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On inverse scattering in electromagnetic field in
classical relativistic mechanics at high energies

Alexandre Jollivet

Abstract. We consider the multidimensional Newton-Einstein equation in static
electromagnetic field

ṗ = F (x, ẋ), F (x, ẋ) = −∇V (x) +
1

c
B(x)ẋ,

p =
ẋ

√

1 − |ẋ|2
c2

, ṗ =
dp

dt
, ẋ =

dx

dt
, x ∈ C1(R, Rd),

(∗)

where V ∈ C2(Rd, R), B(x) is the d × d real antisymmetric matrix with elements
Bi,k(x) = ∂

∂xi
Ak(x) − ∂

∂xk
Ai(x), and |∂j

xAi(x)| + |∂j
xV (x)| ≤ β|j|(1 + |x|)−(α+|j|)

for x ∈ R
d, |j| ≤ 2, i = 1..d and some α > 1. We give estimates and asymptotics for

scattering solutions and scattering data for the equation (∗) for the case of small
angle scattering. We show that at high energies the velocity valued component of
the scattering operator uniquely determines the X-ray transforms P∇V and PBi,k

for i, k = 1..d, i 6= k. Applying results on inversion of the X-ray transform P we
obtain that for d ≥ 2 the velocity valued component of the scattering operator
at high energies uniquely determines (V, B). In addition we show that our high
energy asymptotics found for the configuration valued component of the scattering
operator doesn’t determine uniquely V when d ≥ 2 and B when d = 2 but that it
uniquely determines B when d ≥ 3.

1 Introduction

1.1 The Newton-Einstein equation.
Consider the multidimensional Newton-Einstein equation in static electromagnetic
field

ṗ = F (x, ẋ), F (x, ẋ) = −∇V (x) +
1

c
B(x)ẋ,

p =
ẋ

√

1 − |ẋ|2
c2

, ṗ =
dp

dt
, ẋ =

dx

dt
, x ∈ C1(R, Rd),

(1.1)

where V ∈ C2(Rd, R), B(x) is the d × d real antisymmetric matrix with elements
Bi,k(x) = ∂

∂xi
Ak(x) − ∂

∂xk
Ai(x), A = (A1, . . . ,Ad) ∈ C2(Rd, Rd) and

|∂j
xAi(x)| + |∂j

xV (x)| ≤ β|j|(1 + |x|)−(α+|j|) (1.2)
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for x ∈ R
d, |j| ≤ 2, i = 1..d and some α > 1 (here j is the multiindex j ∈

(N ∪ {0})d, |j| =
∑d

n=1 jn and β|j| are positive real constants and B(x)ẋ =
(

∑d
l=1 B1,l(x)ẋl, . . . ,

∑d
l=1 Bd,l(x)ẋl

)

). The equation (1.1) is an equation for

x = x(t) and is the equation of motion in R
d of a relativistic particle of mass

m = 1 and charge e = 1 in an external electromagnetic field described by V and
A (see [E] and, for example, Section 17 of [LL2]). In this equation x is the position
of the particle, p is its impulse, F is the force acting on the particle, t is the time
and c is the speed of light.

For the equation (1.1) the energy

E = c2

√

1 +
|p(t)|2

c2
+ V (x(t))

is an integral of motion. Note that the energy E does not depend on A because
the magnetic force (1/c)B(x)ẋ is orthogonal to the velocity ẋ of the particle.

1.2 Yajima’s results.
Yajima [Y] studied in dimension 3 (without loss of generality for the case of di-
mension d ≥ 2) the direct scattering of relativistic particle in an external electro-
magnetic field described by four vector (V (x),A(x)) where the scalar potential V
and the vector potential A are both rapidly decreasing. We recall results of Yajima
[Y] in our case. We denote by Bc the euclidean open ball whose radius is c and
whose centre is 0.

Under the conditions (1.2), the following is valid (see [Y]): for any (v−, x−) ∈
Bc × R

d, v− 6= 0, the equation (1.1) has a unique solution x ∈ C2(R, Rd) such
that

x(t) = v−t + x− + y−(t), (1.3)

where ẏ−(t) → 0, y−(t) → 0, as t → −∞; in addition for almost any (v−, x−) ∈
Bc × R

d, v− 6= 0,
x(t) = v+t + x+ + y+(t), (1.4)

where v+ 6= 0, |v+| < c, v+ = a(v−, x−), x+ = b(v−, x−), ẏ+(t) → 0, y+(t) →
0, as t → +∞.

The map S : Bc × R
d → Bc × R

d given by the formulas

v+ = a(v−, x−), x+ = b(v−, x−) (1.5)

is called the scattering map for the equation (1.1). The functions a(v−, x−),
b(v−, x−) are called the scattering data for the equation (1.1).

By D(S) we denote the domain of definition of S; by R(S) we denote the
range of S (by definition, if (v−, x−) ∈ D(S), then v− 6= 0 and a(v−, x−) 6= 0).

Under the conditions (1.2), the map S has the following simple properties
(see [Y]): D(S) is an open subset of Bc × R

d and Mes((Bc × R
d)\D(S)) = 0 for
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the Lebesgue measure on Bc × R
d induced by the Lebesgue measure on R

d × R
d;

the map S : D(S) → R(S) is continuous and preserves the element of volume,
a(v−, x−)2 = v2

−.

1.3 A representation of the scattering data.
If V (x) ≡ 0 and B(x) ≡ 0, then a(v−, x−) = v−, b(v−, x−) = x−, (v−, x−) ∈
Bc × R

d, v− 6= 0. Therefore for a(v−, x−), b(v−, x−) we will use the following
representation

a(v−, x−) =v− + asc(v−, x−)

b(v−, x−) =x− + bsc(v−, x−)
(v−, x−) ∈ D(S). (1.6)

We will use the fact that, under the conditions (1.2), the map S is uniquely
determined by its restriction to M(S) = D(S) ∩M, where

M = {(v−, x−) ∈ Bc × R
d|v− 6= 0, v−x− = 0}.

This observation is completely similar to the related observation of [No1], [Jo] and
is based on the fact that if x(t) satisfies (1.1), then x(t + t0) also satisfies (1.1) for
any t0 ∈ R.

1.4 X-ray transform.
Consider

TS
d−1 = {(θ, x)|θ ∈ S

d−1, x ∈ R
d, θx = 0},

where S
d−1 is the unit sphere in R

d.
Consider the X-ray transform P which maps each function f with the proper-

ties
f ∈ C(Rd, Rm), |f(x)| = O(|x|−β), as |x| → ∞, for some β > 1

into a function Pf ∈ C(TS
d−1, Rm), where Pf is defined by

Pf(θ, x) =

∫ +∞

−∞
f(tθ + x)dt, (θ, x) ∈ TS

d−1.

Concerning the theory of the X-ray transform, the reader is referred to [GGG],
[Na], [No1].

