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Abstract

We consider the time-dependent Hamiltonian H(t) = 1
2p2 − E(t) · x + V (t, x) on

L2(IRn), where the external electric field E(t) and the short-range electric potential
V (t, x) are time-periodic with the same period. It is well-known that the short-range
notion depends on the mean value E0 of the external electric field. When E0 = 0,
we show that the high energy limit of the scattering operators determines uniquely
V (t, x). When E0 6= 0, the same result holds in dimension n ≥ 3 for generic short-
range potentials. In dimension n = 2, one has to assume a stronger decay on the
electric potential.

1 Introduction.

In this note, we study an inverse scattering problem for a two-body short-range system in
the presence of an external time-periodic electric field E(t) and a time-periodic short-range
potential V (t, x) (with the same period T ). For the sake of simplicity, we assume that the
period T = 1.

The corresponding Hamiltonian is given on L2(IRn) by :

(1.1) H(t) =
1

2
p2 − E(t) · x + V (t, x),
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where p = −i∂x. When E(t) = 0, the Hamiltonian H(t) describes the dynamics of the
hydrogen atom placed in a linearly polarized monochromatic electric field, or a light particle
in the restricted three-body problem in which two other heavy particles are set on prescribed
periodic orbits. When E(t) = cos(2πt) E with E ∈ IRn, the Hamiltonian describes the well-
known AC-Stark effect in the E-direction [7].

In this paper, we assume that the external electric field E(t) satisfies :

(A1) t → E(t) ∈ L1
loc(IR; IRn) , E(t + 1) = E(t) a.e .

Moreover, we assume that the potential V ∈ C∞(IR × IRn), is time-periodic with period 1,
and satisfies the following estimations :

(A2) ∀α ∈ INn, ∀k ∈ IN, | ∂k
t ∂α

x V (t, x) | ≤ Ck,α < x >−δ−|α|, with δ > 0,

where < x >= (1+ x2)
1

2 . Actually, we can accommodate more singular potentials (see [10],
[11], [12] for example) and we need (A2) for only k, α with finite order . It is well-known
that under assumptions (A1)− (A2), H(t) is essentially self-adjoint on S(IRn) the Schwartz
space, [16]. We denote H(t) the self-adjoint realization with domain D(H(t)).

Now, let us recall some well-known results in scattering theory for time-periodic electric
fields. We denote H0(t) the free Hamiltonian :

(1.2) H0(t) =
1

2
p2 − E(t) · x ,

and let U0(t, s), (resp. U(t, s)) be the unitary propagator associated with H0(t), (resp. H(t))
(see section 2 for details).

For short-range potentials, the wave operators are defined for s ∈ IR and Φ ∈ L2(IRn) by :

(1.3) W±(s) Φ = lim
t→±∞

U(s, t) U0(t, s) Φ.

We emphasize that the short-range condition depends on the value of the mean of the external
electric field :

(1.4) E0 =
∫ 1

0
E(t) dt .

• The case E0 = 0.

By virtue of the Avron-Herbst formula (see section 2), this case falls under the category of
two-body systems with time-periodic potentials and this case was studied by Kitada and
Yajima ([10], [11]), Yokoyama [22].

We recall that for a unitary or self-adjoint operator U , Hc(U), Hac(U), Hsc(U) and Hp(U)
are, respectively, continuous, absolutely continuous, singular continuous and point spectral
subspace of U .

We have the following result ([10], [11], [21]) :
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Theorem 1

Assume that hypotheses (A1), (A2) are satisfied with δ > 1 and with E0 = 0.
Then : (i) the wave operators W±(s) exist for all s ∈ IR.

(ii) W±(s + 1) = W±(s) and U(s + 1, s) W±(s) = W±(s) U0(s + 1, s).

(iii) Ran (W±(s)) = Hac (U(s + 1, s)) and Hsc (U(s + 1, s)) = ∅.
(iv) the purely point spectrum σp(U(s + 1, s)) is discrete outside {1}.

Comments.

