
Design exploration and HW/SW rapid prototyping for

real-time system design

Sylvain Huet, Emmanuel Casseau, Olivier Pasquier

To cite this version:

Sylvain Huet, Emmanuel Casseau, Olivier Pasquier. Design exploration and HW/SW rapid
prototyping for real-time system design. 2005, IEEE, pp.240-242, 2005. <hal-00079263>

HAL Id: hal-00079263

https://hal.archives-ouvertes.fr/hal-00079263

Submitted on 12 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53023304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00079263


Design exploration and HW/SW rapid prototyping for real-time system design

Sylvain Huet
LESTER Lab., CNRS FRE 2734, UBS

56321 Lorient Cedex, France
shuet@iuplo.univ-ubs.fr

Emmanuel Casseau
LESTER Lab., CNRS FRE 2734, UBS

56321 Lorient Cedex, France
emmanuel.casseau@iuplo.univ-ubs.fr

Olivier Pasquier
Polytech’Nantes, IREENA

BP50609, 44306 Nantes Cedex 3, France
olivier.pasquier@polytech.univ-nantes.fr

Abstract

Embedded signal processing systems are usually asso-
ciated with real-time constraints and/or high data rates
so that fully software implementation are often not satis-
factory. In that case, mixed hardware/software implemen-
tations have to be investigated. However the increasing
complexity of current applications makes classical design
processes time consuming and consequently incompatible
with an acceptable time to prototype. To address this prob-
lem, we propose a system-level design based methodology
that aims at unifying the design flow from the functional de-
scription to the physical HW/SW implementation through
functional and architectural flexibility. Our approach con-
sists in automatically refining high abstraction level models
through the use of an electronic system-level tool. We illus-
trate our methodology with the design of a wireless commu-
nication system.

1. Introduction

In this paper, we present a design approach which con-
sists in automatically refining high abstraction level models.
The methodology is based on an Electronic System-Level
(ESL) design tool and aims at unifying the design flow from
the functional description to the physical HW/SW imple-
mentation through functional and architectural flexibility.
The paper is organized as follows. In section 2 we detail
each step of the design flow we use, from the system spec-
ification to the prototyping and implementation. In section
3 our approach is applied to prototype a wireless commu-
nication system based on a Multiple Input Multiple Out-
put (MIMO) transmission system [8]. The conclusions are
given in section 4.

C code for Software Hardware Synthesis

Executive Structure Design/Description

Macro-architecture model

Functional Architecture model

Micro-architecture model

3

4

2

Platform model

System specification
Specific platform

or non specific platform
Functional Design

1

Architectural Design

Prototyping &Implementation

Figure 1. Methodology steps

2 Design flow

System-Level Design (SLD) flows are promising design
approaches since they aim at automating the refinement
of the specifications down to the implementation [9][11].
These flows are structured on the broadly accepted Y para-
digm which aims at separating the functional model and the
physical model of the systems. In this paper we put an SLD
flow into practice with the view to reduce the ”time to pro-
totype” of digital signal processing systems. Even though
we target a specific domain of application this flow can be
extended to design a wide range of electronic systems.
Our methodology is structured on the basis of four main
steps linked by three models: the Functional Architec-
ture model, the Platform model and the Macro-Architecture
model as presented on figure 1 and is now supported by
Cofluent Studio [1], the ESL design tool we use. The orig-
inality of our approach lies in using this tool in conjunction
with the High Level Synthesis [10] (HLS) tool GAUT [2]
for the generation of the hardware parts of the system. The
next four sub sections detail each step of the methodology.



2.1 Functional design

This step consists in defining the functional solution by
extracting and exploring the parallelism of the specifica-
tions. This functional solution is depicted according to the
functional architecture model (figure 3a). The solution is
graphically described by a set of functions interconnected
by relations [12]. The functions behaviors can be written
either in C or SystemC [4]. This model is free of any imple-
mentation details and can be simulated to verify the system
functionality. Some reference models are selected through
this iterative validation process and will be considered as
golden references for the next design steps.