1.5 Main results of the work.
The main results of the present work consist in the small angle scattering estimates
for the scattering data asc and bsc (and scattering solutions) for the equation (1.1)
and in application of these asymptotics and estimates to inverse scattering for the
equation (1.1) at high energies. Our main results include, in particular, Theorem
1.1, Propositions 1.1, 1.2, formulated below in this subsection and Theorems 3.1,
3.2 given in Section 3.
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Theorem 1.1. Let the conditions (1.2) be valid and (θ, x) ∈ TS
d−1. Let r be a

positive constant such that 0 < r ≤ 1, r < c/
√

2. Then

lim
s→c

s<c

s
√

1 − s2

c2

asc(sθ, x) =

∫ +∞

−∞
F (τθ + x, cθ)dτ, (1.7a)

and, in addition,

∣

∣

∣

∣

∣

∣

∫ +∞

−∞
F (τθ + x, sθ)dτ − s

√

1 − s2

c2

asc(sθ, x)

∣

∣

∣

∣

∣

∣

≤ C1
√

1 + s2

4(c2−s2)

(1.7b)

for s1 < s < c, where C1 = C1(c, d, β0, β1, β2, α, |x|, r) and s1 = s1(c, d, β1, β2, α,
|x|, r) are defined in Section 4 (in subsection 4.3);

lim
s→c

s<c

s2

√

1 − s2

c2

bsc(sθ, x) =

∫ 0

−∞

∫ τ

−∞
F (σθ + x, cθ)dσdτ (1.8a)

−
∫ +∞

0

∫ +∞

τ

F (σθ + x, cθ)dσdτ + PV (θ, x)θ,

and, in addition,

∣

∣

∣

∣

∣

∣

bsc(sθ, x)
√

1 − s2

c2

− 1

c2
PV (θ, x)θ +

1

s2

∫ +∞

0

∫ +∞

τ

F (σθ + x, sθ)dσdτ

− 1

s2

∫ 0

−∞

∫ τ

−∞
F (σθ + x, sθ)dσdτ

∣

∣

∣

∣

≤ C2

√

1 − s2

c2
(1.8b)

for s2 < s < c, and where C2 = C2(c, d, β0, β1, β2, α, |x|, r) and s2 = s2(c, d, β1, β2,
α, |x|, r) are defined in Section 4 (in subsection 4.3).

Theorem 1.1 follows from Theorem 3.1 and Theorem 3.2 given in Section 3.
Consider the vector-functions w1(V,A, θ, x) and w2(V,A, θ, x), (θ, x) ∈

TS
d−1, arising in the right-hand sides of (1.7a) and (1.8a):

w1(V,A, θ, x) =

∫ +∞

−∞
F (τθ + x, cθ)dτ (1.9a)

w2(V,A, θ, x) =

∫ 0

−∞

∫ τ

−∞
F (σθ + x, cθ)dσdτ (1.9b)

−
∫ +∞

0

∫ +∞

τ

F (σθ + x, cθ)dσdτ + PV (θ, x)θ.
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Remark 1.1. Using, in particular, that B is antisymmetric one can see that the
vectors w1(V,A, θ, x), w2(V,A, θ, x) are orthogonal to θ for any (θ, x) ∈ TS

d−1

and any potential (V,A) satisfying (1.2).

Let (V,A) satisfy the conditions (1.2). Define w̃1(V,A) : R
d\{0} × R

d → R
d

by

w̃1(V,A)(y, x) = − |y|
∫ +∞

−∞
∇V (sy + x)ds +

∫ +∞

−∞
B(sy + x)yds

=|y|w1(V,A,
y

|y| , x − xy

|y|2 y),

(1.10)

for y ∈ R
d\{0}, x ∈ R

d. Under the conditions (1.2), w̃1(V,A) = (w̃1(V,A)1, ..,
w̃1(V,A)d) ∈ C1(Rd\{0} × R

d, Rd).
Consider the d-dimensional smooth manifolds

Vi,k = {(θ, x) ∈ TS
d−1|θj = 0, j = 1 . . . d, j 6= i, j 6= k}, (1.11)

for i, k = 1..d, i 6= k.

Proposition 1.1. Let (V,A) ∈ C2(Rd, R) × C2(Rd, Rd) satisfy (1.2). Then
w1(V,A, θ, x) given for all (θ, x) ∈ TS

d−1 uniquely determines (V, B) and the
following formulas are valid:

P (∇V )(θ, x) = − 1

2
(w1(V,A, θ, x) + w1(V,A,−θ, x)), (1.12a)

P (Bi,k)(θ, x) =
1

2

[

∂

∂yk
(w̃1(V,A))i(y, x) +

∂

∂yk
(w̃1(V,A))i(−y, x) (1.12b)

− ∂

∂yi
(w̃1(V,A))k(y, x)− ∂

∂yi
(w̃1(V,A))k(−y, x)

]

|y=θ

,

for (θ, x) ∈ TS
d−1, i, k = 1..d, i 6= k;

PBi,k(θ, x) =θk
1

2
(w1(V,A, θ, x)i − w1(V,A,−θ, x)i) (1.12c)

− θi
1

2
(w1(V,A, θ, x)k − w1(V,A,−θ, x)k)

for (θ, x) ∈ Vi,k, i, k = 1..d, i 6= k.

Remark 1.2. Using the formulas (1.12a), (1.12c) and methods of reconstruction
of f from Pf (see [GGG], [Na], [No1]), Bi,k and V can be reconstructed from
w1(V,A, θ, x) given for all (θ, x) ∈ Vi,k, for i, k = 1..d, i 6= k.

Proposition 1.2. Let (V,A) ∈ C2(Rd, R) × C2(Rd, Rd) satisfy (1.2). Then
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w2(V,A, θ, x) given for all (θ, x) ∈ TS
d−1 does not determine uniquely V. For

d = 2, w2(V,A, θ, x) given for all (θ, x) ∈ TS
d−1 does not determine uniquely B.

For d ≥ 3, w2(V,A, θ, x) given for all (θ, x) ∈ TS
d−1 uniquely determines B.

In Section 5 (see Proposition 5.3) we give formulas ((5.17a) and (5.17b))
which show that for d = 3, the Fourier transform of the first derivatives of B can
be reconstructed from w2(V,A, θ, x) given for all (θ, x) ∈ TS

d−1 and we give a
formula ((5.17c)) which shows that for d ≥ 4 the X-ray transform of B can be
reconstructed from w2(V,A, θ, x) given for all (θ, x) ∈ TS

d−1.
Proposition 1.1 and Proposition 1.2 are proved in Section 5.
From (1.7a) and (1.12) and inversion formulas for the X-ray transform P for

d ≥ 2 (see [R], [GGG], [Na], [No1]) it follows that asc determines uniquely ∇V and
B at high energies. Moreover for d ≥ 2 methods of reconstruction of f from Pf
(see [R], [GGG], [Na], [No1]) permit to reconstruct ∇V and B from the velocity
valued component a of the scattering map at high energies. The formula (1.8a)
and Proposition 1.2 show that the first term of the asymptotics of bsc doesn’t
determine uniquely the potential V when d ≥ 2 and B when d = 2 but that it
uniquely determines B when d ≥ 3. Note that F. Nicoleau paid our attention to the
fact that, in addition of Proposition 1.2, the vector function w2(V, θ, x), (θ, x) ∈
TS

d−1, uniquely determines V modulo spherical symmetric potentials when d ≥
2, and that w2(V, θ, x), (θ, x) ∈ TS

d−1, uniquely determines B modulo spherical
symmetric magnetic fields when d = 2.

