ≤
(
2k2

0 + ‖∇κ‖
∞

)
C1e

−q1t|s|.

Proof : For all θ ∈ ∂M , t ∈ R, s ∈] − ε, ε[, ξ ∈ Tpθ(t,s)M , η ∈ Tpθ(t,0)M , we
have {

D

ds
τ(θ, s, t)ξ = 0,

τ(θ, 0, t)η = η.

The field Dτ(θ, s, t)/dt is the solution T of

{
DT

ds
(θ, s, t) = R(T, S)τ(θ, s, t),

T (θ, 0, t) = 0,

13



thus, due to the upper estimate (4), it satisfies the differential inequality

∥∥∥∥
DT

ds
(θ, s, t)

∥∥∥∥ ≤ k2
0C1e

−q1t,

therefore
∥∥∥∥
Dτ

dt
(θ, s, t)

∥∥∥∥ ≤

∫ s

σ=0

k2
0C1e

−q1t dσ ≤ k2
0C1e

−q1t|s|. (16)

We have
cos ζ(θ, s, t) = 〈τ(θ, s, t)Tθ(s, t), Tθ(0, t)〉 ,

sin ζ(θ, s, t) = 〈τ(θ, s, t)Tθ(s, t), Nθ(0, t)〉 ,

thus
∂

∂t
cos ζ(θ, s, t) =

〈
Dτ

dt
(θ, s, t)Tθ(s, t), Tθ(0, t)

〉

+ 〈τ(θ, s, t)κ(pθ(t, s))Nθ(s, t), Tθ(0, t)〉 + 〈τ(θ, s, t)Tθ(s, t), κ(pθ(t, 0))Nθ(0, t)〉

=

〈
Dτ

dt
(θ, s, t)Tθ(s, t), Tθ(0, t)

〉
+ sin ζ(θ, s, t) [κ(pθ(t, 0)) − κ(pθ(t, s))] ,

and
∂

∂t
sin ζ(θ, s, t) =

〈
Dτ

dt
(θ, s, t)Tθ(s, t), Nθ(s, t)

〉

+ 〈τ(θ, s, t)κ(pθ(t, s))Nθ(s, t), Nθ(0, t)〉+ 〈τ(θ, s, t)Tθ(s, t),−κ(pθ(t, 0))Tθ(0, t)〉

=

〈
Dτ

dt
(θ, s, t)Tθ(s, t), Nθ(0, t)

〉
+ cos ζ(θ, s, t) [κ(pθ(t, s)) − κ(pθ(t, 0))] .

We deduce from this

∂ζ

∂t
(θ, s, t) = κ(pθ(t, s))−κ(pθ(t, 0))−

〈
Dτ

dt
(θ, s, t)Tθ(s, t), Tθ(0, t)

〉
sin ζ(θ, s, t)

+

〈
Dτ

dt
(θ, s, t)Tθ(s, t), Nθ(0, t)

〉
cos ζ(θ, s, t).

The formula (4) implies :

|κ(pθ(t, s)) − κ(pθ(t, 0))| ≤ ‖∇κ‖
∞
C1e

−q1t|s|.

Following, due to the upper estimate (16), the rotation satisfies the differential
inequality

∥∥∥∥
D

dt
ρζ(θ,s,t)

∥∥∥∥ ≤

∣∣∣∣
∂

∂t
ζ(θ, s, t)

∣∣∣∣ ≤
∥∥∥∥
Dτ

dt
(θ, s, t)

∥∥∥∥ + |κ(pθ(t, s)) − κ(pθ(t, 0))|

≤
(
k2
0 + ‖∇κ‖

∞

)
C1e

−q1t|s|.

The definition of χ permits to conclude. ⋄
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We have also the upper estimate

∥∥∥∥
D

ds
χ(θ, s, t)

∥∥∥∥ ≤

∥∥∥∥
D

ds
ρζ(θ,s,t)

∥∥∥∥ ≤

∥∥∥∥
D

ds
Tθ(s, t)

∥∥∥∥ =

∥∥∥∥
D

dt
Sθ(s, t)

∥∥∥∥

≤ C1e
−q1t,

from which follows the :

Lemma 7.2 With the preceding notations, we have for all θ ∈ ∂M , s ∈ [−ε, ε],
t ∈ R+ : ∥∥∥∥

D

ds
χ(θ, s, t)

∥∥∥∥ ≤ C1e
−q1t ≤ C1e

−q1t

∥∥∥∥
dc

ds
(s)

∥∥∥∥ .

The horocyclic transport presents some uniformity.

