Marked length spectrum of magnetized surfaces

Stephane Grognet

To cite this version:

Stephane Grognet. Marked length spectrum of magnetized surfaces. 2005. <hal-00004296>

HAL Id: hal-00004296
https://hal.archives-ouvertes.fr/hal-00004296

Submitted on 19 Feb 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Marked length spectrum of magnetized surfaces

Stéphane Grognet

February 20, 2005

Université de Nantes, Département de Mathématiques, Laboratoire Jean Leray U. M. R. 6629, 2, rue de la Houssinière, BP 92208, F-44322 Nantes cedex 03. Stephane.Grognet@univ-nantes.fr

Abstract

The main result presented here is that the flow associated with a riemannian metric and a non zero magnetic field on a compact oriented surface without boundary, under assumptions of hyperbolic type, cannot have the same length spectrum of topologically corresponding periodic orbits as the geodesic flow associated with another riemannian metric having a negative curvature and the same total volume. The main tool is a regularization inspired by U. Hamenstädt's methods.

1 Introduction

The problems of entropic and spectral rigidity of riemannian manifolds have been widely studied, beginning with the surfaces [23]. The works treat riemannian metrics on compact surfaces [7], [9, [27], on higher dimension manifolds (1), [2], (8], 12], or on surfaces with singularities 21]. The related problem of boundary rigidity of a riemannian metric features many results 25, 30, 31. The rigidity of an absolutely continuous flow conjugacy persists in some way with the presence of a magnetic field on a compact surface [17, and so do entropic rigidity in this case 18. The topological entropy of the magnetic flow in higher dimension has also been studied [29], [6].

Unlike the geodesic flow, a conjugacy being only continuous (in fact Höldercontinuous) between two magnetic flows on a surface had not been treated.

When the surface is compact and the Jacobi endomorphism (14) of the magnetic flow is negative, this flow has got the Anosov property [16] ; two such flows have got the same marked length spectrum of periodic orbits if and only if they are \mathcal{C}^{0}-conjugated 17.

The main result presented here is that the flow associated with a riemannian metric and a non zero magnetic field on a closed surface, if it has got a negative

Jacobi endomorphism, cannot have the same marked length spectrum as the geodesic flow associated with another riemannian metric having a negative curvature and the same total volume. The assumption on the equality of the total volumes is essential 17.
Theorem 10.2 Let M be a closed (compact without boundary), connected, oriented surface. Let g_{1} and g_{2} be two \mathcal{C}^{∞}-riemannian metrics over M whose curvatures are negatively pinched : $-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$. Let κ_{1} be a \mathcal{C}^{∞}-magnetic field over M. The magnetic flow $\psi_{t}^{1}=\psi_{t}^{g_{1}, \kappa_{1}}$ is supposed to have a negative Jacobi endomorphism. If the magnetic flow ψ_{t}^{1} and the geodesic flow $\varphi_{t}^{2}=\varphi_{t}^{g_{2}}$ have the same marked length spectrum, and if the surface M has the same total volume for the two metrics, then the two metrics are isotopic, which means that one is the image of the other by a diffeomorphism f of M homotopic to the identity, and the magnetic field κ_{1} is zero.

The proof consists in coming back to the known case where there exists an absolutely continuous conjugacy between the two flows 17. The proof of the regularity of the conjugacy is inspired by U. Hamenstädt's methods 19, 20. We construct linearizations of the universal covering of the surface, compatible with the stable spaces of the flow. This is useful to proof that the Lyapounoff exponents of the periodic orbits are preserved (theorem 10.1), which ensures that the conjugacy is smooth [24. The regularity of the conjugacy used to proof the theorem 10.2 is valid in general for two magnetic flows (we denote $T_{i}^{1} M$ the unit tangent bundle of g_{i}):

Corollary 10.1 Let M be a closed (compact without boundary), connected, oriented surface. Let g_{1} and g_{2} be two \mathcal{C}^{∞}-riemannian metrics over M whose curvatures are negatively pinched : $-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$. Let κ_{1}, κ_{2} be two \mathcal{C}^{∞}-magnetic fields over M. The two magnetic flows $\psi_{t}^{1}=\psi_{t}^{g_{1}, \kappa_{1}}$ and $\psi_{t}^{2}=\psi_{t}^{g_{2}, \kappa_{2}}$ are supposed to have negative Jacobi endomorphisms. If the two magnetic flows have the same marked length spectrum, then they are conjugated by a \mathcal{C}^{∞}-diffeomorphism h from $T_{1}^{1} M$ onto $T_{2}^{1} M$.

A uniformization of a surface equipped with a metric with negative curvature has already been constructed 13] ; it applies to an Anosov flow on a 3manifold, but with the condition that the stable spaces be of \mathcal{C}^{1}-class, which is unlikely for the magnetic flow 28. The uniformly quasiconformal diffeomorphisms present another example of uniform structures on stable spaces [22].

It seems legitimate to ask if the construction presented here is practicable for other flows whose stable spaces are not necessarily of \mathcal{C}^{1}-class, and particularly to which extent a \mathcal{C}^{0}-conjugacy between two such flows could be differentiable.

Given a manifold M, diffeomorphic to \mathbf{R}^{2}, with a magnetic flow having a negative Jacobi endomorphism and having the gradient of centre-stable and centre-unstable spaces uniformly bounded, and given a point $p \in M$, and a unitary vector $v \in T_{p}^{1} M$, the linearization E_{v} (defined in section 8) sends M onto $T_{p} M$; the geodesic directed by v onto the straight line $\mathbf{R} v$; and the
horocycles associated with the centre－stable manifold of v onto the straight lines orthogonal to v ．This linearization，used as is，presents a little rigidity．

Theorem 10.3 Let M be an oriented surface diffeomorphic to \mathbf{R}^{2} ，equipped with two \mathcal{C}^{∞}－riemannian metrics g_{1} and g_{2} whose curvatures are negatively pinched ：$-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$ ．Let κ_{1}, κ_{2} be two \mathcal{C}^{∞}－magnetic fields over M ．The two magnetic flows $\psi_{t}^{1}=\psi_{t}^{g_{1}, \kappa_{1}}$ and $\psi_{t}^{2}=\psi_{t}^{g_{2}, k_{2}}$ are supposed to have pinched negative Jacobi endomorphisms（the \mathcal{C}^{1}－norms of κ_{1} and κ_{2} are thus bounded），and the gradient of the centre－stable $u_{-, i}$ spaces and the gradient of the centre－unstable $u_{+, i}$ spaces for $i=1,2$ are supposed to be uniformly bounded．If there exist a diffeomorphism $f: M \rightarrow M$ and a point $p \in M$ satisfying

$$
\forall v \in T_{1, p}^{1} M \quad \exists v^{\prime} \in T_{2, f(p)}^{1} M \quad E_{v^{\prime}}^{2} \circ f=E_{v}^{1},
$$

then the two metrics are images one of each other by f ，and so are the two magnetic fields：$\kappa_{2}=\kappa_{1} \circ f$ ．

When metrics and magnetic fields are invariants under a cocompact group， the rigidity of the linearization is stronger in some way．
Theorem 10.4 Let M be a closed（compact without boundary），connected，ori－ ented surface．Let g_{1} and g_{2} be two \mathcal{C}^{∞}－riemannian metrics over M whose cur－ vatures are negatively pinched $:-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$ ．Let κ_{1}, κ_{2} be two \mathcal{C}^{∞}－magnetic fields over M ．The two magnetic flows $\psi_{t}^{1}=\psi_{t}^{g_{1}, \kappa_{1}}$ and $\psi_{t}^{2}=\psi_{t}^{g_{2}, \kappa_{2}}$ are supposed to have negative Jacobi endomorphisms．If there exist two vectors $v_{1} \in T_{1}^{1} \widetilde{M}, v_{2} \in T_{2}^{1} \widetilde{M}$ and a \mathcal{C}^{1}－diffeomorphism $f: M \rightarrow M$ homotopic to the identity，of which a lift \widetilde{f} over \widetilde{M} satisfies $E_{v_{2}}^{2} \circ \widetilde{f}=E_{v_{1}}^{1}$ ， then the two metrics are isotopic，transported by f ，and so are the two magnetic fields ：$\kappa_{2}=\kappa_{1} \circ f$ ．

Using the tools of the construction of the linearization，we also get a result of constancy of（future）Lyapounoff exponents along the centre－stable manifolds （theorem 6．1）．

2 Notations and background

In the following，M denotes a complete，connected，oriented surface，equipped with a \mathcal{C}^{∞}－riemannian metric whose curvature is negatively pinched ：$-k_{0}^{2} \leq$ $K \leq-k_{1}^{2}<0$ ．The Cartan－Hadamard theorem（15］，p．138）implies that the universal cover \widetilde{M} is diffeomorphic to \mathbf{R}^{2} ，with cover mapping $\Pi: \widetilde{M} \rightarrow M$ ． Within sections，因，居，因 and 9 ，the surface M is simply connected，thus equal to \widetilde{M} ．The projection of $T M$ and $T^{1} M$ on M is written down π ．The cover mapping is $\Pi: \widetilde{M} \rightarrow M$ ．

The surface M is said closed if it is compact（without boundary）．
Let N be the rotation of angle $+\pi / 2$ in the tangent space $T M$ ．

For a curve $c: \mathbf{R} \rightarrow M$, the equation of the magnetic flow $\psi_{t}=\psi_{t}^{g, \kappa}=\psi_{t}^{\kappa}$ associated with a magnetic field $\kappa: M \rightarrow \mathbf{R}$ is 17]:

$$
\frac{D c}{d t}=\kappa(c(t)) N\left(\frac{d c}{d t}\right)
$$

The flow is a one-parameter group of diffeomorphisms acting on $T^{1} M$. The magnetic field κ is supposed to be smooth.