Remark 1.3. The condition (1.2) in all results and estimates which appear in
Introduction and in Sections 2, 3, 4 can be weakened to condition (4.11) given at
the end of Section 4.

1.6 Historical remarks.
Note that inverse scattering for the classical multidimensional Newton equation
was first studied by Novikov [No1] without magnetic field (the existence and
uniqueness of the scattering states, asymptotic completness and scattering map
for the classical Newton equation were studied by Simon [S]). Novikov proved two
formulas which link scattering data at high energies to the X-ray transform of
−∇V and V . Following Novikov’s framework [No1], the author generalized these
two formulas to the relativistic case without magnetic field in [Jo]. We shall fol-
low the same way to obtain Theorem 1.1 of the present work. Note also that for
the classical multidimensional Newton equation in a bounded open strictly convex
domain an inverse boundary value problem at high energies was first studied in
[GN].

To our knowledge the inverse scattering problem for a particle in electromag-
netic field in classical and classical relativistic mechanics was not considered in
the literature for the case of nonzero magnetic field B before the present article
(concerning results given in the literature on this problem for B ≡ 0 see [No1],
[Jo] and references therein). However, in quantim mechanics the inverse scatter-
ing problem for a particle in electromagnetic field with B 6≡ 0 was considered, in
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particular, in [HN], [ER1], [I], [Ju], [ER2], [Ni], [A], [Ha] (concerning results given
in the literature on this problem for B ≡ 0 see, in addition, [F], [EW], [No2] and
references given in [No2]).

1.7 Structure of the paper.
Further, our paper is organized as follows. In Section 2 we transform the differential
equation (1.1) with initial conditions (1.3) into a system of integral equations which
takes the form (y−, ẏ−) = Av−,x−

(y−, ẏ−). Then we study Av−,x−
on a suitable

space and we give estimates and contraction estimates about Av−,x−
(Lemmas 2.1,

2.2, 2.3). In Section 3 we give estimates and asymptotics for the deflection y−(t)
from (1.3) and for scattering data asc(v−, x−), bsc(v−, x−) from (1.6) (Theorem 3.1
and Theorem 3.2). From these estimates and asymptotics the two formulas (1.7a)
and (1.8a) will follow when the parameters c, βm, α, d, p̂−, x− are fixed and |v−|
increases (where β|j|, α, d are constants from (1.2), βm = max(β0, β1, β2); p̂− =
v−/|v−|). In these cases sup |θ(t)| decreases, where θ(t) denotes the angle between
the vectors ẋ(t) = v− + ẏ−(t) and v−, and we deal with small angle scattering.
Note that, under the conditions of Theorem 3.1, without additional assumptions,
there is the estimate sup |θ(t)| < 1

4π and we deal with rather small angle scattering
(concerning the term “small angle scattering” see [No1] and Section 20 of [LL1]).
Theorem 1.1 follows from Theorem 3.1 and Theorem 3.2. In Section 4 we sketch
the proof of Lemmas 2.1, 2.2, 2.3 and Theorem 3.2. Section 5 is devoted to Proofs
of Proposition 1.1 and Proposition 1.2.

Acknowledgement. This work was fulfilled in the framework of Ph. D. thesis
researchs under the direction of R.G. Novikov.

2 A contraction map

Let us transform the differential equation (1.1) in a system of integral equations.
Consider the function g : R

d → Bc defined by

g(x) =
x

√

1 + |x|2
c2

where x ∈ R
d. One can see that g has, in particular, the following simple properties:

|g(x)− g(y)| ≤
√

d|x − y|, for x, y ∈ R
d, (2.1)

g is an infinitely smooth diffeomorphism between R
d and Bc, its inverse is given

by

γ(x) =
x

√

1 − |x|2
c2

, x ∈ Bc.
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Now, if x satisfies the differential equation (1.1) and the initial conditions
(1.3), then x satisfies the system of integral equations

x(t) =v−t + x− +

t
∫

−∞



g



γ(v−) +

τ
∫

−∞

F (x(s), ẋ(s)))ds



− v−



 dτ, (2.2a)

ẋ(t) =g(γ(v−) +

∫ t

−∞
F (x(s), ẋ(s))ds), (2.2b)

where F (x, ẋ) = −∇V (x) + 1
c B(x)ẋ, v− ∈ Bc\{0}.

For y−(t) of (1.3) this system takes the form

(y−(t), u−(t)) = Av−,x−
(y−, u−)(t), (2.3)

where u−(t) = ẏ−(t) and

Av−,x−
(f, h)(t) =(A1

v−,x−
(f, h)(t), A2

v−,x−
(f, h)(t))

A1
v−,x−

(f, h)(t) =

t
∫

−∞



g(γ(v−) +

τ
∫

−∞

F (v−s + x− + f(s), v− + h(s))ds)− v−



 dτ,

A2
v−,x−

(f, h)(t) =g(γ(v−) +

t
∫

−∞

F (v−s + x− + f(s), v− + h(s))ds)− v−,

for v− ∈ Bc\{0}.
From (2.3), (1.2) , (2.1) (applied on “x”= γ(v−)+

∫ τ

−∞F (v−s+x−+y−(s), v−

+ẏ−(s))ds and “y”= γ(v−)) and y−(t) ∈ C1(R, Rd), |y−(t)| + |ẏ−(t)| → 0, as
t → −∞, it follows, in particular, that

(y−(t), ẏ−(t)) ∈C(R, Rd) × C(R, Rd)

and |ẏ−(t)| = O(|t|−α), |y−(t)| = O(|t|−α+1), as t → −∞,
(2.4)

where v− ∈ Bc\{0} and x− are fixed.
Consider the complete metric space

MT,r ={(f, h) ∈ C(] −∞, T ], Rd) × C(] −∞, T ], Rd)| ‖(f, h)‖T ≤ r},

where ‖(f, h)‖T =max

(

sup
t∈]−∞,T ]

|h(t)|, sup
t∈]−∞,T ]

|f(t) − th(t)|
)

(2.5)
(where for T = +∞ we understand ]−∞, T ] as ]−∞, +∞[). From (2.4) it follows
that, at fixed T < +∞,

(y−(t), ẏ−(t)) ∈ MT,r for some r depending on y−(t) and T. (2.6)

8



Let z1(c, d, β1, α, rx, r) be defined as the root of the following equation

z1
√

1 − z2
1

c2

− 2α+5β1d(2 + r/c)

α(z1/
√

2 − r)(rx/
√

2 + 1)α
= 0, z1 ∈]

√
2r, c[, (2.7)

where rx and r are some nonnegative numbers such that 0 < r ≤ 1, r < c/
√

2.