1 - The unitary operators U(s+1, s) are called the Floquet operators and they are mutually
equivalent. The Floquet operators play a central role in the analysis of time periodic systems.
The eigenvalues of these operators are called Floquet multipliers. In [5], Galtbayar, Jensen
and Yajima improve assertion (iv) : for n = 3 and δ > 2, Hp (U(s + 1, s)) is finite dimen-
sional.

2 - For general δ > 0, W±(s) do not exist and we have to define other wave operators. In
([10], [11]), Kitada and Yajima have constructed modified wave operators W±

HJ by solving
an Hamilton-Jacobi equation.

• The case E0 6= 0.

This case was studied by Moller [12] : using the Avron-Herbst formula, it suffices to examine
Hamiltonians with a constant external electric field, (Stark Hamiltonians) : the spectral and
the scattering theory for Stark Hamiltonians are well established [2]. In particular, a Stark
Hamiltonian with a potential V satisfying (A2) has no eigenvalues [2]. The following theorem,
due to Moller, is a time-periodic version of these results.

Theorem 2

Assume that hypotheses (A1), (A2) are satisfied with δ > 1
2

and with E0 6= 0.
Then : (i) the Floquet operators U(s + 1, s) have purely absolutely continuous spectrum.

(ii) the wave operators W±(s) exist for all s ∈ IR and are unitary.

(iii) W±(s + 1) = W±(s) and U(s + 1, s) W±(s) = W±(s) U0(s + 1, s).

The inverse scattering problem.

For s ∈ IR, we define the scattering operators S(s) = W+∗(s) W−(s). It is clear that the
scattering operators S(s) are periodic with period 1.

The inverse scattering problem consists to reconstruct the perturbation V (s, x) from the
scattering operators S(s), s ∈ [0, 1].

In this paper, we prove the following result :
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Theorem 3

Assume that E(t) satisfies (A1) and let Vj, j = 1, 2 be potentials satisfying (A2). We assume
that δ > 1 (if E0 = 0), δ > 1

2
(if E0 6= 0 and n ≥ 3), δ > 3

4
(if E0 6= 0 and n = 2). Let

Sj(s) be the corresponding scattering operators.

Then :
∀s ∈ [0, 1], S1(s) = S2(s) ⇐⇒ V1 = V2 .

We prove Theorem 3 by studying the high energy limit of [S(s), p], (Enss-Weder’s approach
[4]). We need n ≥ 3 in the case E0 6= 0 in order to use the inversion of the Radon transform
[6] on the orthogonal hyperplane to E0. See also [15] for a similar problem with a Stark
Hamiltonian.

We can also remark that if we know the free propagator U0(t, s) , s, t ∈ IR, then by virtue
of the following relation :

(1.5) S(t) = U0(t, s) S(s) U0(s, t) ,

the potential V (t, x) is uniquely reconstructed from the scattering operator S(s) at only one
initial time.

In [21], Yajima proves uniqueness for the case of time-periodic potential with the condition
δ > n

2
+ 1 and with E(t) = 0 by studying the scattering matrices in a high energy regime.

In [20], for a time-periodic potential that decays exponentially at infinity, Weder proves
uniqueness at a fixed quasi-energy.

Note also that inverse scattering for long-range time-dependent potentials without external
electric fields was studied by Weder [18] with the Enss-Weder time-dependent method, and
by Ito for time-dependent electromagnetic potentials for Dirac equations [8].

2 Proof of Theorem 3.

2.1 The Avron-Herbst formula.

First, let us recall some basic definitions for time-dependent Hamiltonians. Let {H(t)}t∈IR

be a family of selfadjoint operators on L2(IRn) such that S(IRn) ⊂ D(H(t)) for all t ∈ IR.

Definition.