2.2 Executive structure design/description

The executive structure design/description step aims at
describing or designing the physical organisation of the
platform on which the application will run. At this step, the
platform is described as a set of processing elements (PE)
interconnected by communication nodes (CN) (figure 2b).
In the context of this paper, the prototyping platform we tar-
get is a Sundance platform [3]. This testbed is modular in
terms of processing elements and communication network:
it can embed several DSPs (in our case TMS320C6201,
TMS32C6701, TMS32C6416 from Texas Instrument (TI)
[5]) and FPGAs (in our case V1000E from Xilinx [7])
communicating through point to point communication links
which can be either 20 Mbytes/s Sundance’s Comm.-Ports
(CP) or 200 Mbytes Sundance’s Bus links (SDB).

2.3 Architectural design

The architectural design step, consists in mapping the
Functional Architecture to the Platform Architecture. The
Functional Architecture model is mapped to the Platform
Architecture Model, that is to say Functions to Processing
Elements and Relations to Communication Nodes. The re-
sulting Macro-Architecture model is heterogeneous: it con-
tains both functional and executive elements. Interfaces
functions are also introduced to map Functional Relations
to Communication Nodes. This is represented by the ”Com-
munication network” on figure 2c.

Like the Functional model, the Macro-Architecture
model, also named virtual prototype, can be simulated [12].
This is very important for architecture exploration and per-
formance estimations since this model describes both the
behavior of the system and the hardware on which it runs.
Thanks to the high level of abstraction of this model, rapid
simulations can be performed to explore several platform
configurations.

F1

Functional Architecture

MsQ2
F2

Ev
V1

F31 F32
V3

F3

MsQ1
F0

(a)

PE1
CN1 PE2

Platform Architecture

CN0

PE0
Communication network

(b)

MAPPING

Macro-Architecture

CN1

PE2

IntCN1

F2

F31 F32

V3

F3

IntCN1

PE1

F1
CN0

IntCN0

PE0

F0 IntCN0

Communication network

Ev

(c)

MsQ1 MsQ1

MsQ2

V1

MsQ2

V1

Figure 2. Description models

2.4 Prototyping and implementation

Finally, the Macro-Architecture is refined to the Micro-
Architecture which is composed of the programming code
for the microprocessors and the synthesizable description of
the hardware parts of the system. Consequently two major
ativities are involved to perform this task.
(1) Software generation. The code of the functions
mapped onto software processors is generated in C using
common services of Real Time Operating Systems (RTOS).
Up to now two generation templates are available: either the
VxWorks [6] or a generic RTOS application programming
interface (API) could be used. In the last case, the API has
to be implemented with the primitives of the targeted RTOS.
As our platform embeds TI DSP, we have implemented this
API with the DSP/BIOS primitives. At last platform spe-
cific code has to be written to solve the inter processing
elements communication problem: in this model are also
introduced interfaces functions (see ”Communication net-
work” on figure 2c) where we call our CP or SDB drivers.
(2) Hardware generation. Characterised Hand-written or
IP hardware components can be used to implement the hard-
ware parts. Nevertheless we promote a flexible approach
based on HLS to generate them. The HLS tool we use
is GAUT [2]. Its input language is a subset of behavioral
VHDL but a SystemC entry will be soon available, hence
unifying the languages used in the design flow. Beyond the
synthesis of the algorithmic cores the HLS tool we use also
synthesises our platform specific communication interfaces.
Therefore, the synthesized function can be easily interfaced
with others software or hardware processors of our rapid
prototyping platform.
At this step of our design flow the system is refined enough
to reach the entry points of the downstream tools we
use: Code Composer from TI for the software parts [5],
ISE/Foundation from Xilinx for the hardware parts [7].

2



3 Wireless communication system design

In this section our ESL based design methodology is il-
lustrated by the design of a MIMO [8] wireless communi-
cation system. Functional and architectural exploration of
such a system are discussed. Implementation issues are also
presented.