Lemma 2.1. Under the conditions (1.2), the following is valid: if (f, h) ∈ MT,r,

0 < r ≤ 1, r < c/
√

2, x− ∈ R
d, v− ∈ Bc, |v−| ≥ z1(c, d, β1, α, |x−|, r), v−x− = 0,

then

‖Av−,x−
(f, h)‖T ≤ρT (c, d, β1, α, |v−|, |x−|, r) (2.8a)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))

× 2α+2d
√

dβ1(2 + r/c)(|v−|/
√

2 + 1 − r)

(α − 1)(|v−|/
√

2 − r)2(1 + |x−|/
√

2 − (|v−|/
√

2 − r)T )α−1

for T ≤ 0,

‖Av−,x−
(f, h)‖T ≤ρ(c, d, β1, α, |v−|, |x−|, r) (2.8b)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))

× 2α+3d
√

dβ1(2 + r/c)(|v−|/
√

2 + 1 − r)

(α − 1)(|v−|/
√

2 − r)2(1 + |x−|/
√

2)α−1

for T ≤ +∞; if (f1, h1), (f2, h2) ∈ MT,r, 0 < r ≤ 1, r < c/
√

2, |v−| < c,
v−x− = 0, |v−| ≥ z1(c, d, β1, α, |x−|, r), then

‖Av−,x−
(f2, h2) − Av−,x−

(f1, h1)‖T (2.9a)

≤ λT (c, d, β̃, α, |v−|, |x−|, r)‖(f2 − f1, h2 − h1)‖T ,

λT (c, d, β̃, α, |v−|, |x−|, r) =
1

√

1 + |v−|2/(4(c2 − |v−|2))

×
2α+4d2β̃(1 + 1

c )( |v−|√
2

+ 1 − r)2

(α − 1)(
|v−|√

2
− r)3(1 +

|x−|√
2
− (

|v−|√
2
− r)T )α−1

for T ≤ 0,

‖Av−,x−
(f2, h2)−Av−,x−

(f1, h1)‖T ≤ λ(c, d, β̃, α, |v−|, |x−|, r)‖(f2−f1, h2−h1)‖T ,
(2.9b)
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λ(c, d, β̃, α, |v−|, |x−|, r) =
1

√

1 + |v−|2/(4(c2 − |v−|2))

× 22α+93d3β̃(1 + β̃)(1 + 1/c)3(|v−|/
√

2 + 1 − r)3

(α − 1)(|v−|/
√

2 − r)4(1 + |x−|/
√

2)α−1

for T ≤ +∞, where β̃ = max(β1, β2).

Note that

max

(

ρT (c, d, β1, α, |v−|, |x−|, r)
r

, λT (c, d, β̃, α, |v−|, |x−|, r)
)

≤µT (c, d, β̃, α, |v−|, |x−|, r) (2.10a)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))

× 2α+4d2β̃(1 + 1/c)(|v−|/
√

2 + 1 − r)2

r(α − 1)(|v−|/
√

2 − r)3(1 + |x−|/
√

2 − (|v−|/
√

2 − r)T )α−1

for T ≤ 0,

max

(

ρ(c, d, β1, α, |v−|, |x−|, r)
r

, λ(c, d, β̃, α, |v−|, |x−|, r)
)

≤µ(c, d, β̃, α, |v−|, |x−|, r) (2.10b)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))

× 22α+93d3β̃(1 + β̃)(1 + 1/c)3(|v−|/
√

2 + 1 − r)3

r(α − 1)(|v−|/
√

2 − r)4(1 + |x−|/
√

2)α−1

for T ≤ +∞, where β̃ = max(β1, β2), 0 < r ≤ 1, r < c/
√

2, |v−| < c, |v−| ≥ z1,
v−x− = 0.

From Lemma 2.1 and the estimates (2.10) we obtain the following result.

Corollary 2.1. Under the conditions (1.2), 0 < r ≤ 1, r < c/
√

2, x− ∈ R
d,

v− ∈ Bc, |v−| ≥ z1(c, d, β1, α, |x−|, r), v−x− = 0, the following result is valid:
if µT (c, d, β̃, α, |v−|, |x−|, r) < 1, then Av−,x−

is a contraction map in MT,r

for T ≤ 0;
if µ(c, d, β̃, α, |v−|, |x−|, r) < 1, then Av−,x−

is a contraction map in MT,r for
T ≤ +∞.

Taking into account (2.6) and using Lemma 2.1, Corollary 2.1 and the lemma
about the contraction maps we will study the solution (y−(t), u−(t)) of the equa-
tion (2.3) in MT,r.
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We will use also the following results.

Lemma 2.2. Under the conditions (1.2), (f, h) ∈ MT,r, 0 < r ≤ 1, r < c/
√

2,

x− ∈ R
d, v− ∈ Bc, |v−| ≥ z1(c, d, β1, α, |x−|, r), v−x− = 0, the following is valid:

|A2
v−,x−

(f, h)(t)| ≤ζ−(c, d, β1, α, |v−|, |x−|, r, t)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))
(2.11)

× d
√

dβ12
α+2(2 + r/c)

α(|v−|/
√

2 − r)(1 + |x−|/
√

2 − (|v−|/
√

2 − r)t)α
,

|A1
v−,x−

(f, h)(t)| ≤ξ−(c, d, β1, α, |v−|, |x−|, r, t)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))
(2.12)

× d
√

dβ12
α+2(2 + r/c)

α(α − 1)( |v−|√
2
− r)2(1 + |x−|√

2
− ( |v−|√

2
− r)t)α−1

,

for t ≤ T, T ≤ 0;

A1
v−,x−

(f, h)(t) = kv−,x−
(f, h)t + lv−,x−

(f, h) + Hv−,x−
(f, h)(t), (2.13)

where

kv−,x−
(f, h) = g(γ(v−) +

∫ +∞

−∞
F (v−s + x− + f(s), v− + h(s)) ds)− v−, (2.14a)

lv−,x−
(f, h) =

∫ 0

−∞

[

g(γ(v−) +

∫ τ

−∞
F (v−s + x− + f(s), v− + h(s)) ds)− v−

]

dτ

+

∫ +∞

0

[

g(γ(v−) +

∫ τ

−∞
F (v−s + x− + f(s), v− + h(s)) ds)

−g(γ(v−) +

∫ +∞

−∞
F (v−s + x− + f(s), v− + h(s)) ds)

]

dτ, (2.14b)

|kv−,x−
(f, h)| ≤2ζ−(c, d, β1, α, |v−|, |x−|, r, 0), (2.15a)

|lv−,x−
(f, h)| ≤2ξ−(c, d, β1, α, |v−|, |x−|, r, 0), (2.15b)

|Ḣv−,x−
(f, h)(t)| ≤ζ+(c, d, β1, α, |v−|, |x−|, r, t) (2.16)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))α(|v−|/
√

2 − r)
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× d
√

dβ12
α+2(2 + r/c)

(1 + |x−|/
√

2 + (|v−|/
√

2 − r)t)α
,

|Hv−,x−
(f, h)(t)| ≤ξ+(c, d, β1, α, |v−|, |x−|, r, t) (2.17)

=
1

√

1 + |v−|2/(4(c2 − |v−|2))α(α − 1)(|v−|/
√

2 − r)2

× d
√

dβ12
α+2(2 + r/c)

(1 + |x−|/
√

2 + (|v−|/
√

2 − r)t)(α−1)
,

for T = +∞, t ≥ 0.