The Jacobi endomorphism associated with this second order differential equation (14] is the application [17]:

$$
\begin{aligned}
q: T^{1} M & \rightarrow \\
v & \mapsto
\end{aligned} \begin{gathered}
\mathbf{R} \\
\\
v(\pi(v))+\kappa(\pi(v))^{2}-\langle N(v),(\operatorname{grad} \kappa)(\pi(v))\rangle .
\end{gathered}
$$

When the surface M is compact (closed), saying that the Jacobi endomorphism is negative is equivalent to saying that it is pinched between two strictly negative constants. In the following, the real function $\kappa: M \rightarrow \mathbf{R}$ is a magnetic field such that the associated Jacobi endomorphism q satisfies the pinching condition, which means that there exist two positive constants q_{0} et q_{1} verifying :

$$
\begin{equation*}
-q_{0}^{2} \leq q \leq-q_{1}^{2}<0 \tag{1}
\end{equation*}
$$

Definition 2.1 17] With the assumption (1), to a vector $v \in T^{1} M$ are associated the stable $j_{-}(v, t)$ and unstable $j_{+}(v, t)$ Jacobi fields along the orbit of v, with components $\left(x_{-}(v, t), y_{-}(v, t)\right)$ and $\left(x_{+}(v, t), y_{+}(v, t)\right)$ in the base $\left(\psi_{t} v, N\left(\psi_{t} v\right)\right)$ satisfying

$$
\begin{array}{ll}
x_{-}(v,+\infty)=0, & y_{-}(v,+\infty)=0, \\
x_{+}(v,-\infty)=0, & y_{-}(v, 0)=1 \\
\hline(v,-\infty)=0, & y_{+}(v, 0)=1
\end{array}
$$

The stable and unstable spaces are determined by the mappings :

$$
\begin{aligned}
& v \mapsto\left(w_{-}(v), u_{-}(v)\right)=\left(x_{-}(v, 0), y_{-}^{\prime}(v, 0)\right), \\
& v \mapsto\left(w_{+}(v), u_{+}(v)\right)=\left(x_{+}(v, 0), y_{+}^{\prime}(v, 0)\right) .
\end{aligned}
$$

The tangential component of the stable space at $v \in T^{1} M$ satisfies the relation 17:

$$
\begin{equation*}
w_{-}(v)=x_{-}(v, 0)=\int_{t=+\infty}^{0} \kappa\left(\pi \psi_{t}^{\kappa} v\right) y_{-}(v, t) d t \tag{2}
\end{equation*}
$$

Writing

$$
\begin{equation*}
C_{1}=1+\frac{\|\kappa\|_{\infty}+\|\kappa\|_{\infty}^{2}}{q_{1}}+q_{0} \tag{3}
\end{equation*}
$$

yields as in 18], section 3.2 :

$$
\begin{equation*}
\left\|j_{-}(v, t)\right\|+\left\|j_{-}^{\prime}(v, t)\right\| \leq C_{1} y_{-}(v, t) \tag{4}
\end{equation*}
$$

Let $W^{S}(v), W^{C S}(v), W^{U}(v)$ and $W^{C U}(v)$ be respectively the stable, centrestable, unstable, centre-unstable manifolds associated with the unitary vector v. The stable horocycle of the magnetic flow associated with v is $H_{v}^{\kappa}(0)=$ $H_{v}(0)=\pi W^{S}(v)$. The stable horocycle associated with $\psi_{t} v$ is $H_{v}^{\kappa}(t)=H_{v}(t)$. The Busemann function associated with v is the mapping $B_{v}: M \rightarrow \mathbf{R}$ such that $B_{v}\left(H_{v}(t)\right)=t$. Under the assumption (1), the centre-stable and centre-instable spaces identified to the Ricatti applications $u_{-}(v)=y_{-}^{\prime}(v, 0)$ and $u_{+}(v)=y_{+}^{\prime}(v, 0)$ are of \mathcal{C}^{1}-class over $T^{1} M$ and $T^{1} \widetilde{M}$; the horizontal (orthogonal) component of the stable $\left((v, t) \mapsto y_{-}(v, t)\right)$ and instable $((v, t) \mapsto$ $\left.y_{+}(v, t)\right)$ jacobi fields are of \mathcal{C}^{1}-class over $T^{1} M \times \mathbf{R}$ and $T^{1} \widetilde{M} \times \mathbf{R}$; the circle at infinity $\partial \widetilde{M}$ admits also a differential structure of \mathcal{C}^{1}-class (17, section 7).

Let $v_{+\infty}^{\kappa}=v_{+\infty}$ be the point at infinity corresponding to the future orbit of $v \in T^{1} \widetilde{M}$ (and identified with its centre-stable manifold). Given two distinct points $x \in M$ and $y \in M \cup \partial M$, we denote $v^{\kappa}(x, y)=v(x, y)$ as the unitary vector tangent to M at x, directing the unique curve solution joining x to y (in this order).

3 Liouville measure and symplectic structure on the space of orbits

Let M be a complete connected oriented surface, equipped with a riemannian metric g of \mathcal{C}^{∞}-class with pinched negative curvature $-k_{0}^{2} \leq K \leq-k_{1}^{2}$, and with a uniformly bounded magnetic field κ, of \mathcal{C}^{∞}-class, with its Jacobi endomorphism satisfying the pinching condition (11). Using the method of the second order differential equations of Foulon [18], let $X(\kappa)$ be the generating field of the magnetic flow, H_{0} be the horizontal field, Y_{0} be the vertical field ; together, they constitute a basis field of the bundle $T T^{1} M$, tangent to the unitary tangent bundle. Let $\left(X(\kappa)^{\star}, H_{0}^{\star}, Y_{0}^{\star}\right)$ be the dual basis field. Let v be in $T^{1} M$ and $j_{i}=x_{i} \psi_{t}^{\kappa} v+y_{i} N\left(\psi_{t}^{\kappa} v\right)$ for $i=1,2$ be two Jacobi fields, with $x_{i}^{\prime}=\kappa y_{i}$; they are associated to the tangent vectors $\xi_{i}=x_{i} X(\kappa)+y_{i} H_{0}+y_{i}^{\prime} Y_{0}$ at every point of the orbit of v. The wronskian form

$$
\Omega=H_{0}^{\star} \wedge Y_{0}^{\star}
$$

applied to the pair of Jacobi fields yields

$$
\Omega\left(j_{1}, j_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} .
$$

This is an invariant 2-form under the magnetic flow on $T^{1} M$. It gives a symplectic form on the space of orbits of the magnetic flow. Its absolute value is equal to the Liouville measure on the space of orbits 17, 18]. We have :

$$
\begin{equation*}
\Omega\left(j_{-}(v, \cdot), j_{+}(v, \cdot)\right)=\left(u_{+}-u_{-}\right)(v)=y_{-}(v, t)\left(u_{+}-u_{-}\right)\left(\psi_{t}^{\kappa} v\right) y_{+}(v, t) \tag{5}
\end{equation*}
$$

for every $t \in \mathbf{R}$. This quantity lays between $2 q_{1}$ and $2 q_{0}$.

4 Curvature of the horocycles

Theorem 4.1 On a complete, connected, simply connected, oriented surface M, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched : $-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (1), and such that the gradient of the centre-stable u_{-}(respectively centre-unstable u_{+}) spaces is uniformly bounded, the geodesic curvature of the stable (respectively unstable) horocycles of the magnetic flow is uniformly bounded.

Proof : The unstable case is similar to the stable case ; we only consider this

Figure 1:
last one. Let :
i) v be in $T^{1} M$,
ii) $s \rightarrow v_{s}$ be a smooth curve from $]-\varepsilon, \varepsilon\left[\right.$ to $W^{S}(v)$ such that $\left\langle\frac{\partial}{\partial s} \pi v_{s}, N\left(v_{s}\right)\right\rangle=$ 1 for every $s \in]-\varepsilon, \varepsilon[$,
iii) $c(s)=\pi v_{s}$,
iv) $c_{t}(s)=\pi \psi_{t}^{\kappa} v_{s}$,
v) $T(s, t)=\frac{D}{d t} c_{t}(s), N(s, t)=N(T(s, t))$,
vi) $S(s, t)=\frac{D}{d s} c_{t}(s)=x_{-}(v, t) T+y_{-}(v, t) N$,
vii) $\mathcal{Y}(s, t)=\frac{\partial}{\partial s} y_{-}\left(v_{s}, t\right)$,
viii) $u_{-}\left(\psi_{t}^{\kappa} v_{s}\right)=y_{-}\left(v_{s}, t\right)^{-1} \frac{\partial}{\partial t} y_{-}\left(v_{s}, t\right)=\frac{\partial}{\partial t} \ln y_{-}\left(v_{s}, t\right)$,
ix) $\mathcal{W}(s, t)=y_{-}\left(v_{s}, t\right)^{-1} \mathcal{Y}(s, t)=\frac{\partial}{\partial s} \ln y_{-}\left(v_{s}, t\right)$,
x) $L_{0}^{s}\left(c_{t}\right)$ be the length of the curve c_{t} on the interval $[0, s]$.