We call propagator a family of unitary operators on L2(IRn), U(t, s), t, s ∈ IR such that :

1 - U(t, s) is a strongly continuous fonction of (t, s) ∈ IR2.
2 - U(t, s) U(s, r) = U(t, r) for all t, s, r ∈ IR.
3 - U(t, s) (S(IRn)) ⊂ S(IRn) for all t, s ∈ IR.
4 - If Φ ∈ S(IRn), U(t, s)Φ is continuously differentiable in t and s and satisfies :

i
∂

∂t
U(t, s) Φ = H(t) U(t, s) Φ , i

∂

∂s
U(t, s) Φ = −U(t, s) H(s) Φ .
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To prove the existence and the uniqueness of the propagator for our Hamiltonians H(t), we
use a generalization of the Avron-Herbst formula close to the one given in [3].
In [12], the author gives, for E0 6= 0, a different formula which has the advantage to be
time-periodic. To study our inverse scattering problem, we use here a different one, which
is defined for all E0. We emphasize that with our choice, c(t) (see below for the definition
of c(t)) is also periodic with period 1; in particular c(t) = O(1).

The basic idea is to generalize the well-known Avron-Herbst formula for a Stark Hamiltonian
with a constant electric field E0, [2]; if we consider the Hamiltonian B0 on L2(IRn),

(2.1) B0 =
1

2
p2 − E0 · x ,

we have the following formula :

(2.2) e−itB0 = e−i
E2

0
6

t3 eitE0·x e−i t2

2
E0·p e−it

p2

2 .

In the next definition, we give a similar formula for time-dependent electric fields.

Definition.

We consider the family of unitary operators T (t), for t ∈ IR :

T (t) = e−ia(t) e−ib(t)·x e−ic(t)·p ,

where :

(2.3) b(t) = −
∫ t

0
(E(s) − E0) ds −

∫ 1

0

∫ t

0
(E(s) − E0) ds dt .

(2.4) c(t) = −
∫ t

0
b(s) ds .

(2.5) a(t) =
∫ t

0

(

1

2
b2(s) − E0 · c(s)

)

ds .

Lemma 4

The family {H0(t)}t∈IR has an unique propagator U0(t, s) defined by :

(2.6) U0(t, s) = T (t) e−i(t−s)B0 T ∗(s) .

Proof.

We can always assume s = 0 and we make the following ansatz :

(2.7) U0(t, 0) = e−ia(t) e−ib(t)·x e−ic(t)·p e−itB0 .
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Since on the Schwartz space, U0(t, 0) must satisfy :

(2.8) i
∂

∂t
U0(t, 0) = H0(t) U0(t, 0) ,

the functions a(t), b(t), c(t) solve :

(2.9) ḃ(t) = −E(t) + E0, ċ(t) = −b(t), ȧ(t) =
1

2
b2(t) − E0 · c(t).

We refer to [3] for details and [12] for a different formula. 2

In the same way, in order to define the propagator corresponding to the family {H(t)}, we
consider a Stark Hamiltonian with a time-periodic potential V1(t, x), (we recall that c(t) a
is C1-periodic function) :

(2.10) B(t) = B0 + V1(t, x) where V1(t, x) = eic(t)·p V (t, x) e−ic(t)·p = V (t, x + c(t)).

Then, B(t) has an unique propagator R(t, s), (see [16] for the case E0 = 0 and [12] for the
case E0 6= 0). It is easy to see that the propagator U(t, s) for the family {H(t)} is defined
by :

(2.11) U(t, s) = T (t) R(t, s) T ∗(s).

Comments.

Since the Hamiltonians H0(t) and H(t) are time-periodic with period 1, one has for all
t, s ∈ IR :

(2.12) U0(t + 1, s + 1) = U0(t, s) , U(t + 1, s + 1) = U(t, s) .

Thus, the wave operators satisfy W±(s + 1) = W±(s).

2.2 The high energy limit of the scattering operators.

In this section, we study the high energy limit of the scattering operators by using the
well-known Enss-Weder’s time-dependent method [4]. This method can be used to study
Hamiltonians with electric and magnetic potentials on L2(IRn) [1], the Dirac equation [9],
the N-body case [4], the Stark effect ([15], [17]), the Aharonov-Bohm effect [18].

In [13], [14] a stationary approach, based on the same ideas, is proposed to solve scattering
inverse problems for Schrödinger operators with magnetic fields or with the Aharonov-Bohm
effect.
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Before giving the main result of this section, we need some notation.