One can see that Lemma 2.2 gives, in particular, estimates and asymptotics
for

Av−,x−
(f, h)(t) = (A1

v−,x−
(f, h)(t), A2

v−,x−
(f, h)(t)) as t → ±∞.

Lemma 2.3. Let the conditions (1.2) be valid, (y−(t), u−(t)) ∈ MT,r be a solu-

tion of (2.3), T = +∞, 0 < r ≤ 1, r < c/
√

2, x− ∈ R
d, v− ∈ Bc, |v−| ≥

z1(c, d, β1, α, |x−|, r), v−x− = 0, then

|kv−,x−
(y−, u−) − kv−,x−

(0, 0)| ≤ε′a(c, d, β1, β̃, α, |v−|, |x−|, r)

=
d2β̃(1 + 1

c )2α+5(|v−|/
√

2 + 1 − r)

α(|v−|/
√

2 − r)2(1 + |x−|/
√

2)α
(2.18a)

× ρ(c, d, β1, α, |v−|, |x−|, r)
√

1 + |v−|2/(4(c2 − |v−|2))
,

∣

∣

∣

∣

∣

∣

kv−,x−
(y−, u−)

√

1 − |v−|2
c2

−
∫ +∞

−∞
F (x− + v−s, v−) ds

∣

∣

∣

∣

∣

∣

≤εa(c, d, β1, β̃, α, |v−|, |x−|, r) (2.18b)

=
2α+5d

√
dβ̃(1 + 1

c )(|v−|/
√

2 + 1 − r)

α(|v−|/
√

2 − r)2(1 + |x−|/
√

2)α

× ρ(c, d, β1, α, |v−|, |x−|, r),

|lv−,x−
(y−, u−) − lv−,x−

(0, 0)| ≤εb(c, d, β1, β̃, α, |v−|, |x−|, r) (2.18c)

=
22α+9d3β̃(1 + β̃)3(1 + 1/c)3(|v−|/

√
2 + 1 − r)2

(α − 1)(|v−|/
√

2 − r)4(1 + |x−|/
√

2)α−1

× ρ(c, d, β1, α, |v−|, |x−|, r)
√

1 + |v−|2/(4(c2 − |v−|2))
,

where kv−,x−
and lv−,x−

are defined in (2.14) and ρ is defined in (2.8b).
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We sketch the proof of Lemmas 2.1, 2.2, 2.3 in Section 4.

3 Small angle scattering

Under the conditions (1.2), for any (v−, x−) ∈ Bc×R
d, v− 6= 0, the equation (1.1)

has a unique solution x ∈ C2(R, Rd) with the initial conditions (1.3). Consider the
function y−(t) from (1.3). This function describes deflection from free motion.

Using Corollary 2.1 the lemma about contraction maps, and Lemmas 2.2 and
2.3 we obtain the following result.

Theorem 3.1. Let the conditions (1.2) be valid, µ(c, d, β̃, α, |v−|, |x−|, r) < 1, β̃ =
max(β1, β2), 0 < r ≤ 1, r < c/

√
2, x− ∈ R

d, v− ∈ Bc, |v−| ≥ z1(c, d, β1, α, |x−|, r),
v−x− = 0, where µ is defined by (2.10b) and z1 is defined by (2.7). Then the
deflection y−(t) has the following properties:

(y−, ẏ−) ∈ MT,r, T = +∞; (3.1)

|ẏ−(t)| ≤ζ−(c, d, β1, α, |v−|, |x−|, r, t), (3.2)

|y−(t)| ≤ξ−(c, d, β1, α, |v−|, |x−|, r, t) for t ≤ 0; (3.3)

y−(t) =asc(v−, x−)t + bsc(v−, x−) + h(v−, x−, t), (3.4)

where
∣

∣

∣

∣

∣

∣

∣

∣

asc(v−, x−) −









γ(v−) +
∫ +∞
−∞ F (v−s + x−, v−)ds

√

1 +
|γ(v−)+

∫

+∞

−∞
F (v−s+x−,v−)ds|2

c2

− v−









∣

∣

∣

∣

∣

∣

∣

∣

≤ ε′a(c, d, β1, β̃, α, |v−|, |x−|, r), (3.5a)
∣

∣

∣

∣

∣

∣

asc(v−, x−)
√

1 − |v−|2
c2

−
∫ +∞

−∞
F (v−s + x−, v−)ds

∣

∣

∣

∣

∣

∣

≤ εa(c, d, β1, β̃, α, |v−|, |x−|, r), (3.5b)

|bsc(v−, x−) − lv−,x−
(0, 0)| ≤ εb(c, d, β1, β̃, α, |v−|, |x−|, r), (3.5c)

|asc(v−, x−)| ≤2ζ−(c, d, β1, α, |v−|, |x−|, r, 0), (3.6a)

|bsc(v−, x−)| ≤2ξ−(c, d, β1, α, |v−|, |x−|, r, 0), (3.6b)

|ḣ(v−, x−, t)| ≤ζ+(c, d, β1, α, |v−|, |x−|, r, t), (3.7)

|h(v−, x−, t)| ≤ξ+(c, d, β1, α, |v−|, |x−|, r, t), (3.8)

for t ≥ 0, where lv−,x−
(0, 0) (resp. ε′a, εa, εb, ζ−, ζ+, ξ− and ξ+) is defined in

(2.14b) (resp. (2.18a), (2.18b), (2.18c), (2.11), (2.16), (2.12) and (2.17)).
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Let z = z(c, d, β̃, α, rx, r) and z2 = z2(c, d, β1, α, rx) be defined as the roots
of the following equations

µ(c, d, β̃, α, z, rx, r) = 1, z ∈]
√

2r, c[, (3.9)

z2
√

1 − z2
2

c2

− 32β1d

α(z2/
√

2)(1 + rx/
√

2)α
= 0, z2 ∈]0, c[, (3.10)

where µ is defined by (2.10b), rx and r are some nonnegative numbers such that
0 < r ≤ 1, r < c/

√
2, and where β̃ = max(β1, β2).