Lemma 7.3 Let A : v ∈ T 1M 7→ A(v) ∈ L(Tπ(v)M) be a field of linear
endomorphisms of class C1 over T 1M , bounded in C1-norm. With the preceding
notations, for all θ ∈ ∂M , s ∈ [−ε, ε] and t ∈ R+, we have

‖A(v(pθ(0, t), θ))χ(θ, s, t) − χ(θ, s, t)A(v(pθ(s, t), θ))‖

≤ C1 (2 ‖A‖
∞

+ ‖DA‖
∞

) e−q1t|s|.

Proof : We have
∥∥∥∥
Dχ(θ, s, t)A(v(pθ(s, t), θ))

ds

∥∥∥∥ ≤ ‖A(v(pθ(s, t), θ))‖

∥∥∥∥
D

ds
χ(θ, s, t)

∥∥∥∥

+ ‖χ(θ, s, t)‖

∥∥∥∥
D

ds
A(v(pθ(s, t), θ))

∥∥∥∥ ,

which is bounded from above, following the lemma 7.2, by

‖A‖
∞
C1e

−q1t + ‖DA‖
∞

(
‖S(s, t)‖ +

∥∥∥∥
D

dt
S(s, t)

∥∥∥∥
)

≤ (‖A‖
∞

+ ‖DA‖
∞

)C1e
−q1t.

The covariant derivative with respect to s of A(v(pθ(0, t), θ))χ(θ, s, t) admits
the same first term as above for upper bound. The quantity that we aim to
estimate in the lemma annulates at s = 0, the upper estimate of the statement
is obtained by integrating the expression

(2 ‖A‖
∞

+ ‖DA‖
∞

)C1e
−q1t

over s from 0. ⋄
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8 Linearization

Definition 8.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C∞-riemannian metric g whose curvature is negatively
pinched : −k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ whose C1-norm

is bounded, with Jacobi endomorphism satisfying the pinching condition (1),
and such that the gradient of the centre-stable space u− is uniformly bounded.
For v ∈ T 1M , t ∈ R, the stable push is the mapping Φκ,vt : M → M which to
every p ∈M associates Φκ,vt p = πψκt v

κ(p, vκ+∞
).

Theorem 8.1 With the assumptions of the definition 8.1, for all unitary vec-
tor v ∈ T 1M , there exists a unique mapping Ev from M into Tπ(v)M such
that :

i) ∀z ∈M 〈Ev(z), v〉 = Bv(z),

ii) ∀z ∈M, ∀t ∈ R Ev (Φκ,vt (z)) = tv + Ev(z),

iii) ∀z ∈ Hκ
v (0) Ev(z) = lim

t→+∞

y−(v, t)−1

〈(
expπψκ

t
v

)−1

Φκ,vt (z), n

〉
n,

writing down n = N(ψκt v). Moreover, the mapping (v, p) 7→ Ev(p) is continu-
ous from T 1M ×M into TM .

Proof : The conditions i), ii) and iii) ensure naturally the uniqueness of the
solution. Let v be in T 1M . Let us define θ = v+∞, p = πv. Taking the
notations of the sections 5 and 7, we have Nθ(0, t) = n and we define :

Xθ,s =

∫ s

σ=0

χ(θ, σ, 0)
dc

ds
(σ) dσ, Xt

θ,s =

∫ s

σ=0

χ(θ, σ, t)
∂pθ(t, σ)

∂s
(σ) dσ,

etv(s) =

〈
n,Xt

θ,s

〉

y−(v, t)
.

We have

χ(θ, s, t)Tθ(s, t) = ψκt v, χ(θ, s, t)Nθ(s, t) = N(ψκt v) = Nθ(0, t),

thus

etv(s) =

∫ s

σ=0

y−(v(pθ(t, σ), θ), t)

〈
dc

ds
(σ), Nθ(σ, 0)

〉
dσ

y−(v, t)

=

∫ s

σ=0

Z(θ, 0, σ, t)

〈
dc

ds
(σ), Nθ(σ, 0)

〉
dσ.

The equation (13) implies for t, τ ≥ 0:

∣∣et+τv (s) − etv(s)
∣∣ ≤

∫

σ∈[0,s]

C3L
ε
−ε(c)e

−q1t

∣∣∣∣
〈
dc

ds
(σ), Nθ(σ, 0)

〉∣∣∣∣ dσ ≤ C3L
ε
−ε(c)

2e−q1t.
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By taking
Etv(pθ(r, s)) = rv + etv(s)N(v),

and with the foregoing upper estimate and the corollary 4.1 we get :
∣∣Et+τv (pθ(r, s)) − Etv(pθ(r, s))

∣∣ ≤ C3L
ε
−ε(c)

2e−q1t ≤ C3f (d(c(−ε), c(ε)))
2
e−q1t.