• Φ, Ψ are the Fourier transforms of functions in C∞
0 (IRn).

• ω ∈ Sn−1 ∩ ΠE0
is fixed, where ΠE0

is the orthogonal hyperplane to E0.

• Φλ,ω = ei
√

λx.ωΦ, Ψλ,ω = ei
√

λx.ωΨ.

We have the following high energy asymptotics where < , > is the usual scalar product in
L2(IRn) :

Proposition 5

Under the assumptions of Theorem 3, we have for all s ∈ [0, 1],

< [S(s), p] Φλ,ω , Ψλ,ω > = λ− 1

2 <

(
∫ +∞

−∞
∂xV (s, x + tω) dt

)

Φ , Ψ > +o (λ− 1

2 ) .

Comments.

Actually, for the case n = 2, E0 6= 0 and δ > 3
4
, Proposition 5 is also valid for ω ∈ Sn−1

satisfying | ω · E0 |<| E0 |, (see ([18], [15]).

Then, Theorem 3 follows from Proposition 5 and the inversion of Radon transform ([6] and
[15], Section 2.3).

Proof of Proposition 5.

For example, let us show Proposition 5 for the case E0 6= 0 and n ≥ 3, the other cases are
similar. More precisely, see [18] for the case E0 = 0, and for the case n = 2, E0 6= 0, see
([17], Theorem 2.4) and ([15], Theorem 4).

Step 1.

Since c(t) is periodic, c(t) = O(1). Then, V1(t, x) is a short-range perturbation of B0, and
we can define the usual wave operators for the pair of Hamiltonians (B(t), B0) :

(2.13) Ω±(s) = s − lim
t→±∞

R(s, t) e−i(t−s)B0 .

Consider also the scattering operators S1(s) = Ω+∗(s) Ω−(s). By virtue of (2.6) and (2.11),
it is clear that :

(2.14) S(s) = T (s) S1(s) T ∗(s) .

Using the fact that e−ib(s)·x p eib(s)·x = p + b(s), we have :

(2.15) [S(s), p] = [S(s), p + b(s)] = T (s) [S1(s), p] T ∗(s) .

Thus,

(2.16) < [S(s), p] Φλ,ω , Ψλ,ω >= < [S1(s), p] T ∗(s) Φλ,ω , T ∗(s) Ψλ,ω > .
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In other hand,

(2.17) T ∗(s) Φλ,ω = ei
√

λx.ω eic(s)·(p+
√

λω) eib(s)·x eia(s) Φ.

So, we obtain :

(2.18) < [S(s), p] Φλ,ω , Ψλ,ω > = < [S1(s), p] fλ,ω, gλ,ω >,

where

(2.19) f = eic(s)·p eib(s)·x Φ and g = eic(s)·p eib(s)·x Ψ .

Clearly, f, g are the Fourier transforms of functions in C∞
0 (IRn).

• Step 2 : Modified wave operators.

Now, we follow a strategy close to [15] for time-dependent potentials. First, let us define a
free-modified dynamic UD(t, s) by :

(2.20) UD(t, s) = e−i(t−s)B0 e−i
∫ t−s

0
V1(u+s,up′+ 1

2
u2E0) du ,

where p′ is the projection of p on the orthogonal hyperplane to E0.

We define the modified wave operators :

(2.21) Ω±
D(s) = s − lim

t→±∞
R(s, t) UD(t, s) .

It is clear that :

(2.22) Ω±
D(s) = Ω±(s) e−ig±(s,p′) ,

where

(2.23) g±(s, p′) =
∫ ±∞

0
V1(u + s, up′ +

1

2
u2E0) du .

Thus, if we set SD(s) = Ω+∗
D (s)Ω−

D(s), one has :

(2.24) S1(s) = e−ig+(s,p′) SD(s) eig−(s,p′)

• Step 3 : High energy estimates.

Denote ρ = min (1, δ). We have the following estimations, (the proof is exactly the same as
in ([15], Lemma 3) for time-independent potentials).