We use the following observations.
(I) Let 0 < r ≤ 1, r < c/

√
2, 0 ≤ σ

s1
√

1 − s2
1

c2

− 2α+5β1d(2 + r/c)

α(s1/
√

2 − r)(σ/
√

2 + 1)α
>

s2
√

1 − s2
2

c2

− 2α+5β1d(2 + r/c)

α(s2/
√

2 − r)(σ/
√

2 + 1)α

for
√

2r < s2 < s1 < c.

(II) Let 0 < r ≤ 1, r < c/
√

2, σ ∈]
√

2r, c[,

σ
√

1 − σ2

c2

− 2α+5β1d(2 + r/c)

α(σ/
√

2 − r)(s1/
√

2 + 1)α
>

σ
√

1 − σ2

c2

− 2α+5β1d(2 + r/c)

α(σ/
√

2 − r)(s2/
√

2 + 1)α

for 0 ≤ s2 < s1.
(III) Let 0 < r ≤ 1, r < c/

√
2, x some real nonnegative number, β̃ =

max(β1, β2) and
√

2r < s < c then

µ(c, d, β̃, α, s, |x|, r) < 1 ⇔ s > z(c, d, β̃, α, |x|, r).

Observations (I) and (II) imply that z1(c, d, β1, α, s2, r) > z1(c, d, β1, α, s1, r) for√
2r < s2 < s1 < c when c, β1, α, d, r are fixed.

Theorem 3.1 gives, in particular, estimates for the scattering process and
asymptotics for the velocity valued component of the scattering map when c, β1,
β2, α, d, v̂−, x− are fixed (where v̂− = v−/|v−|) and |v−| increases or, e.g., c,
β1, β2, α, d, v−, x̂− are fixed and |x−| increases. In these cases sup

t∈R |θ(t)|
decreases, where θ(t) denotes the angle between the vectors ẋ(t) = v− + ẏ−(t)
and v−, and we deal with small angle scattering. Note that already under the
conditions of Theorem 3.1, without additional assumptions, there is the estimate
sup

t∈R |θ(t)| < 1
4
π and we deal with a rather small angle scattering. Theorem

3.1 with (3.5c) will give the asymptotics of the configuration valued component
b(v−, x−) of the scattering map if we can study the asymptotics of lv−,x−

(0, 0).
This is the subject of Theorem 3.2.
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Theorem 3.2. Let c, d, β0, β1, α, |x| be fixed. Then there exists a constant
Cc,d,β0,β1,α,|x| such that

∣

∣

∣

∣

∣

∣

lv,x(0, 0)
√

1 − |v|2
c2

− 1

c2
PV (v̂, x)v̂ +

1

|v|2
∫ +∞

0

∫ +∞

τ

F (σv̂ + x, v)dσdτ

− 1

|v|2
∫ 0

−∞

∫ τ

−∞
F (σv̂ + x, v)dσdτ

∣

∣

∣

∣

≤Cc,d,β0,β1,α,|x|

√

1 − |v|2
c2

(3.11)

for any v ∈ Bc, |v| ≥ z2(c, d, β1, α, |x|), vx = 0, and where v̂ = v/|v|.
We sketch the proof of Theorem 3.2 in Section 4.

4 About the proof of Lemmas 2.1, 2.2, 2.3 and Theorems
3.2 and 1.1

The way we prove Lemmas 2.1, 2.2, 2.3 and Theorem 3.2 of the present work, is
actually exactly the same as the way we prove lemmas 2.1, 2.2, 2.3 and theorem
3.2 of [Jo].

4.1 Inequalities for F and g.
Before sketching the proof of Lemmas 2.1, 2.2, 2.3 and Theorem 3.2, we shall give
some estimates about the growth of g defined by

g(x) =
x

√

1 + |x|2
c2

, x ∈ R
d,

and we shall prove Lemma 4.1 given below.
We remind that g has the following simple properties (see [Jo]):

|∇gi(x)|2 ≤ 1

1 + |x|2
c2

, (4.1)

|g(x)− g(y)| ≤
√

d sup
ε∈[0,1]

1
√

1 + |εx+(1−ε)y|2
c2

|x − y|, (4.2)

|∇gi(x) −∇gi(y)| ≤3
√

d

c
sup

ε∈[0,1]

1

1 + |εx+(1−ε)y|2
c2

|x − y|, (4.3)

for x, y ∈ R
d, i = 1..d, and where g = (g1, .., gd).

Lemma 4.1. Under the conditions (1.2), the following estimates are valid:

|F (x, y)| ≤2dβ1(1 + |x|)−(α+1)(1 +
1

c
|y|) for x, y ∈ R

d, (4.4)
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|F (x, y)− F (x′, y′)| ≤1

c
2dβ1 sup

ε∈[0,1]

(1 + |εx + (1 − ε)x′|)−(α+1)|y − y′| (4.5)

+2d
√

dβ2 sup
ε∈[0,1]

(1 + |εy + (1 − ε)y′|/c)(1 + |εx + (1 − ε)x′|)−(α+2)

×|x − x′|,

for x, y, x′, y′ ∈ R
d.

Let (f, h), (f1, h1), (f2, h2) ∈ MT,r, v− ∈ Bc\{0}, v−x− = 0, |v−| >
√

2r,
then

|f(s)| ≤(1 + |s|)‖(f, h)‖T , (4.6)

|h(s)| ≤‖(f, h)‖T , (4.7)

for s ≤ T ;

2(1 + |x− + v−s + f(s)|) ≥ (1 + |x−|/
√

2 + (|v−|/
√

2 − r)|s|), for s ≤ T, (4.8)

∣

∣

∣

∣

∫ t

−∞
F (v−s + x− + f(s), v− + h(s))ds

∣

∣

∣

∣

≤ β1d2α+3(2 + r/c)

α(|v−|/
√

2 − r)(|x−|/
√

2 + 1)α
, (4.9)

(

1 +
1

c2

∣

∣

∣

∣

γ(v−) + ε1

∫ t

−∞
F (v−s + x− + f1(s), v− + h1(s))ds

+ε2

∫ τ

σ

F (v−s + x− + f2(s), v− + h2(s))ds

∣

∣

∣

∣

2
)−β

≤ (1 +
|v−|2

4(c2 − |v−|2)
)−β , (4.10)

for τ, t ∈] − ∞, T ], σ ∈ [−∞, τ ], β > 0, −1 ≤ ε1 ≤ 1, −1 ≤ ε2 ≤ 1, (f1, h1),
(f2, h2) ∈ MT,r and if |v−| ≥ z1(c, d, β1, α, |x−|, r), |v−| < c, where γ is defined by

γ(v) =
v

√

1 − |v|2/c2
,

for v ∈ Bc.