For every compact K of T 1M×M , the family of continuous mappings Etv(pθ(r, s))
satisfies the uniform Cauchy condition over K when t tends to +∞. It con-
verges thus towards a mapping continuous over T 1M ×M . Establishing the
formulas i) and ii) is immediate. There remains to proof the formula iii).

For w ∈ T 1M , r ∈ R, ξ ∈ TπwM , if J̃(w, r) is the geodesic Jacobi field along
the geodesic curve directed by w, such that J̃(w, 0) = 0TπwM and J̃ ′(w, 0) =
IdTπwM , the linear mapping tangent to the exponential satisfies ([15], 3.46
p.117) :

Tξ expπw rw =
1

r
J̃(w, r)ξ. (17)

From the bounds on the Gauss cuvature results the existence of a constant C4

such that for all r ∈ [0, 1] :
∥∥∥J̃(w, r) − rIdTπwM

∥∥∥ ≤ C4r
3.

The derivative of the exponential in every zero vector is the identity of the
tangent vector space, and χ(θ, 0, t) is the identity of Tpθ(t,0)M . Even by sit-
uating in a chart in the neighbourhood of pθ(t, s), there exists a constant C5

such that : ∣∣∣
〈
exp−1

πψκ
t
v pθ(t, s), n

〉
− y−(v, t)etv(s)

∣∣∣

≤

∫ s

σ=0

∥∥∥∥
∂

∂s
exp−1

πψκ
t
v pθ(t, σ) − χ(θ, σ, t)

∂pθ
∂s

(t, σ) dσ

∥∥∥∥

≤ C5d (πψκt v, pθ(t, s))
2

+ C1e
−q1t

∫ s

σ′=0

∫ σ′

σ=0

∥∥∥∥
∂pθ
∂s

(t, σ)

∥∥∥∥
∥∥∥∥
dc

ds
(σ′)

∥∥∥∥ dσdσ′

≤ C5d (πψκt v, pθ(t, s))
2 + C5L

ε
0(pθ(t, .))e

−q1tLε
−ε(c). (18)

The first term of the last member comes from the effect of the bounds over
the Gauss curvature on the exponential, and the second term comes from
the lemma 7.2 by carrying out two successive integrations. We deduce the
inequality : ∣∣∣∣∣∣

〈
exp−1

πψκ
t
v pθ(t, s), n

〉

y−(v, t)
− etv(s)

∣∣∣∣∣∣

≤ C5

[
d (πψκt v, pθ(t, s)) + e−q1tLε

−ε(c)
] ∫

σ∈[0,s]

y−(v(pθ(t, σ), θ), t)

y−(v, t)

∥∥∥∥
dc

ds
(σ)

∥∥∥∥ dσ.

The quantity d (πψκt v, pθ(t, s)) is bounded from above by Ls0(pθ(t, .) which is
inferior or equal to C1L

ε
−ε(c)e

−q1t. According to the theorem 5.1, there exists
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a constant C6 (depending on ε) such that the last integral above is bounded
by C6L

s
0(c) independently of t, from which we get the upper estimate :

∣∣∣∣∣∣

〈
exp−1

πψκ
t
v pθ(t, s), n

〉

y−(v, t)
− etv(s)

∣∣∣∣∣∣
≤ (1 + C1)C5C6L

ε
−ε(c)

2e−q1t.

The limit stated in the formula iii) of the theorem is thus obtained. ⋄

The linearization cooperates to some extent with the magnetic flow.

Corollary 8.1 For v ∈ T 1M , p ∈M , t ∈ R, we have

Eψtv(p) =
(〈
Ev(p), v

〉
− t

)
ψtv + y−(v, t)

〈
Ev(p), N(v)

〉
N(ψtv).

Proof : This immediately results from the construction of the theorem 8.1. ⋄

9 Regularity of the linearization

Theorem 9.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C∞-riemannian metric g whose curvature is negatively
pinched : −k2

0 ≤ K ≤ −k2
1 < 0, and with a C∞-magnetic field κ whose C1-norm

is bounded, with Jacobi endomorphism satisfying the pinching condition (1),
and such that the gradient of the centre-stable u− spaces is uniformly bounded.
For v ∈ T 1M and θ = vκ+∞

, the mapping Ev is of C2 over M , and with

the extended stable transfer X̃ coming from the definition 5.1, its derivative
at y ∈M is :

X̃ (v, vκ(y, θ)) .