We have $\mathcal{W}(s, 0)=0$ for all s and

$$
\mathcal{W}^{\prime}(s, t)=\frac{\partial}{\partial t} \mathcal{W}(s, t)=\frac{\partial}{\partial s} u_{-}\left(\psi_{t}^{\kappa} v_{s}\right)
$$

The equations (3), (4), imply

$$
\begin{equation*}
\left|\mathcal{W}^{\prime}(s, t)\right| \leq\left\|\nabla u_{-}\right\|_{\infty} C_{1} y_{-}\left(v_{s}, t\right) . \tag{6}
\end{equation*}
$$

Thus we have for all $t \geq 0$ and all s :

$$
\begin{align*}
&|\mathcal{W}(s, t)| \leq C_{1}\left\|\nabla u_{-}\right\|_{\infty} \int_{\tau=0}^{t} e^{-q_{1} \tau} d \tau \leq \frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} \\
&|\mathcal{Y}(s, t)| \leq \frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} y_{-}\left(v_{s}, t\right) \tag{7}
\end{align*}
$$

With the assumption $\langle S, N(T)\rangle(s, 0)=1$ for all $s \in]-\varepsilon, \varepsilon[$, there comes :

$$
\begin{equation*}
\frac{d c}{d s}(s)=S(s, 0)=w_{-}\left(v_{s}\right) v_{s}+N\left(v_{s}\right) \tag{8}
\end{equation*}
$$

thus

$$
1 \leq\left\|\frac{d c}{d s}(s)\right\| \leq C_{1}
$$

We have also :

$$
\begin{equation*}
\frac{D v_{s}}{d s}=\left.\frac{D}{d t}\right|_{t=0} ^{S=}\left(y_{-}^{\prime}+\kappa x_{-}\right)(s, 0) N\left(v_{s}\right)=\left(u_{-}\left(v_{s}\right)+\kappa(c(s)) w_{-}\left(v_{s}\right)\right) N\left(v_{s}\right) \tag{9}
\end{equation*}
$$

From the relations (8) and (9) comes :

$$
\begin{equation*}
\frac{D}{d s} \frac{d c}{d s}(s)=\left[\frac{d w_{-}\left(v_{s}\right)}{d s}-\left(u_{-}+\kappa w_{-}\right)\right] v_{s}+\left(u_{-}+\kappa w_{-}\right) w_{-} N\left(v_{s}\right) \tag{10}
\end{equation*}
$$

In order to estimate the curvature of c, the norm of $d w_{-}\left(v_{s}\right) / d s$ should be controlled. The equation (2) gives :

$$
\frac{d w_{-}\left(v_{s}\right)}{d s}=\int_{t=+\infty}^{0}\left(\langle\nabla \kappa, S\rangle y_{-}\left(v_{s}, t\right)+\kappa \mathcal{Y}(s, t)\right) d t
$$

The upper estimate (4) implies :

$$
\|S(s, t)\| \leq C_{1} y_{-}\left(v_{s}, t\right) \leq C_{1} e^{-q_{1} t}
$$

With the equation (7), this yields for all $s \in[-\varepsilon, \varepsilon]$:

$$
\left|\frac{d w_{-}\left(v_{s}\right)}{d s}\right| \leq \frac{\|\nabla \kappa\|_{\infty}}{2 q_{1}} C_{1}+\|\kappa\|_{\infty} \frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}^{2}} .
$$

Let this last constant be written down C_{2}. The geodesic curvature of the horocycle $c(s)$ is

$$
\kappa_{-}(s)=\frac{\operatorname{det}\left(\frac{d c}{d s}, \frac{D}{d s} \frac{d c}{d s}\right)}{\left\|\frac{d c}{d s}\right\|}
$$

From the equalities (8) and (10) we deduce

$$
\kappa_{-}\left(1+w_{-}^{2}\right)^{\frac{3}{2}}=\left(1+w_{-}^{2}\right)\left(u_{-}+\kappa w_{-}\right)-\frac{d w_{-}\left(v_{s}\right)}{d s}
$$

thus

$$
\left|\kappa_{-}\right| \leq\left(q_{0}+\|\kappa\|_{\infty}\left\|w_{-}\right\|_{\infty}\right)+C_{2} .
$$

In conclusion, the geodesic curvature of the stable horocycles is uniformly bounded, and so is the geodesic curvature of the unstable horocycles.

The proof of the following result is left to the reader as an exercise.
Corollary 4.1 With the assumptions of the theorem 4.1, there exists a mapping $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$, continuous at 0 and which annulates at 0 , such that for all horocycle H of the magnetic flow, every diffeomorphism $c: \mathbf{R} \rightarrow H$ and all $a, b \in \mathbf{R}$, we have

$$
L_{a}^{b}(c) \leq f(d(c(a), c(b))) .
$$

5 Fluctuation of the stable Jacobi fields

Theorem 5.1 Let M be a complete, connected, oriented, simply connected surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched : $-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (1), and such that the gradient of the centre-stable space u_{-}
is uniformly bounded. For $\theta \in \partial M$ and $\left(p^{\prime}, p\right) \in M^{2}$, the family of mappings $y_{-}\left(v\left(p^{\prime}, \theta\right), t\right) / y_{-}(v(p, \theta), t)$ converges when t grows to $+\infty$, uniformly on the compacts of $\partial M \times M^{2}$, to a mapping $\mathcal{X}\left(\theta, p, p^{\prime}\right)$, continuous on $\partial M \times M^{2}$, and which admits a partial derivative with respect to p, p^{\prime} in the direction M^{2}, continuous on $\partial M \times M^{2}$.

Proof : Let :
i) θ belong to ∂M,
ii) p belong to M,
iii) $c(s)$ be a smooth parametrization of the horocycle $\pi W^{S}(v(p, \theta))$ such that $c(0)=p$ and $\left\langle\frac{d c}{d s}, N(v(c(s, \theta))\rangle=1\right.$,
iv) $p_{\theta}(r, s)=\pi \psi_{r}^{\kappa} v(c(s), \theta)$ the smooth parametrization of M by \mathbf{R}^{2} which follows from it for all $\theta \in \partial M$,
v) $T_{\theta}(s, t)=\frac{\partial}{\partial t} p_{\theta}(t, s), N_{\theta}(s, t)=N\left(T_{\theta}(s, t)\right), S_{\theta}(s, t)=\frac{\partial}{\partial s} p_{\theta}(t, s)$,
vi) $\mathcal{Z}(\theta, r, s, t)=\frac{y_{-}\left(v\left(p_{\theta}(r, s), \theta\right), t\right)}{y_{-}(v(p, \theta), t)}$,
vii) $\mathcal{Y}(\theta, s, t)=\frac{\partial}{\partial s} y_{-}(v(c(s), \theta), t)$,
viii) $\mathcal{W}(\theta, s, t)=y_{-}(v(c(s), \theta), t)^{-1} \mathcal{Y}(\theta, s, t)=\frac{\partial}{\partial s} \ln y_{-}(v(c(s), \theta), t)$,
ix) $L_{a}^{b}\left(p_{\theta}(r,).\right)$ be the length of the curve $s \mapsto p_{\theta}(r, s)$ on the interval $[a, b]$.

For all real numbers r, s, t we have :

$$
\begin{equation*}
\mathcal{Z}(\theta, r, s, t)=\frac{y_{-}\left(v\left(p_{\theta}(r, s), \theta\right),-r\right)}{y_{-}\left(v\left(p_{\theta}(r, 0), \theta\right),-r\right)} \mathcal{Z}(\theta, 0, s, t+r) \tag{11}
\end{equation*}
$$

The mapping $(\theta, r, s, t) \mapsto y_{-}\left(v\left(p_{\theta}(r, s), \theta\right), t\right)$ is continuous on $\partial M \times \mathbf{R}^{3}$ and admits partial derivatives with respect to r, s, t, continuous on $\partial M \times \mathbf{R}^{3}$. Studying the uniform convergence of \mathcal{W} when t tends to $+\infty$ is thus sufficient to proof the derivability of $\mathcal{X}\left(\theta, p, p^{\prime}\right)$ with respect to p^{\prime}.

We have $\mathcal{Z}(\theta, 0,0, t)=1$ for all t, θ, and $\mathcal{Z}(\theta, r, s, 0)=1$ for all r, s, θ; thus $\mathcal{W}(\theta, s, 0)=0$ for all s, θ. The relation

$$
\mathcal{W}^{\prime}(\theta, s, t)=\frac{\partial}{\partial t} \mathcal{W}(\theta, s, t)=\frac{\partial}{\partial s} u_{-}\left(\psi_{t}^{\kappa} v(c(s), \theta)\right)
$$

and the equation (4) imply

$$
\begin{equation*}
\left|\mathcal{W}^{\prime}(\theta, s, t)\right| \leq\left\|\nabla u_{-}\right\|_{\infty} C_{1} y_{-}(v(c(s), \theta), t) \tag{12}
\end{equation*}
$$

Thus we have for all $t \geq 0$ and all s :

$$
\begin{gathered}
|\mathcal{W}(\theta, s, t)| \leq\left\|\nabla u_{-}\right\|_{\infty} C_{1} \int_{\tau=0}^{t} e^{-q_{1} \tau} d \tau \leq \frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}}, \\
|\mathcal{Y}(\theta, s, t)| \leq \frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} y_{-}(v(c(s), \theta), t), \\
\left|\frac{D}{d s} \mathcal{Z}(\theta, 0, s, t)\right| \leq \frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} \mathcal{Z}(\theta, 0, s, t) .
\end{gathered}
$$

Integrating the last inequality with respect to s gives

$$
\exp \left(-\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}}|s|\right) \leq|\mathcal{Z}(\theta, 0, s, t)| \leq \exp \left(\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}}|s|\right)
$$

Because of $|s| \leq L_{0}^{s}(c) \leq C_{1}|s|$, we obtain

$$
|\mathcal{Z}(\theta, 0, s, t)-1| \leq \exp \left(\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}(c)\right)-\exp \left(-\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}(c)\right)
$$

Even by changing the horocycle, there comes for all $t \geq 0$ and all r, s :

$$
\begin{gathered}
|\mathcal{Z}(\theta, r, s, t)-1| \\
\leq \exp \left(\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}\left(p_{\theta}(r, .)\right)\right)-\exp \left(-\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}\left(p_{\theta}(r, .)\right)\right)
\end{gathered}
$$