Proof of Lemma 4.1. The estimates (4.4) and (4.5) follows directly from the formula
F (x, y) = −∇V (x) + 1

c
B(x)y and B(x) = [ ∂

∂xj
Ak(x) − ∂

∂xk
Aj(x)]j,k=1..d and the

conditions (1.2). The inequalities (4.6), (4.7) and (4.8) follow from the definition
of MT,r. Using (4.4), (4.8), we obtain (4.9) and using (4.9) and the definition of
z1(c, d, β1, α, |x−|, r) we obtain (4.10). ⊓⊔

4.2 Sketch of proofs of Lemmas 2.1, 2.2, 2.3 and Theorem 3.2.

16



One can prove Lemmas 2.1, 2.2, 2.3 of the present work by repeating the proof
of lemmas 2.1, 2.2, 2.3 of [Jo] and by making the following replacements. First
the estimates given in lemmas 4.1, 4.3 of [Jo] are replaced by the estimates of
Lemma 4.1 of the present work. Then, to prove Lemmas 2.1, 2.2, 2.3, we replace
d
dtAv−,x−

(f), Av−,x−
(f) and F (v−s + x− + f(s)), for f ∈ MT,r, in the proof

of lemmas 2.1, 2.2, 2.3 of [Jo] by A2
v−,x−

(f, h), A1
v−,x−

(f, h) and F (v−s + x− +
f(s), v− + h(s)) for (f, h) ∈ MT,r. ⊓⊔

One can prove Theorem 3.2 by repeating the proof of theorem 3.2 of [Jo] and
by making the following replacements. We replace the estimates given in lemmas
4.1, 4.3 of [Jo] by the estimates of Lemma 4.1 of our present work and we replace
F (τθ + x) of the proof of theorem 3.2 of [Jo] by F (τθ + x, sθ). ⊓⊔

4.3 Constants C1, C2, s1, s2 of Theorem 1.1.
As it was mentioned already in Introduction, Theorem 1.1 follows from Theo-
rem 3.1 and Theorem 3.2. In addition, constants C1, C2, s1, s2, which appear in
Theorem 1.1, are given explicitly by

s1 =max(z(c, d, β̃, α, |x|, r), z1(c, d, β1, α, |x|, r)),
s2 =max(z(c, d, β̃, α, |x|, r), z1(c, d, β1, α, |x|, r), z2(c, d, β1, α, |x|)),

C1 =
d3β̃222α+9(1 + 1

c
)2c( c√

2
+ 1 − r)2

α(α − 1)( s1√
2
− r)4(1 + |x|√

2
)2α−1

,

C2 =Cc,d,β0,β1,α,|x| +
4d4

√
dβ̃2(1 + β̃)23α+15(1 + 1/c)4( c√

2
+ 1 − r)3

(α − 1)2( s2√
2
− r)6(1 + |x|√

2
)2α−2

,

where Cc,d,β0,β1,α,|x| is the constant of Theorem 3.2 and z, z1, z2 are defined by

(3.9), (2.7), (3.10) and where β̃ = max(β1, β2).

4.4 Weakened assumptions.
Let Md(R) denote the space of d×d matrix with real elements. Let V ∈ C2(Rd, R)
so that:

|∂j
xV (x)| ≤ β|j|(1 + |x|)−(α+|j|), (4.11a)

for |j| ≤ 2 and some α > 1 (here j is the multiindex j ∈ (N ∪ {0})d, |j| =
∑d

n=1 jn

and β|j| are positive real constants). Let B ∈ C1(Rd, Md(R)) so that:

B(x) is a d × d antisymmetric matrix with real elements Bm,n(x), (4.11b)

∂

∂xi
Bk,l(x) +

∂

∂xl
Bi,k(x) +

∂

∂xk
Bl,i(x) = 0, (4.11c)

for x ∈ R
d, for i, k, l = 1..d;

|∂j
xBi,k(x)| ≤ β|j|+1(1 + |x|)−(α+|j|+1), (4.11d)
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for i, k = 1..d and for |j| ≤ 1.
Let A be the transversal gauge of B, i.e.

A(x) = −
∫ 1

0

sB(sx).xds. (4.12)

Under the conditions (4.11b), (4.11c) and (4.11d), A satisfies

|A(x)| ≤β(1 + |x|)−1, (4.13a)

Bi,k(x) =
∂

∂xi
Ak(x) − ∂

∂xk
Ai(x). (4.13b)

for x ∈ R
d, i, k = 1..d and some positive real constant β.

If we replace assumptions (1.2) by assumptions (4.11) given above, then the
estimates (4.4) and (4.5) still hold. As a consequence, using also Remark 5.2,
we obtain that assumptions (1.2) in all results and estimates which appear in
Introduction and in Sections 2, 3 can be weakened to assumptions (4.11).

5 Proofs of Proposition 1.1 and Proposition 1.2

Let A ∈ C2(Rd, Rd) and

|∂j
xAi(x)| ≤ β|j|(1 + |x|)−(α+|j|) (5.1)

for x ∈ R
d, |j| ≤ 2, i = 1..d and some α > 1 (here j is the multiindex j ∈

(N ∪ {0})d, |j| =
∑d

n=1 jn and β|j| are positive real constants). We define the

magnetic field B ∈ C1(Rd,Md(R)) by: B(x) is the d×d real antisymmetric matrix
with elements

Bi,k(x) =
∂

∂xi
Ak(x) − ∂

∂xk
Ai(x) (5.2)

for x ∈ R
d (where Md(R) denotes the space of d × d real matrix). For A ∈

C2(Rd, Rd) satisfying (5.1) and (θ, x) ∈ TS
d−1 we define the vectors w3(A, θ, x)

and w4(A, θ, x):

w3(A, θ, x) =

∫ +∞

−∞
B(x + σθ)θdσ, (5.3a)

w4(A, θ, x) =

∫ 0

−∞

∫ τ

−∞
B(x + σθ)θdσdτ −

∫ +∞

0

∫ +∞

τ

B(x + σθ)θdσdτ, (5.3b)

where B is defined by (5.2).
We also define a function w̃3(A) : R

d\{0} × R
d → R

d by

w̃3(A)(y, x) = |y|w3(A,
y

|y| , x − xy

|y|2 y), (5.4)
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for x ∈ R
d, y ∈ R

d\{0}. From (5.1), (5.4) and (5.3a) it follows that

w̃3(A)(y, x) =

∫ +∞

−∞
B(x + σy)ydσ, (5.5)

for (x, y) ∈ R
d × R

d\{0}. From (5.1), it follows that w̃3(A) = ((w̃3(A))1, ..,
(w̃3(A))d) ∈ C1(Rd\{0} × R

d, Rd).
To prove Proposition 1.1 we first prove the following result.