Proof : With the notations of the sections 5 and 8, we have

∂etv(s)

∂s
= Z(θ, 0, s, t),

which converges when t tends to +∞ towards

X(v, vs).

The longitudinal component of the derivative of Ev is v, and the continuous
derivability of the derivative of Ev results from the corollary 5.1. ⋄

Corollary 9.1 With the same assumptions as in the theorem 9.1, for all v ∈
T 1M , the mapping Ev is a C2-diffeomorphism.

Proof : It is clear that the mapping Ev is surjective. It is a local C2-
diffeomorphism according to the theorem 9.1, it is therefore a cover of Tπ(v)M
(which is isomorphic to R2), and consequently it is a diffeomorphism. ⋄
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Remark 9.1 We may notice that the mapping v 7→ Ev(p) with p fixed cannot
be absolutely continuous.

Let v and w be two unitary tangent vectors belonging to a same unstable
manifold, such that p belongs to the curve directed by v. The vectors ψtv
and ψtw are arbitrarily close when t tends to −∞. The orthogonal component
of Eψtv(p) is zero and the norm of the orthogonal component of Eψtw(p) tends
to +∞ when t tends to −∞.

10 Flow conjugacy

Theorem 10.1 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and g2 be two C∞-riemannian metrics over M whose
curvatures are negatively pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2.

Let κ1, κ2 be two C∞-magnetic fields over M . The two magnetic flows ψ1
t =

ψg1,κ1

t and ψ2
t = ψg2,κ2

t are supposed to have negative Jacobi endomorphisms
(thus satisfying the pinching condition (1)). If the two magnetic flows have
the same marked length spectrum, then they are conjugated by a bi-hölder-
continuous homeomorphism h from T 1

1M onto T 1
2M which preserves the Lya-

pounoff exponents of periodic orbits.

Proof : The gradient of the centre-stables spaces u− and of the centre-
instables spaces u+ are uniformly bounded because the unitary tangent bundles
are compact. The Jacobi endomorphisms satisfie the pinching condition (1)
for the same reason. The existence of the bi-hölder-continuous conjugacy h
from T 1

1M onto T 1
2M is well-known [11, 20, 26]. Let v be a T -periodic

vector for ψ1 ; its conjugate hv is T -periodic for ψ2 and the conjugacy h
maps WS(v) onto WS(hv). The linearizations associated to ψi are written
down Ei for i = 1, 2. Let A be the bijection, restricted to the orthogonal
spaces identified to the real line, defined as follows :

A : R ≃ RN1(v)

(
E1
v ◦ π

)−1

−→ WS(v)
h

−→ WS(hv)
E2
hv ◦ π−→ RN2(hv) ≃ R

ξN1(v) 7−→ w 7−→ hw 7−→ A(ξ)N2(hv).

The Lyapounoff exponents are written down :

λ−,1(v) = −λ+,1(v) and λ−,2(hv) = −λ+,2(hv).

Let us denote :

ν1 = eTλ−,1(v) = y−,1(v, T ) and ν2 = eTλ−,2(hv) = y−,2(hv, T ).

According to the corollary 8.1, for each of the two flows, every T -periodic
vector v satisfies :

Eψ
T
v

∣∣∣
WS(v)

= y−(v, T )Ev

∣∣∣
WS(v)

.
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For all n ∈ N and ξ ∈ R we therefore have :

A(νn1 ξ) = νn2 A(ξ).

Because the conjugacy h is bi-hölder-continuous and because the linearizations
are of C2-class, there exist two constants C > 0 and α ∈]0, 1] such that for
all ξ ∈ [−1, 1] we have :

|A(ξ)| ≤ C|ξ|α and |ξ| ≤ C |A(ξ)|α .

Thus for all natural integer n we have :

νn2 |A(1)| ≤ Cνnα1 and νn1 ≤ C|A(1)|ανnα2 ,

which implies for all n ∈ N⋆ :

ln ν2 ≤ α ln ν1 +
lnC − ln |A(1)|

n
and ln ν1 ≤ α ln ν2 +

lnC + α ln |A(1)|

n
.

By making n tend to +∞ there comes

ln ν2 ≤ α ln ν1 and ln ν1 ≤ α ln ν2,

from which comes
α = 1 and ln ν2 = ln ν1 ;

thus the Lyapounoff exponents coincide on the periodic orbits. ⋄

The following result is a direct consequence of a property of transitive
Anosov flows on 3-manifolds [24].

Corollary 10.1 With the assumptions of the theorem 10.1, the conjugacy h
is of C∞-class.

The linearization allows to proof the following result.