We get for all $t, \tau \geq 0$ and all $s \in[-\varepsilon, \varepsilon]$:

$$
\begin{gathered}
|\mathcal{Z}(\theta, 0, s, t+\tau)-\mathcal{Z}(\theta, 0, s, t)|=|\mathcal{Z}(\theta, 0, s, t)||\mathcal{Z}(\theta, t, s, \tau)-1| \\
\leq \exp \left(\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}(c)\right) \\
\times\left[\exp \left(\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}\left(p_{\theta}(t, .)\right)\right)-\exp \left(-\frac{C_{1}\left\|\nabla u_{-}\right\|_{\infty}}{q_{1}} L_{0}^{s}\left(p_{\theta}(t, .)\right)\right] .\right.
\end{gathered}
$$

From the upper estimate $L_{0}^{s}\left(p_{\theta}(r,).\right) \leq L_{0}^{s}(c) e^{-q_{1} t}$ results the existence of a constant C_{3} depending only from $\left\|\nabla u_{-}\right\|_{\infty},\|\kappa\|_{\infty}, L_{-\varepsilon}^{\varepsilon}(c), q_{1}$ and q_{0} such that for all t, τ positive and $s \in[-\varepsilon, \varepsilon]$ we have

$$
\begin{equation*}
|\mathcal{Z}(\theta, 0, s, t+\tau)-\mathcal{Z}(\theta, 0, s, t)| \leq C_{3} L_{0}^{s}\left(p_{\theta}(t, .)\right) \leq C_{3} L_{-\varepsilon}^{\varepsilon}(c) e^{-q_{1} t} \tag{13}
\end{equation*}
$$

From the corollary 4.1, the equations (11) and (13) imply :

$$
\begin{aligned}
& \mid \mathcal{Z}(\theta, r, s, t+\tau)-\mathcal{Z}(\theta, r, s, t)\left|=\left|\frac{y_{-}\left(v\left(p_{\theta}(r, s), \theta\right), t+\tau\right)}{y_{-}(v(p, \theta), t+\tau)}-\frac{y_{-}\left(v\left(p_{\theta}(r, s), \theta\right), t\right)}{y_{-}(v(p, \theta), t)}\right|\right. \\
& \leq \frac{y_{-}\left(v\left(p_{\theta}(r, s), \theta\right),-r\right)}{y_{-}\left(v\left(p_{\theta}(r, 0), \theta\right),-r\right)} C_{3} f(d(c(-\varepsilon), c(\varepsilon))) e^{-q_{1} t} .
\end{aligned}
$$

The uniform Cauchy criterion on the compacts of $\partial M \times M^{2}$ implies the convergence when t goes to $+\infty$ of $\mathcal{Z}(\theta, r, s, t)$ to a fonction $\mathcal{X}\left(\theta, p, p_{\theta}(r, s)\right)$ continuous on $\partial M \times M^{2}$.

The equation (11) ensures the existence and continuity of the partial derivative of $\mathcal{X}\left(\theta, p, p_{\theta}(r, s)\right)$ with respect to r.

The equation (12) implies the upper estimate for $t, \tau \geq 0$:

$$
|\mathcal{W}(\theta, s, t+\tau)-\mathcal{W}(\theta, s, t)| \leq \int_{\rho=t}^{t+\tau} C_{1} e^{-q_{1} \rho}\left\|\nabla u_{-}\right\|_{\infty} d \rho
$$

thus

$$
\begin{equation*}
|\mathcal{W}(\theta, s, t+\tau)-\mathcal{W}(\theta, s, t)| \leq e^{-q_{1} t} \frac{C_{1}}{q_{1}}\left\|\nabla u_{-}\right\|_{\infty} \tag{14}
\end{equation*}
$$

which ensures the convergence, uniform over the compacts of $\partial M \times \mathbf{R}$, of the family of mappings $\mathcal{W}(\theta, s, t)$, when t goes to $+\infty$, to a continuous mapping of θ, s. The relations (11), (14) and

$$
\frac{\partial}{\partial s} \mathcal{Z}(\theta, 0, s, t)=\mathcal{W}(\theta, s, t) \mathcal{Z}(\theta, 0, s, t)
$$

imply the uniform convergence, over the compacts of $\partial M \times \mathbf{R}^{2}$, of the family of mappings $\partial \mathcal{Z} / \partial s(\theta, r, s, t)$, when t goes to $+\infty$, to a continuous mapping. This gives the condition of derivability with respect to s for the function $\mathcal{X}\left(\theta, p, p_{\theta}(r, s)\right)$, thus the derivability with respect to p^{\prime} anounced for the function $\mathcal{X}\left(\theta, p, p^{\prime}\right)$. The trivial relation

$$
\begin{equation*}
\mathcal{X}\left(\theta, p, p^{\prime}\right) \cdot \mathcal{X}\left(\theta, p^{\prime}, p\right)=1 \tag{15}
\end{equation*}
$$

gives the derivability with respect to p.
Definition 5.1 With the assumptions of the theorem 5.1, for $v \in T^{1} M, v^{\prime} \in$ $W^{C S}(v)$, the limit mapping calculated in the theorem 5.1 is called stable transfer from v^{\prime} to v and is written down :

$$
X\left(v, v^{\prime}\right)=\lim _{t \rightarrow+\infty} \frac{y_{-}\left(v^{\prime}, t\right)}{y_{-}(v, t)}=\mathcal{X}\left(v_{+\infty}, \pi v, \pi v^{\prime}\right)
$$

The extended stable transfer from v^{\prime} to v is the mapping which to $\xi \in T_{\pi v^{\prime}} M$ associates

$$
\widetilde{X}\left(v, v^{\prime}\right) \xi=X\left(v, v^{\prime}\right)\left\langle\xi, N\left(v^{\prime}\right)\right\rangle N(v)+\left\langle\xi, v^{\prime}\right\rangle v
$$

Corollary 5.1 Let M be a complete, connected, oriented, simply connected surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched $:-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (1), and such that the gradient of the centre-stable space u_{-}is uniformly bounded. The stable transfer and extended stable transfer are of \mathcal{C}^{1}-class on a given centre-stable manifold.

Proof : This follows from the derivability of the stable transfer stated in the theorem 5.1.

The symplectic structure of the space of geodesics (section 3) leads to the following result.

Theorem 5.2 Let M be a complete, connected, oriented, simply connected surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched : $-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (1), and such that the gradient of the centre-stable u_{-}(respectively centre-unstable u_{+}) spaces is uniformly bounded. For a given point θ at infinity, and unitary vectors v, v^{\prime} belonging to the centre-stable manifold $W^{C S}(\theta)$ determined by θ, the family of mappings $\left(v, v^{\prime}\right) \mapsto y_{+}\left(v^{\prime}, t\right) / y_{+}(v, t)$ converges uniformly when t goes to $+\infty$ to a continuous mapping. The limit mapping admits a partial derivative with respect to v^{\prime} (in the direction $W^{C S}(\theta)$), continuous with respect to $\left(v, v^{\prime}\right)$.
Proof : Following the formula (5), for $v, v^{\prime} \in T^{1} M, t \in \mathbf{R}^{+}$, we have

$$
\frac{y_{+}\left(v^{\prime}, t\right)}{y_{+}(v, t)}=\frac{\left(u_{+}-u_{-}\right)\left(v^{\prime}\right) \cdot\left(u_{+}-u_{-}\right)\left(\psi_{t}^{\kappa} v\right) \cdot y_{-}(v, t)}{\left(u_{+}-u_{-}\right)\left(\psi_{t}^{\kappa} v^{\prime}\right) \cdot y_{-}\left(v^{\prime}, t\right) \cdot\left(u_{+}-u_{-}\right)(v)} .
$$

Because the gradient of $\left(u_{+}-u_{-}\right)$is uniformly bounded, the quotient $\left(u_{+}-\right.$ $\left.u_{-}\right)\left(\psi_{t}^{\kappa} v\right) /\left(u_{+}-u_{-}\right)\left(\psi_{t}^{\kappa} v^{\prime}\right)$ tends to one uniformly over the compacts, when t goes to $+\infty$, this fact implying the uniform convergence over the compacts :

$$
\frac{y_{+}\left(v^{\prime}, t\right)}{y_{+}(v, t)} \quad \underset{t \rightarrow+\infty}{\longrightarrow} \frac{\left(u_{+}-u_{-}\right)\left(v^{\prime}\right)}{\left(u_{+}-u_{-}\right)(v)} X\left(v^{\prime}, v\right)
$$

The regularity of the limit results from the theorem 5.1.
\diamond
Definition 5.2 With the assumptions of the theorem 5.2, for $v \in T^{1} M, v^{\prime} \in$ $W^{C S}(v)$, the limit mapping calculated in the theorem 5.7 is called unstable transfer from v^{\prime} to v and is written down :

$$
\underline{X}\left(v, v^{\prime}\right)=\lim _{t \rightarrow+\infty} \frac{y_{+}\left(v^{\prime}, t\right)}{y_{+}(v, t)}=\frac{\left(u_{+}-u_{-}\right)\left(v^{\prime}\right)}{\left(u_{+}-u_{-}\right)(v)} X\left(v^{\prime}, v\right) .
$$

The extended unstable transfer from v^{\prime} to v is the mapping which to $\xi \in T_{\pi v^{\prime}} M$ associates

$$
\underline{\tilde{X}}\left(v, v^{\prime}\right) \xi=\underline{X}\left(v, v^{\prime}\right)\left\langle\xi, N\left(v^{\prime}\right)\right\rangle N(v)+\left\langle\xi, v^{\prime}\right\rangle v .
$$

The following result is immediate.
Corollary 5.2 Let M be a complete, connected, oriented, simply connected surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched : $-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (1), and such that the gradient of the centre-stable u_{-}(respectively centre-unstable u_{+}) spaces is uniformly bounded. The unstable transfer and the extended unstable transfer are of \mathcal{C}^{1}-class on a given centre-stable manifold.