Lemma 6

For λ >> 1, we have :

(i) ||
(

V1(t, x) − V1(t, (t − s)p′ +
1

2
(t − s)2E0)

)

UD(t, s) eig±(s,p′)fλ,ω ||

≤ C (1+ | (t − s)
√

λ |)− 1

2
−ρ .

(ii) ||
(

R(t, s)Ω±
D(s) − UD(t, s)

)

eig±(s,p′)fλ,ω || = O (λ− 1

2 ) , uniformly for t, s ∈ IR .
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• Step 4.

We denote F (s, λ, ω) =< [S1(s), p] fλ,ω , gλ,ω >. Using (2.24), we have :

F (s, λ, ω) = < [e−ig+(s,p′) SD(s) eig−(s,p′), p] fλ,ω , gλ,ω >

= < [SD(s), p] eig−(s,p′)fλ,ω , eig+(s,p′)gλ,ω >

= < [SD(s) − 1, p −
√

λω] eig−(s,p′)fλ,ω , eig+(s,p′)gλ,ω >

= < (SD(s) − 1) eig−(s,p′)(pf)λ,ω , eig+(s,p′)gλ,ω >

− < (SD(s) − 1) eig−(s,p′)fλ,ω , eig+(s,p′)(pg)λ,ω >

:= F1(s, λ, ω)− F2(s, λ, ω).

First, let us study F1(s, λ, ω). Writing SD(s) − 1 = (Ω+
D(s) − Ω−

D(s))∗ Ω−
D(s) and using

(2.25) Ω+
D(s)−Ω−

D(s) = i

∫ +∞

−∞
R(s, t)

(

V1(t, x) − V1(t, (t − s)p′ +
1

2
(t − s)2E0)

)

UD(t, s) dt ,

we obtain :

(2.26) SD(s) − 1 = −i

∫ +∞

−∞
UD(t, s)∗

(

V1(t, x) − V1(t, (t − s)p′ +
1

2
(t − s)2E0)

)

R(t, s) Ω−
D(s) dt .

Thus,

F1(s, λ, ω) = −i

∫ +∞

−∞
< R(t, s) Ω−

D(s) eig−(s,p′)(pf)λ,ω ,

(

V1(t, x) − V1(t, (t − s)p′ +
1

2
(t − s)2E0)

)

UD(t, s) eig+(s,p′)gλ,ω > dt

= −i

∫ +∞

−∞
< UD(t, s) eig−(s,p′)(pf)λ,ω ,

(

V1(t, x) − V1(t, (t − s)p′ +
1

2
(t − s)2E0)

)

UD(t, s) eig+(s,p′)gλ,ω > dt

+ R1(s, λ, ω) ,

where :

(2.27) R1(s, λ, ω) = −i

∫ +∞

−∞
<
(

R(t, s) Ω−
D(s) − UD(t, s)

)

eig−(s,p′)(pf)λ,ω ,

(

V1(t, x) − V1(t, (t − s)p′ +
1

2
(t − s)2E0)

)

UD(t, s) eig+(s,p′)gλ,ω > dt .

By Lemma 6, it is clear that R1(s, λ, ω) = O (λ−1). Thus, writing t = τ√
λ

+ s, we obtain :
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(2.28) F1(s, λ, ω) = − i√
λ

∫ +∞

−∞
< UD(

τ√
λ

+ s, s) eig−(s,p′) (pf)λ,ω ,

(

V1(
τ√
λ

+ s, x) − V1(
τ√
λ

+ s,
τ√
λ

p′ +
τ 2

2λ
E0)

)

UD(
τ√
λ

+ s, s) eig+(s,p′)gλ,ω > dτ + O (λ−1) .

Denote by f1(τ, s, λ, ω) the integrand of the (R.H.S) of (2.28). By Lemma 6 (i),

(2.29) | f1(τ, s, λ, ω) | ≤ C (1+ | τ |)− 1

2
−ρ .

So, by Lebesgue’s theorem, to obtain the asymptotics of F1(s, λ, ω), it suffices to determine
lim

λ→+∞
f1(τ, s, λ, ω).