Theorem 10.2 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and g2 be two C∞-riemannian metrics over M whose
curvatures are negatively pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2,. Let κ1

be a C∞-magnetic field over M . The magnetic flow ψ1
t = ψg1,κ1

t is supposed
to have a negative Jacobi endomorphism (thus satisfying the pinching condi-
tion (1)). If the magnetic flow ψ1

t and the geodesic flow ϕ2
t = ϕg2t have the

same marked length spectrum, and if the surface M has the same total volume
for the two metrics, then the two metrics are isotopic, which means that one is
the image of the other by a diffeomorphism f of M , homotopic to the identity,
and the magnetic field κ1 is zero.

Proof : This results from the corollary 10.1 : if the two volumes are equal,
and the flows ψ1 and ϕ2 are conjugate by an absolutely continuous homeomor-
phism, the result is known [17]. ⋄

To some extent, the linearisation determines the flow and the geometry.
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Theorem 10.3 Let M be an oriented surface diffeomorphic to R2, equipped
with two C∞-riemannian metrics g1 and g2 whose curvatures are negatively
pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2. Let κ1, κ2 be two C∞-magnetic

fields over M . The two magnetic flows ψ1
t = ψg1,κ1

t and ψ2
t = ψg2,k2t are

supposed to have negative Jacobi endomorphisms satisfying the pinching con-
dition (1) (the C1-norms of κ1 and κ2 are thus bounded), and the gradient of
the centre-stable u−,i spaces and the gradient of the centre-unstable u+,i spaces
for i = 1, 2 are supposed to be uniformly bounded. If there exist a diffeomor-
phism f : M →M and a point p ∈M satisfying

∀v ∈ T 1
1,pM ∃v′ ∈ T 1

2,f(p)M E2
v′ ◦ f = E1

v ,

then the two metrics are images one of each other by f , and so are the two
magnetic fields : κ2 = κ1 ◦ f .

Proof : Let w be in T 1
1M , q = πw and v = v1(p, w+∞). Let v′ be in T 1

2,f(p)M

such that E2
v′ ◦ f = E1

v . We have necessarily dwf(q) = v2(f(q), v′+∞
) : thus

the mapping f is an isometry. Its differential conjugates the flows, therefore
it preserves the geodesic curvature of the orbits, which means the magnetic
fields. ⋄

Theorem 10.4 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and g2 be two C∞-riemannian metrics over M whose
curvatures are negatively pinched : −k2

0 ≤ Ki ≤ −k2
1 < 0 for i = 1, 2.

Let κ1, κ2 be two C∞-magnetic fields over M . The two magnetic flows ψ1
t =

ψg1,κ1

t and ψ2
t = ψg2,κ2

t are supposed to have negative Jacobi endomorphisms
(thus satisfying the pinching condition (1)). If there exist two vectors v1 ∈

T 1
1 M̃ , v2 ∈ T 1

2 M̃ and a C1-diffeomorphism f : M → M homotopic to the iden-

tity, of which a lift f̃ over M̃ satisfies E2
v2

◦ f̃ = E1
v1

, then the two metrics are
isotopic, transported by f , and so are the two magnetic fields : κ2 = κ1 ◦ f .

Proof : Let w be in WCS(v), q = πw. We have necessarily dwf̃(q) =

v2(f̃(q), v′+∞
). Since w is chosen arbitrarily in the centre-stable manifold

of v, we may chose a vector w whose projection on T 1
1M has a dense or-

bit under ψ1 when the time tends to −∞ ; we may also replace w by every
element of its orbit. Writing down Π the covering of M̃ onto M , we ob-
tain ddΠ(w)f(Πq) = dΠ(v2(f̃(q), v′+∞

)). The differential of f thus preserves
the norm on a dense subset of the unitary tangent bundle ; because it is as-
sumed continuous, the mapping f is an isometry. The differential of f̃ preserves
the geodesic curvature on the whole orbit of w, thus by projecting and by a
density argument, we deduce that κ2 is the composed of κ1 by f . ⋄
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[15] S. Gallot, D. Hulin, J. Lafontaine Riemannian Geometry second edition.
Universitext, Springer : Berlin, 1987.

[16] N. Gouda. Magnetic flows of Anosov type. Tohoku Math. J. II. Ser. (1997),
49, No.2, 165–183.

22



[17] S. Grognet. Flots magnétiques en courbure négative. Ergod. Th. & Dynam.
Sys. 19 (1999), 413–436.

[18] S. Grognet. Entropies des flots magnétiques. Ann. Inst. Henri Poincaré
71 (1999), 395–424.
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