6 Lyapounoff exponents

Theorem 6.1 Let M be a compact, connected, oriented, surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched $:-k_{0}^{2} \leq$ $K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ with Jacobi endomorphism satisfying the pinching condition (ป). If the (future) Lyapounoff exponents of the magnetic flow are defined at an element v of $T^{1} M$, then they are defined and constant along its centre-stable manifold $W^{C S}(v)$.

Proof: The compacity insures the uniform bounds over the gradients of κ, u_{+} and u_{-}. It is sufficient to pass to the universal cover of M and to apply the theorems 5.1 and 5.2 .

7 Horocyclic transport

In this section are collected some tools for the section 8 ; the notations and the assumptions are those of the section $\sqrt{5}$, particularly of the proof of the theorem 5.1. Let $\tau(\theta, s, t)$ be the parallel transport along the curve $p_{\theta}(t,$. which sends $T_{p_{\theta}(t, s)} M$ onto $T_{p_{\theta}(t, 0)} M$. Let $\zeta(\theta, s, t)$ be the angle between the vectors $\tau(\theta, s, t) \cdot T_{\theta}(s, t)$ and $T_{\theta}(0, t)$. Composing τ with the rotation of angle ζ yields the isometry

$$
\chi(\theta, s, t)=\rho_{\zeta(\theta, s, t)} \tau(\theta, s, t)
$$

which sends the direct orthonormal basis $\left(T_{\theta}(s, t), N_{\theta}(s, t)\right)$ onto the direct orthonormal basis $\left(T_{\theta}(0, t), N_{\theta}(0, t)\right)$.

Definition 7.1 The mapping $\chi(\theta, s, t)$ is called horocyclic transport.
Remark 7.1 The horocyclic transport is continuous on $\partial M \times \mathbf{R}^{2}$.
In this section the control of χ is precised in different ways.
Lemma 7.1 With the above notations, we have for all $\theta \in \partial M, s \in[-\varepsilon, \varepsilon]$, $t \in \mathbf{R}^{+}$:

$$
\left\|\frac{D}{d t} \chi(\theta, s, t)\right\| \leq\left(2 k_{0}^{2}+\|\nabla \kappa\|_{\infty}\right) C_{1} e^{-q_{1} t}|s|
$$

Proof : For all $\theta \in \partial M, t \in \mathbf{R}, s \in]-\varepsilon, \varepsilon\left[, \xi \in T_{p_{\theta}(t, s)} M, \eta \in T_{p_{\theta}(t, 0)} M\right.$, we have

$$
\left\{\begin{array}{c}
\frac{D}{d s} \tau(\theta, s, t) \xi=0 \\
\tau(\theta, 0, t) \eta=\eta
\end{array}\right.
$$

The field $D \tau(\theta, s, t) / d t$ is the solution \mathcal{T} of

$$
\left\{\begin{array}{c}
\frac{D \mathcal{T}}{d s}(\theta, s, t)=R(T, S) \tau(\theta, s, t) \\
\mathcal{T}(\theta, 0, t)=0
\end{array}\right.
$$

thus, due to the upper estimate (4), it satisfies the differential inequality

$$
\left\|\frac{D \mathcal{T}}{d s}(\theta, s, t)\right\| \leq k_{0}^{2} C_{1} e^{-q_{1} t}
$$

therefore

$$
\begin{equation*}
\left\|\frac{D \tau}{d t}(\theta, s, t)\right\| \leq \int_{\sigma=0}^{s} k_{0}^{2} C_{1} e^{-q_{1} t} d \sigma \leq k_{0}^{2} C_{1} e^{-q_{1} t}|s| . \tag{16}
\end{equation*}
$$

We have

$$
\begin{aligned}
\cos \zeta(\theta, s, t) & =\left\langle\tau(\theta, s, t) T_{\theta}(s, t), T_{\theta}(0, t)\right\rangle \\
\sin \zeta(\theta, s, t) & =\left\langle\tau(\theta, s, t) T_{\theta}(s, t), N_{\theta}(0, t)\right\rangle
\end{aligned}
$$

thus

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{\partial}{\partial t} \cos \zeta(\theta, s, t)=\left\langle\frac{D \tau}{d t}(\theta, s, t) T_{\theta}(s, t), T_{\theta}(0, t)\right\rangle \\
+\left\langle\tau(\theta, s, t) \kappa\left(p_{\theta}(t, s)\right) N_{\theta}(s, t), T_{\theta}(0, t)\right\rangle+\left\langle\tau(\theta, s, t) T_{\theta}(s, t), \kappa\left(p_{\theta}(t, 0)\right) N_{\theta}(0, t)\right\rangle \\
=\left\langle\frac{D \tau}{d t}(\theta, s, t) T_{\theta}(s, t), T_{\theta}(0, t)\right\rangle+\sin \zeta(\theta, s, t)\left[\kappa\left(p_{\theta}(t, 0)\right)-\kappa\left(p_{\theta}(t, s)\right)\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{\partial}{\partial t} \sin \zeta(\theta, s, t)=\left\langle\frac{D \tau}{d t}(\theta, s, t) T_{\theta}(s, t), N_{\theta}(s, t)\right\rangle \\
+\left\langle\tau(\theta, s, t) \kappa\left(p_{\theta}(t, s)\right) N_{\theta}(s, t), N_{\theta}(0, t)\right\rangle+\left\langle\tau(\theta, s, t) T_{\theta}(s, t),-\kappa\left(p_{\theta}(t, 0)\right) T_{\theta}(0, t)\right\rangle \\
=\left\langle\frac{D \tau}{d t}(\theta, s, t) T_{\theta}(s, t), N_{\theta}(0, t)\right\rangle+\cos \zeta(\theta, s, t)\left[\kappa\left(p_{\theta}(t, s)\right)-\kappa\left(p_{\theta}(t, 0)\right)\right]
\end{array}
\end{aligned}
$$

We deduce from this

$$
\begin{gathered}
\frac{\partial \zeta}{\partial t}(\theta, s, t)=\kappa\left(p_{\theta}(t, s)\right)-\kappa\left(p_{\theta}(t, 0)\right)-\left\langle\frac{D \tau}{d t}(\theta, s, t) T_{\theta}(s, t), T_{\theta}(0, t)\right\rangle \sin \zeta(\theta, s, t) \\
+ \\
+\left\langle\frac{D \tau}{d t}(\theta, s, t) T_{\theta}(s, t), N_{\theta}(0, t)\right\rangle \cos \zeta(\theta, s, t)
\end{gathered}
$$

The formula ((1) implies :

$$
\left|\kappa\left(p_{\theta}(t, s)\right)-\kappa\left(p_{\theta}(t, 0)\right)\right| \leq\|\nabla \kappa\|_{\infty} C_{1} e^{-q_{1} t}|s| .
$$

Following, due to the upper estimate (16), the rotation satisfies the differential inequality

$$
\begin{gathered}
\left\|\frac{D}{d t} \rho_{\zeta(\theta, s, t)}\right\| \leq\left|\frac{\partial}{\partial t} \zeta(\theta, s, t)\right| \leq\left\|\frac{D \tau}{d t}(\theta, s, t)\right\|+\left|\kappa\left(p_{\theta}(t, s)\right)-\kappa\left(p_{\theta}(t, 0)\right)\right| \\
\leq\left(k_{0}^{2}+\|\nabla \kappa\|_{\infty}\right) C_{1} e^{-q_{1} t}|s|
\end{gathered}
$$

The definition of χ permits to conclude.

We have also the upper estimate

$$
\begin{gathered}
\left\|\frac{D}{d s} \chi(\theta, s, t)\right\| \leq\left\|\frac{D}{d s} \rho_{\zeta(\theta, s, t)}\right\| \leq\left\|\frac{D}{d s} T_{\theta}(s, t)\right\|=\left\|\frac{D}{d t} S_{\theta}(s, t)\right\| \\
\leq C_{1} e^{-q_{1} t}
\end{gathered}
$$

from which follows the :
Lemma 7.2 With the preceding notations, we have for all $\theta \in \partial M, s \in[-\varepsilon, \varepsilon]$, $t \in \mathbf{R}^{+}$:

$$
\left\|\frac{D}{d s} \chi(\theta, s, t)\right\| \leq C_{1} e^{-q_{1} t} \leq C_{1} e^{-q_{1} t}\left\|\frac{d c}{d s}(s)\right\| .
$$

The horocyclic transport presents some uniformity.
Lemma 7.3 Let $A: v \in T^{1} M \mapsto A(v) \in L\left(T_{\pi(v)} M\right)$ be a field of linear endomorphisms of class \mathcal{C}^{1} over $T^{1} M$, bounded in \mathcal{C}^{1}-norm. With the preceding notations, for all $\theta \in \partial M, s \in[-\varepsilon, \varepsilon]$ and $t \in \mathbf{R}^{+}$, we have

$$
\begin{gathered}
\left\|A\left(v\left(p_{\theta}(0, t), \theta\right)\right) \chi(\theta, s, t)-\chi(\theta, s, t) A\left(v\left(p_{\theta}(s, t), \theta\right)\right)\right\| \\
\leq C_{1}\left(2\|A\|_{\infty}+\|D A\|_{\infty}\right) e^{-q_{1} t}|s|
\end{gathered}
$$

Proof : We have

$$
\begin{gathered}
\left\|\frac{D \chi(\theta, s, t) A\left(v\left(p_{\theta}(s, t), \theta\right)\right)}{d s}\right\| \leq\left\|A\left(v\left(p_{\theta}(s, t), \theta\right)\right)\right\|\left\|\frac{D}{d s} \chi(\theta, s, t)\right\| \\
+\|\chi(\theta, s, t)\|
\end{gathered} \frac{D}{d s} A\left(v\left(p_{\theta}(s, t), \theta\right)\right) \|,
$$

which is bounded from above, following the lemma 7.2, by

$$
\begin{gathered}
\|A\|_{\infty} C_{1} e^{-q_{1} t}+\|D A\|_{\infty}\left(\|S(s, t)\|+\left\|\frac{D}{d t} S(s, t)\right\|\right) \\
\leq\left(\|A\|_{\infty}+\|D A\|_{\infty}\right) C_{1} e^{-q_{1} t}
\end{gathered}
$$

The covariant derivative with respect to s of $A\left(v\left(p_{\theta}(0, t), \theta\right)\right) \chi(\theta, s, t)$ admits the same first term as above for upper bound. The quantity that we aim to estimate in the lemma annulates at $s=0$, the upper estimate of the statement is obtained by integrating the expression

$$
\left(2\|A\|_{\infty}+\|D A\|_{\infty}\right) C_{1} e^{-q_{1} t}
$$

over s from 0 .