Let us denote :

(2.30) U±(t, s, p′) = ei
∫ ±∞

t
V1(u+s,up′+ 1

2
u2E0) du.

We have :

(2.31) f1(τ, s, λ, ω) = < e
−i τ√

λ
B0 U−(

τ√
λ

, s, p′) (pf)λ,ω ,

(

V1(
τ√
λ

+ s, x) − V1(
τ√
λ

+ s,
τ√
λ

p′ +
τ 2

2λ
E0)

)

e
−i τ√

λ
B0 U+(

τ√
λ

, s, p′) gλ,ω > .

Using the Avron-Herbst formula (2.2), we deduce that :

(2.32) f1(τ, s, λ, ω) = < e
−i τ

2
√

λ
p2

U−(
τ√
λ
, s, p′) (pf)λ,ω ,

(

V1(
τ√
λ

+ s, x +
τ 2

2λ
E0) − V1(

τ√
λ

+ s,
τ√
λ

p′ +
τ 2

2λ
E0)

)

e
−i τ

2
√

λ
p2

U+(
τ√
λ

, s, p′) gλ,ω > .

Then, we obtain :

(2.33) f1(τ, s, λ, ω) = < e
−i τ

2
√

λ
(p+

√
λω)2

U−(
τ√
λ

, s, p′ +
√

λω) pf ,

(

V1(
τ√
λ

+ s, x +
τ 2

2λ
E0) − V1(

τ√
λ

+ s,
τ√
λ

(p′ +
√

λω) +
τ 2

2λ
E0)

)

e
−i τ

2
√

λ
(p+

√
λω)2

U+(
τ√
λ

, s, p′ +
√

λω) g > .

Since

(2.34) e
−i τ

2
√

λ
(p+

√
λω)2

= e−i τ
√

λ
2 e−iτω.p e

−i τ

2
√

λ
p2

,
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we have

(2.35) f1(τ, s, λ, ω) = < e
−i τ

2
√

λ
p2

U−(
τ√
λ

, s, p′ +
√

λω) pf ,

(

V1(
τ√
λ

+ s, x + τω +
τ 2

2λ
E0) − V1(

τ√
λ

+ s,
τ√
λ

(p′ +
√

λω) +
τ 2

2λ
E0)

)

e
−i τ

2
√

λ
p2

U+(
τ√
λ

, s, p′ +
√

λω) g > .

Since | V1(u + s, u(p′ +
√

λω) + 1
2
u2E0)) | ≤ C (u2 + 1)−δ ∈ L1(IR+, du), it is easy to show

(using Lebesgue’s theorem again) that :

(2.38) s − lim
λ→+∞

U±(
τ√
λ

, s, p′ +
√

λω) = 1 .

Then,

(2.39) lim
λ→+∞

f1(τ, s, λ, ω) = < pf , (V1(s, x + τω) − V1(s, τω)) g > .

So, we have obtained :

(2.40) F1(s, λ, ω) = − i√
λ

< pf,

(
∫ +∞

−∞
(V1(s, x + τω) − V1(s, τω)) dτ

)

g > +o(
1√
λ

).

In the same way, we obtain

(2.41) F2(s, λ, ω) = − i√
λ

< f,

(
∫ +∞

−∞
(V1(s, x + τω) − V1(s, τω)) dτ

)

pg > +o(
1√
λ

) ,

so

(2.42) F (s, λ, ω) = F1(s, λ, ω) − F2(s, λ, ω)

(2.43) =
1√
λ

< f,

(
∫ +∞

−∞
∂xV1(s, x + τω) dτ

)

g > +o(
1√
λ

) .

Using (2.19) and ∂xV (s, x + τω) = e−ic(s)·p ∂xV1(s, x + τω) eic(s)·p, we obtain :

(2.44) F (s, λ, ω) =
1√
λ

< Φ,

(
∫ +∞

−∞
∂xV (s, x + τω) dτ

)

Ψ > +o(
1√
λ

) . 2
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