3.1 Functional exploration

The system we target is composed of two parts: the emit-
ter and the receiver side. The following cascading blocks
can be identified for the emitter: a source coder, a chan-
nel coder, a mapper and a space time block coder; for the
receiver: a combiner a demapper, a channel decoder and
a source decoder. Therefore, the corresponding functional
model of the system is composed of these eight blocks plus
the channel to model the system environment. Thus when
the functionality of each block has been validated, we dis-
pose of an executable golden reference model of the system.
At this stage of our flow models are used to explore and val-
idate various alternatives for each functional blocks.

Beyond the functional results obtained at this stage, a
profiler integrated in the ESL design tool allows to mea-
sure the relative computational complexity of each function.
This metric can be used later for architecture exploration.

3.2 Architectural exploration

The data flow orientation of this application offers op-
portunities in term of architectural exploration. Our strat-
egy consists in first trying a full software implementation
mapped on a unique DSP. We profiled the timing behavior
of this first prototype so that we are able to back annotate
our macro architecture models with an accurate timing of
the software implementation of each blocks. If this imple-
mentation does not fit the non functional specifications, in
our case the throughput, the simulation of the timed macro
architecture model allows the identification of the bottle-
necks, then hardware accelerators are introduced. Thanks
to the HLS tool we use, the design of these components is
speeded-up.

3.3 Architecture performance

The simulations performed at the Architectural Design
step allow us to conclude that the channel decoder is the bot-
tleneck of the system for the fully software solution. Con-
sequently we add an hardware accelerator to perform this
task. From its behavioral algorithm we automatically syn-
thesize four RTL IP with different timing constraints using
either the CP or SDB communication links with GAUT [2].
With the back annotation of the macro architecture model

we have been able to estimate the performance of mixed
hardware/software solutions and to conclude that the fully
software solution offers very poor performances whereas
the mixed hardware/software solution achieves data rates
close to the rates of the hardware accelerator.

4 Conclusion

We have presented a system design approach that goes
from the functional description to the physical HW/SW im-
plementation through functional and architectural flexibil-
ity. Based on a Electronic System Level design tool, the aim
of this approach is to facilitate and shorten the design cycle.
The functional model of the system to be implemented is
expressed at a high-level of abstraction. Profiling and esti-
mates at the system-level as well as at the architectural one
help the designer in his system distribution and architectural
choices. The system is progressively designed according
to a refining process that takes into account processing and
communication element properties.

5 Acknowledgments

This work takes place in the PALMYRE project spon-
sored by ”Conseil Regional de Bretagne”, ”Conseil General
du Morbihan” and ”Communaute de communes du pays de
Lorient”.

References

[1] Cofluent design, http://www.cofluentdesign.com.
[2] Lester, gaut, http://web.univ-ubs.fr/lester/www-gaut/.
[3] Sundance, http://www.sundance.com.
[4] Systemc, http://www.systemc.org.
[5] Texas instruments, http://dspvillage.ti.com.
[6] Vxworks, http://www.windriver.com.
[7] Xilinx, http://www.xilinx.com.
[8] H. Bolcskei and A. J. Paulraj. Multiple-input multiple-output

(MIMO) wireless systems, chapter 90, pages 90.1 – 90.14.
CRC Press, 2002.

[9] J. Calvez. Embedded Real-Time Systems. A Specification
and Design methodology. John Wiley, 1993.

[10] D. Gajski, N. Dutt, A. C. Wu, and S. Y. Lin. High-Level
Synthesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

[11] A. Gerstlauer, R. Dmer, J. Peng, and D. Gajski. System De-
sign: A Practical Guide with SpecC. Kluwer Academic Pub-
lishers, 2001.

[12] R. L. Moigne, O. Pasquier, and J. Calvez. A graphical tool
for system level modeling and verification with systemc. In
FDL, 2003.

3