8 Linearization

Definition 8.1 Let M be a complete, connected, oriented, simply connected surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched : $-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (1), and such that the gradient of the centre-stable space u_{-}is uniformly bounded. For $v \in T^{1} M, t \in \mathbf{R}$, the stable push is the mapping $\Phi_{t}^{\kappa, v}: M \rightarrow M$ which to every $p \in M$ associates $\Phi_{t}^{\kappa, v} p=\pi \psi_{t}^{\kappa} v^{\kappa}\left(p, v_{+\infty}^{\kappa}\right)$.

Theorem 8.1 With the assumptions of the definition 8.1, for all unitary vector $v \in T^{1} M$, there exists a unique mapping E_{v} from M into $T_{\pi(v)} M$ such that :
i)

$$
\forall z \in M \quad\left\langle E_{v}(z), v\right\rangle=B_{v}(z)
$$

ii)

$$
\forall z \in M, \forall t \in \mathbf{R} \quad E_{v}\left(\Phi_{t}^{\kappa, v}(z)\right)=t v+E_{v}(z)
$$

iii) $\forall z \in H_{v}^{\kappa}(0) \quad E_{v}(z)=\lim _{t \rightarrow+\infty} y_{-}(v, t)^{-1}\left\langle\left(\exp _{\pi \psi_{t}^{\kappa} v}\right)^{-1} \Phi_{t}^{\kappa, v}(z), n\right\rangle n$,
writing down $n=N\left(\psi_{t}^{\kappa} v\right)$. Moreover, the mapping $(v, p) \mapsto E_{v}(p)$ is continuous from $T^{1} M \times M$ into $T M$.

Proof : The conditions i), $i i$) and $i i i$) ensure naturally the uniqueness of the solution. Let v be in $T^{1} M$. Let us define $\theta=v_{+\infty}, p=\pi v$. Taking the notations of the sections 5 and 7 , we have $N_{\theta}(0, t)=n$ and we define:

$$
\begin{gathered}
X_{\theta, s}=\int_{\sigma=0}^{s} \chi(\theta, \sigma, 0) \frac{d c}{d s}(\sigma) d \sigma, \quad X_{\theta, s}^{t}=\int_{\sigma=0}^{s} \chi(\theta, \sigma, t) \frac{\partial p_{\theta}(t, \sigma)}{\partial s}(\sigma) d \sigma \\
e_{v}^{t}(s)=\frac{\left\langle n, X_{\theta, s}^{t}\right\rangle}{y_{-}(v, t)}
\end{gathered}
$$

We have

$$
\chi(\theta, s, t) T_{\theta}(s, t)=\psi_{t}^{\kappa} v, \quad \chi(\theta, s, t) N_{\theta}(s, t)=N\left(\psi_{t}^{\kappa} v\right)=N_{\theta}(0, t)
$$

thus

$$
\begin{aligned}
e_{v}^{t}(s) & =\frac{\int_{\sigma=0}^{s} y_{-}\left(v\left(p_{\theta}(t, \sigma), \theta\right), t\right)\left\langle\frac{d c}{d s}(\sigma), N_{\theta}(\sigma, 0)\right\rangle d \sigma}{y_{-}(v, t)} \\
& =\int_{\sigma=0}^{s} \mathcal{Z}(\theta, 0, \sigma, t)\left\langle\frac{d c}{d s}(\sigma), N_{\theta}(\sigma, 0)\right\rangle d \sigma .
\end{aligned}
$$

The equation (13) implies for $t, \tau \geq 0$:
$\left|e_{v}^{t+\tau}(s)-e_{v}^{t}(s)\right| \leq \int_{\sigma \in[0, s]} C_{3} L_{-\varepsilon}^{\varepsilon}(c) e^{-q_{1} t}\left|\left\langle\frac{d c}{d s}(\sigma), N_{\theta}(\sigma, 0)\right\rangle\right| d \sigma \leq C_{3} L_{-\varepsilon}^{\varepsilon}(c)^{2} e^{-q_{1} t}$.

By taking

$$
\mathcal{E}_{v}^{t}\left(p_{\theta}(r, s)\right)=r v+e_{v}^{t}(s) N(v),
$$

and with the foregoing upper estimate and the corollary 4.1 we get :

$$
\left|\mathcal{E}_{v}^{t+\tau}\left(p_{\theta}(r, s)\right)-\mathcal{E}_{v}^{t}\left(p_{\theta}(r, s)\right)\right| \leq C_{3} L_{-\varepsilon}^{\varepsilon}(c)^{2} e^{-q_{1} t} \leq C_{3} f(d(c(-\varepsilon), c(\varepsilon)))^{2} e^{-q_{1} t} .
$$

For every compact \mathcal{K} of $T^{1} M \times M$, the family of continuous mappings $\mathcal{E}_{v}^{t}\left(p_{\theta}(r, s)\right)$ satisfies the uniform Cauchy condition over \mathcal{K} when t tends to $+\infty$. It converges thus towards a mapping continuous over $T^{1} M \times M$. Establishing the formulas i) and $i i$) is immediate. There remains to proof the formula $i i i$).

For $w \in T^{1} M, r \in \mathbf{R}, \xi \in T_{\pi w} M$, if $\tilde{J}(w, r)$ is the geodesic Jacobi field along the geodesic curve directed by w, such that $\tilde{J}(w, 0)=0_{T_{\pi w} M}$ and $\tilde{J}^{\prime}(w, 0)=$ $\mathrm{Id}_{T_{\pi w} M}$, the linear mapping tangent to the exponential satisfies (15$], 3.46$ p.117) :

$$
\begin{equation*}
T_{\xi} \exp _{\pi w} r w=\frac{1}{r} \tilde{J}(w, r) \xi \tag{17}
\end{equation*}
$$

From the bounds on the Gauss cuvature results the existence of a constant C_{4} such that for all $r \in[0,1]$:

$$
\left\|\tilde{J}(w, r)-r \operatorname{Id}_{T_{\pi w} M}\right\| \leq C_{4} r^{3} .
$$

The derivative of the exponential in every zero vector is the identity of the tangent vector space, and $\chi(\theta, 0, t)$ is the identity of $T_{p_{\theta}(t, 0)} M$. Even by situating in a chart in the neighbourhood of $p_{\theta}(t, s)$, there exists a constant C_{5} such that :

$$
\begin{align*}
& \qquad\left|\left\langle\exp _{\pi \psi_{t}^{\kappa} v}^{-1} p_{\theta}(t, s), n\right\rangle-y_{-}(v, t) e_{v}^{t}(s)\right| \\
& \leq \int_{\sigma=0}^{s}\left\|\frac{\partial}{\partial s} \exp _{\pi \psi_{t}^{\kappa} v}^{-1} p_{\theta}(t, \sigma)-\chi(\theta, \sigma, t) \frac{\partial p_{\theta}}{\partial s}(t, \sigma) d \sigma\right\| \\
& \leq C_{5} d\left(\pi \psi_{t}^{\kappa} v, p_{\theta}(t, s)\right)^{2}+C_{1} e^{-q_{1} t} \int_{\sigma^{\prime}=0}^{s} \int_{\sigma=0}^{\sigma^{\prime}}\left\|\frac{\partial p_{\theta}}{\partial s}(t, \sigma)\right\|\left\|\frac{d c}{d s}\left(\sigma^{\prime}\right)\right\| d \sigma d \sigma^{\prime} \\
& \leq C_{5} d\left(\pi \psi_{t}^{\kappa} v, p_{\theta}(t, s)\right)^{2}+C_{5} L_{0}^{\varepsilon}\left(p_{\theta}(t, .)\right) e^{-q_{1} t} L_{-\varepsilon}^{\varepsilon}(c) \tag{18}
\end{align*}
$$

The first term of the last member comes from the effect of the bounds over the Gauss curvature on the exponential, and the second term comes from the lemma 7.2 by carrying out two successive integrations. We deduce the inequality :

$$
\begin{gathered}
\left|\frac{\left\langle\exp _{\pi \psi_{t}^{\kappa} v}^{-1} p_{\theta}(t, s), n\right\rangle}{y_{-}(v, t)}-e_{v}^{t}(s)\right| \\
\leq C_{5}\left[d\left(\pi \psi_{t}^{\kappa} v, p_{\theta}(t, s)\right)+e^{-q_{1} t} L_{-\varepsilon}^{\varepsilon}(c)\right] \int_{\sigma \in[0, s]} \frac{y_{-}\left(v\left(p_{\theta}(t, \sigma), \theta\right), t\right)}{y_{-}(v, t)}\left\|\frac{d c}{d s}(\sigma)\right\| d \sigma .
\end{gathered}
$$

The quantity $d\left(\pi \psi_{t}^{\kappa} v, p_{\theta}(t, s)\right)$ is bounded from above by $L_{0}^{s}\left(p_{\theta}(t,\right.$.$) which is$ inferior or equal to $C_{1} L_{-\varepsilon}^{\varepsilon}(c) e^{-q_{1} t}$. According to the theorem 5.1, there exists
a constant C_{6} (depending on ε) such that the last integral above is bounded by $C_{6} L_{0}^{s}(c)$ independently of t, from which we get the upper estimate :

$$
\left|\frac{\left\langle\exp _{\pi \psi_{t}^{\kappa} v}^{-1} p_{\theta}(t, s), n\right\rangle}{y_{-}(v, t)}-e_{v}^{t}(s)\right| \leq\left(1+C_{1}\right) C_{5} C_{6} L_{-\varepsilon}^{\varepsilon}(c)^{2} e^{-q_{1} t}
$$

The limit stated in the formula $i i i$) of the theorem is thus obtained.
The linearization cooperates to some extent with the magnetic flow.
Corollary 8.1 For $v \in T^{1} M, p \in M, t \in \mathbf{R}$, we have

$$
E_{\psi_{t} v}(p)=\left(\left\langle E_{v}(p), v\right\rangle-t\right) \psi_{t} v+y_{-}(v, t)\left\langle E_{v}(p), N(v)\right\rangle N\left(\psi_{t} v\right)
$$

Proof : This immediately results from the construction of the theorem 8.1. \diamond

9 Regularity of the linearization

Theorem 9.1 Let M be a complete, connected, oriented, simply connected surface, equipped with a \mathcal{C}^{∞}-riemannian metric g whose curvature is negatively pinched $:-k_{0}^{2} \leq K \leq-k_{1}^{2}<0$, and with a \mathcal{C}^{∞}-magnetic field κ whose \mathcal{C}^{1}-norm is bounded, with Jacobi endomorphism satisfying the pinching condition (⿴囗), and such that the gradient of the centre-stable u_{-}spaces is uniformly bounded. For $v \in T^{1} M$ and $\theta=v_{+\infty}^{\kappa}$, the mapping E_{v} is of \mathcal{C}^{2} over M, and with the extended stable transfer \widetilde{X} coming from the definition 5.1, its derivative at $y \in M$ is :

$$
\widetilde{X}\left(v, v^{\kappa}(y, \theta)\right) .
$$

Proof : With the notations of the sections 5 and 8 , we have

$$
\frac{\partial e_{v}^{t}(s)}{\partial s}=\mathcal{Z}(\theta, 0, s, t)
$$

which converges when t tends to $+\infty$ towards

$$
X\left(v, v_{s}\right)
$$

The longitudinal component of the derivative of E_{v} is v, and the continuous derivability of the derivative of E_{v} results from the corollary 5.1.

Corollary 9.1 With the same assumptions as in the theorem 9.1, for all $v \in$ $T^{1} M$, the mapping E_{v} is a \mathcal{C}^{2}-diffeomorphism.

Proof : It is clear that the mapping E_{v} is surjective. It is a local $\mathcal{C}^{2}{ }_{-}$ diffeomorphism according to the theorem 9.1, it is therefore a cover of $T_{\pi(v)} M$ (which is isomorphic to \mathbf{R}^{2}), and consequently it is a diffeomorphism.

Remark 9.1 We may notice that the mapping $v \mapsto E_{v}(p)$ with p fixed cannot be absolutely continuous.

Let v and w be two unitary tangent vectors belonging to a same unstable manifold, such that p belongs to the curve directed by v. The vectors $\psi_{t} v$ and $\psi_{t} w$ are arbitrarily close when t tends to $-\infty$. The orthogonal component of $E_{\psi_{t} v}(p)$ is zero and the norm of the orthogonal component of $E_{\psi_{t} w}(p)$ tends to $+\infty$ when t tends to $-\infty$.

10 Flow conjugacy

Theorem 10.1 Let M be a closed (compact without boundary), connected, oriented surface. Let g_{1} and g_{2} be two \mathcal{C}^{∞}-riemannian metrics over M whose curvatures are negatively pinched : $-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$. Let κ_{1}, κ_{2} be two \mathcal{C}^{∞}-magnetic fields over M. The two magnetic flows $\psi_{t}^{1}=$ $\psi_{t}^{g_{1}, \kappa_{1}}$ and $\psi_{t}^{2}=\psi_{t}^{g_{2}, \kappa_{2}}$ are supposed to have negative Jacobi endomorphisms (thus satisfying the pinching condition (1)). If the two magnetic flows have the same marked length spectrum, then they are conjugated by a bi-höldercontinuous homeomorphism h from $T_{1}^{1} M$ onto $T_{2}^{1} M$ which preserves the Lyapounoff exponents of periodic orbits.

Proof : The gradient of the centre-stables spaces u_{-}and of the centreinstables spaces u_{+}are uniformly bounded because the unitary tangent bundles are compact. The Jacobi endomorphisms satisfie the pinching condition (11) for the same reason. The existence of the bi-hölder-continuous conjugacy h from $T_{1}^{1} M$ onto $T_{2}^{1} M$ is well-known 11, 20, 26. Let v be a T-periodic vector for ψ^{1}; its conjugate $h v$ is T-periodic for ψ^{2} and the conjugacy h maps $W^{S}(v)$ onto $W^{S}(h v)$. The linearizations associated to ψ^{i} are written down E^{i} for $i=1,2$. Let \mathcal{A} be the bijection, restricted to the orthogonal spaces identified to the real line, defined as follows :

$$
\begin{array}{ccccccc}
\mathcal{A}: \quad \mathbf{R} \simeq \mathbf{R} N_{1}(v) & \stackrel{\left(E_{v}^{1} \circ \pi\right)^{-1}}{\longrightarrow} & W^{S}(v) & \xrightarrow{h} & W^{S}(h v) & \stackrel{E_{h v}^{2} \circ \pi}{\longrightarrow} & \mathbf{R} N_{2}(h v) \simeq \mathbf{R} \\
\xi N_{1}(v) & \longmapsto & w & \longmapsto & h w & \longmapsto & \mathcal{A}(\xi) N_{2}(h v) .
\end{array}
$$

The Lyapounoff exponents are written down :

$$
\lambda_{-, 1}(v)=-\lambda_{+, 1}(v) \quad \text { and } \quad \lambda_{-, 2}(h v)=-\lambda_{+, 2}(h v)
$$

Let us denote :

$$
\nu_{1}=e^{T \lambda_{-, 1}(v)}=y_{-, 1}(v, T) \quad \text { and } \quad \nu_{2}=e^{T \lambda_{-, 2}(h v)}=y_{-, 2}(h v, T) .
$$

According to the corollary 8.1, for each of the two flows, every T-periodic vector v satisfies :

$$
\left.E_{\psi_{T} v}\right|_{W^{S}(v)}=\left.y_{-}(v, T) E_{v}\right|_{W^{S}(v)}
$$

For all $n \in \mathbf{N}$ and $\xi \in \mathbf{R}$ we therefore have :

$$
\mathcal{A}\left(\nu_{1}^{n} \xi\right)=\nu_{2}^{n} \mathcal{A}(\xi)
$$

Because the conjugacy h is bi-hölder-continuous and because the linearizations are of \mathcal{C}^{2}-class, there exist two constants $C>0$ and $\left.\left.\alpha \in\right] 0,1\right]$ such that for all $\xi \in[-1,1]$ we have :

$$
|\mathcal{A}(\xi)| \leq C|\xi|^{\alpha} \quad \text { and } \quad|\xi| \leq C|\mathcal{A}(\xi)|^{\alpha}
$$

Thus for all natural integer n we have :

$$
\nu_{2}^{n}|\mathcal{A}(1)| \leq C \nu_{1}^{n \alpha} \quad \text { and } \quad \nu_{1}^{n} \leq C|\mathcal{A}(1)|^{\alpha} \nu_{2}^{n \alpha}
$$

which implies for all $n \in \mathbf{N}^{\star}$:
$\ln \nu_{2} \leq \alpha \ln \nu_{1}+\frac{\ln C-\ln |\mathcal{A}(1)|}{n} \quad$ and $\quad \ln \nu_{1} \leq \alpha \ln \nu_{2}+\frac{\ln C+\alpha \ln |\mathcal{A}(1)|}{n}$.
By making n tend to $+\infty$ there comes

$$
\ln \nu_{2} \leq \alpha \ln \nu_{1} \quad \text { and } \quad \ln \nu_{1} \leq \alpha \ln \nu_{2}
$$

from which comes

$$
\alpha=1 \quad \text { and } \quad \ln \nu_{2}=\ln \nu_{1} ;
$$

thus the Lyapounoff exponents coincide on the periodic orbits.
The following result is a direct consequence of a property of transitive Anosov flows on 3-manifolds (24].

Corollary 10.1 With the assumptions of the theorem 10.1, the conjugacy h is of \mathcal{C}^{∞}-class.

The linearization allows to proof the following result.
Theorem 10.2 Let M be a closed (compact without boundary), connected, oriented surface. Let g_{1} and g_{2} be two \mathcal{C}^{∞}-riemannian metrics over M whose curvatures are negatively pinched : $-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$.. Let κ_{1} be a \mathcal{C}^{∞}-magnetic field over M. The magnetic flow $\psi_{t}^{1}=\psi_{t}^{g_{1}, \kappa_{1}}$ is supposed to have a negative Jacobi endomorphism (thus satisfying the pinching condition (1])). If the magnetic flow ψ_{t}^{1} and the geodesic flow $\varphi_{t}^{2}=\varphi_{t}^{g_{2}}$ have the same marked length spectrum, and if the surface M has the same total volume for the two metrics, then the two metrics are isotopic, which means that one is the image of the other by a diffeomorphism f of M, homotopic to the identity, and the magnetic field κ_{1} is zero.

Proof : This results from the corollary 10.1: if the two volumes are equal, and the flows ψ^{1} and φ^{2} are conjugate by an absolutely continuous homeomorphism, the result is known 17 .

To some extent, the linearisation determines the flow and the geometry.

Theorem 10.3 Let M be an oriented surface diffeomorphic to \mathbf{R}^{2}, equipped with two \mathcal{C}^{∞}-riemannian metrics g_{1} and g_{2} whose curvatures are negatively pinched : $-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$. Let κ_{1}, κ_{2} be two \mathcal{C}^{∞}-magnetic fields over M. The two magnetic flows $\psi_{t}^{1}=\psi_{t}^{g_{1}, \kappa_{1}}$ and $\psi_{t}^{2}=\psi_{t}^{g_{2}, k_{2}}$ are supposed to have negative Jacobi endomorphisms satisfying the pinching condition (1) (the \mathcal{C}^{1}-norms of κ_{1} and κ_{2} are thus bounded), and the gradient of the centre-stable $u_{-, i}$ spaces and the gradient of the centre-unstable $u_{+, i}$ spaces for $i=1,2$ are supposed to be uniformly bounded. If there exist a diffeomorphism $f: M \rightarrow M$ and a point $p \in M$ satisfying

$$
\forall v \in T_{1, p}^{1} M \quad \exists v^{\prime} \in T_{2, f(p)}^{1} M \quad E_{v^{\prime}}^{2} \circ f=E_{v}^{1}
$$

then the two metrics are images one of each other by f, and so are the two magnetic fields: $\kappa_{2}=\kappa_{1} \circ f$.

Proof : Let w be in $T_{1}^{1} M, q=\pi w$ and $v=v^{1}\left(p, w_{+\infty}\right)$. Let v^{\prime} be in $T_{2, f(p)}^{1} M$ such that $E_{v^{\prime}}^{2} \circ f=E_{v}^{1}$. We have necessarily $d_{w} f(q)=v^{2}\left(f(q), v_{+\infty}^{\prime}\right)$: thus the mapping f is an isometry. Its differential conjugates the flows, therefore it preserves the geodesic curvature of the orbits, which means the magnetic fields.

Theorem 10.4 Let M be a closed (compact without boundary), connected, oriented surface. Let g_{1} and g_{2} be two \mathcal{C}^{∞}-riemannian metrics over M whose curvatures are negatively pinched : $-k_{0}^{2} \leq K_{i} \leq-k_{1}^{2}<0$ for $i=1,2$. Let κ_{1}, κ_{2} be two \mathcal{C}^{∞}-magnetic fields over M. The two magnetic flows $\psi_{t}^{1}=$ $\psi_{t}^{g_{1}, \kappa_{1}}$ and $\psi_{t}^{2}=\psi_{t}^{g_{2}, \kappa_{2}}$ are supposed to have negative Jacobi endomorphisms (thus satisfying the pinching condition (1)). If there exist two vectors $v_{1} \in$ $T_{1}^{1} \widetilde{M}, v_{2} \in T_{2}^{1} \widetilde{M}$ and a \mathcal{C}^{1}-diffeomorphism $f: M \rightarrow M$ homotopic to the identity, of which a lift \widetilde{f} over \widetilde{M} satisfies $E_{v_{2}}^{2} \circ \widetilde{f}=E_{v_{1}}^{1}$, then the two metrics are isotopic, transported by f, and so are the two magnetic fields : $\kappa_{2}=\kappa_{1} \circ f$.
Proof : Let w be in $W^{C S}(v), q=\pi w$. We have necessarily $d_{w} \widetilde{f}(q)=$ $v^{2}\left(\widetilde{f}(q), v_{+\infty}^{\prime}\right)$. Since w is chosen arbitrarily in the centre-stable manifold of v, we may chose a vector w whose projection on $T_{1}^{1} M$ has a dense orbit under ψ^{1} when the time tends to $-\infty$; we may also replace w by every element of its orbit. Writing down Π the covering of \widetilde{M} onto M, we obtain $d_{d \Pi(w)} f(\Pi q)=d \Pi\left(v^{2}\left(\widetilde{f}(q), v_{+\infty}^{\prime}\right)\right)$. The differential of f thus preserves the norm on a dense subset of the unitary tangent bundle ; because it is assumed continuous, the mapping f is an isometry. The differential of \widetilde{f} preserves the geodesic curvature on the whole orbit of w, thus by projecting and by a density argument, we deduce that κ_{2} is the composed of κ_{1} by f.

Reference

[1] G. Besson, G. Courtois, S. Gallot. Le volume et l'entropie minimale des espaces localement symétriques. Invent. Math. 103 (1991), 417-445.
[2] G. Besson, G. Courtois, S. Gallot. Les variétés hyperboliques sont des minima locaux de l'entropie topologique. Invent. Math. 117 (1994), 403-445.
[3] G. Besson, G. Courtois, S. Gallot. Volumes, entropies et rigidités des espaces localement symétriques de courbure strictement négative. C. R. Acad. Sci. Paris 319 (1994), 81-84.
[4] G. Besson, G. Courtois, S. Gallot. Entropies et rigidités des espaces localement symétriques de courbure strictement négative. G. A. F. A. 5 (1995), 731-799.
[5] G. Besson, G. Courtois, S. Gallot. Survey article : minimal entropy and Mostow's rigidity theorems. Ergod. Th. \& Dynam. Sys. 16 (1996), 623649.
[6] K. Burns, G. Paternain. Anosov magnetic flows, critical values and topological entropy. Nonlinearity 15 (2002), No.2, 281-314.
[7] C. Croke, Rigidity for surfaces of non-positive curvature, Commentarii Mathematici Helvetici 65 (1990) 150-169.
[8] C. Croke, B. Kleiner, Conjugacy and rigidity for manifolds with a parallel vectore field, Journal of Differential Geometry 39 (1994), 659-680.
[9] C. Croke, A. Fathi and J. Feldman, The marked length spectrum of a surface of nonpositive curvature, Topology 31 (1990), 847-855.
[10] C. Croke,V. Sharafutdinov. Spectral rigidity of a compact negatively curved manifold. Topology 37 (1998), 1265-1273.
[11] P. Eberlein, U. Hamenstädt, V. Schroeder. Manifolds of nonpositive curvature. Proc. Symp. Pure Math. 54, Part 3 (1993), 179-227.
[12] H. Fanaï. Spectre marqué des longeurs et métriques conformément équivalentes. Bull. Belg. Math. Soc. - Simon Stevin 5, No. 4 (1998), 525528.
[13] J. Feldman, D. Ornstein, Semi-rigidity of horocycle flows over compact surfaces of variable negative curvature, Ergodic Theory and Dynamical Systems 7 (1987), 49-72.
[14] P. Foulon. Géométrie des équations différentielles du second ordre. Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 1-28.
[15] S. Gallot, D. Hulin, J. Lafontaine Riemannian Geometry second edition. Universitext, Springer : Berlin, 1987.
[16] N. Gouda. Magnetic flows of Anosov type. Tohoku Math. J. II. Ser. (1997), 49, No.2, 165-183.
[17] S. Grognet. Flots magnétiques en courbure négative. Ergod. Th. \& Dynam. Sys. 19 (1999), 413-436.
[18] S. Grognet. Entropies des flots magnétiques. Ann. Inst. Henri Poincaré 71 (1999), 395-424.
[19] U. Hamenstädt. Regularity of time-preserving conjugacies for contact Anosov flows with \mathcal{C}^{1}-Anosov splitting. Ergod. Th. \& Dynam. Sys. 13 (1993), 65-72.
[20] U. Hamenstädt. Regularity at infinity of compact negatively curved manifolds. Ergod. Th. \mathcal{E}^{3} Dynam. Sys. 14 (1994), 493-514.
[21] S. Hernonsky, F. Paulin. On the rigidity of discrete isometry groups of negatively curved spaces. Comment. Math. Helv. 72 (1997) 349-388.
[22] B. Kalinin, V. Sadovskaya. On local and global rigidity of quasi-conformal Anosov diffeomorphisms. J. Inst. Math. Jussieu 2 No. 4 (2003), 567-582.
[23] A. Katok. Four applications to conformal equivalence to geometry and dynamics. Ergod. Th. 83 Dynam. Sys. 8* (1988), 139-152.
[24] R. de la Llave, R. Moriyón. Invariants for smooth conjugacy of hyperbolic dynamical systems IV. Commun. Math. Phys. 116 (1988), 185-192.
[25] M. Lassas, V. Sharafutdinov, G. Uhlmann. Semiglobal boundary rigidity for Riemannian metrics. Math. Ann. 325 (2003) No.4, 767-793.
[26] A. Livčic. Some homology properties of U-systems. Math. Notes 10 (1971), 758-763.
[27] J.-P. Otal. Le spectre marqué des longueurs des surfaces à courbure négative. Annals of Mathematics 131 (1990), 151-162.
[28] G. Paternain. On the regularity of the Anosov splitting for twisted geodesic flows. Math. Res. Lett. 4 (1997), 871-888.
[29] G. and M. Paternain. First derivative of topological entropy for Anosov geodesic flows in the presence of magnetic fields. Nonlinearity 10 (1997), 121-131.
[30] V. Sharafutdinov. On emission tomography of inhomogeneous media. SIAM J. Appl. Math. 55 (1995), 707-718; from Tr. Inst. Mat. 14 (1989) 221-245.
[31] V. Sharafutdinov. The X-ray transform of symmetric tensor fields. Sib. Adv. Math. 1 (1991), 160-184.