Proposition 5.1. Let A ∈ C2(Rd, Rd) satisfy (5.1) . Then w3(A, θ, x) given for
all (θ, x) ∈ TS

d−1 determines uniquely the magnetic field B defined by (5.2) and
the following formulas are valid:

PBi,k(θ, x) =

(

∂

∂yk
(w̃3(A))i(y, x) − ∂

∂yi
(w̃3(A))k(y, x)

)

|y=θ

, (5.6a)

for (θ, x) ∈ TS
d−1, i, k = 1..d, i 6= k;

PBi,k(θ, x) =θkw3(A, θ, x)i − θiw3(A, θ, x)k (5.6b)

for (θ, x) ∈ Vi,k, i, k = 1..d, i 6= k where Vi,k is the d-dimensional smooth manifold
given by (1.11).

Note that under different conditions on vector potentials A, the question of
the determination of B from w3 was studied in [Ni], [Ju], [I]. However, to our
knowledge the formulas (5.6) were not given in the literature.

Proof of Proposition 5.1. Under the conditions (5.1) and from (5.2) and (5.5) it
follows that

∂

∂yk
(w̃3(A))i(y, x) =

∫ +∞

−∞
[

∂

∂xi
Ak(ty + x) − ∂

∂xk
Ai(ty + x)]dt (5.7)

+
d
∑

j=1

∫ +∞

−∞
t[

∂2

∂xk∂xi
Aj(ty + x) − ∂2

∂xk∂xj
Ai(ty + x)]yjdt

for any (y, x) ∈ R
d\{0} × R

d and i, k = 1..d. Let i, k = 1..d. From (5.7) it follows
that

(

∂

∂yk
(w̃3(A))i(y, x) − ∂

∂yi
(w̃3(A))k(y, x)

)

|y=θ

=2PBi,k(θ, x) +

∫ +∞

−∞
t

d
∑

j=1

∂

∂xj
Bi,k(tθ + x)θjdt, (5.8)
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for all (θ, x) ∈ TS
d−1, θ = (θ1, . . . , θd) and where P denotes the X-ray transform.

Integrating by parts the integral of the right-hand side of (5.8), we obtain the
formula (5.6a).

We recall that w3(A, θ, x)i =
∑d

j=1

∫ +∞
−∞ Bi,j(tθ +x)θjdt, for (θ, x) ∈ TS

d−1,
i, k = 1..d, i 6= k. Hence θkPBi,k(θ, x) = w3(A, θ, x)i for (θ, x) ∈ Vi,k, i, k =
1..d, i 6= k. This last formula implies (5.6b) (θ2

i + θ2
k = 1 for (θ, x) ∈ Vi,k, θ =

(θ1, . . . , θd)).
Then using results on inversion of the X-ray transform and using (5.6a) or

(5.6b) and using (5.4) we obtain that w3(A, θ, x) given for all (θ, x) ∈ TS
d−1

uniquely determines the magnetic field B.
Proposition 5.1 is proved. ⊓⊔
Now we are ready to prove Proposition 1.1.
Let (θ, x) ∈ TS

d−1. We note that

∫ +∞

−∞
B(τ(−θ) + x)(−θ)dτ = −

∫ +∞

−∞
B(τθ + x)θdτ (5.9a)

and we remind that
P (∇V )(−θ, x) = P (∇V )(θ, x). (5.9b)

Using (1.9a), (5.3a) and (5.9) we obtain the formula (1.12a) and the following
formula

w3(A, θ, x) =
1

2
(w1(V,A, θ, x)− w1(V,A,−θ, x)), (5.10)

for (θ, x) ∈ TS
d−1. From (1.12a) and results on inversion of the X-ray transform,

we obtain that w1(V,A, θ, x) given for all (θ, x) ∈ TS
d−1 uniquely determines

∇V and thus it uniquely determines V ( (V,A) satisfies (1.2)). From (5.10) and
Proposition 5.1 it follows that w1(V,A, θ, x) given for all (θ, x) ∈ TS

d−1 uniquely
determines B. In addition from (5.10) it follows that

w̃3(A)(y, x) =
1

2
(w̃1(V,A)(y, x)− w̃1(V,A)(−y, x)),

for y ∈ R
d\{0}, x ∈ R

d. Using this last formula and (5.6a) of Proposition 5.1 we
obtain (1.12b). Using (5.10) and (5.6b), we obtain (1.12c).

Proposition 1.1 is proved. ⊓⊔
Let i, k = 1..d, i 6= k. To reconstruct Bi,k from w1(V,A, θ, x) given for all

(θ, x) ∈ Vi,k, we give the following scheme which is based on the formula (1.12c)
(Vi,k is defined in (1.11)). The formula (1.12c) gives the value of all integrals of
Bi,k over any straight line of any two-dimensional affine plane Y whose tangent

vector space is Yi,k = {(x′
1, . . . , x

′
d) ∈ R

d|x′
j = 0, j 6= i, j 6= k}. Now, to reconstruct

Bi,k at a point x′ ∈ R
d we consider in R

d a two-dimensional plane Y containing

x′ and whose tangent vector space is Yi,k. We interpret TS
d−1 as the set of all
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rays in R
d and we consider in TS

d−1 the subset TS
1(Y ) which is the set of all

rays lying in Y . Then we restrict PBi,k on TS
1(Y ) and reconstruct Bi,k(x′) from

these data using methods of reconstruction of f from Pf for d = 2. (We can also
use the formula (1.12b) for reconstruction of Bi,k from w1(V,A, θ, x) given for all

(θ, x) ∈ TS
d−1.)

To prove Proposition 1.2 we will first prove Proposition 5.2 and Proposition
5.3 given below.

Let A ∈ C2(Rd, Rd) satisfy (5.1). We define a function w̃4(A) : R
d\{0} ×

R
d → R

d by w̃4(A)(y, x) = |y|w4(A, y
|y| , x − x.y

|y|2 y) for x ∈ R
d, y ∈ R

d\{0}. From

(5.1) and (5.3b), it follows that

w̃4(A)(y, x) =

∫
−xy

|y|2

−∞

∫ τ

−∞
B(x + σy)ydσdτ −

∫ +∞

−xy

|y|2

∫ +∞

τ

B(x + σy)ydσdτ, (5.11)

and w̃4(A) = (w̃4(A)1, .., w̃4(A)d) ∈ C1(Rd\{0} × R
d, Rd).

Proposition 5.2. Let A ∈ C2(Rd, Rd) satisfy (5.1), then B defined by (5.2)
satisfies:

d
∑

j=1

θj [θkPBi,j(θ, x) − θiPBk,j(θ, x)]− PBi,k(θ, x) = (5.12a)

∂

∂xi
w̃4(A)k(θ, x)− ∂

∂xk
w̃4(A)i(θ, x),

d
∑

j=1

θj [θkPBi,j,l(θ, x) − θiPBk,j,l(θ, x)]−PBi,k,l(θ, x) = w̃4(A)i,k,l(θ, x), (5.12b)

for (θ, x) ∈ TS
d−1, i, k, l = 1..d, where P denotes the X-ray transform and where

w̃4(A)m,n,l(θ, x) = ∂
∂xl

(

∂
∂xm

w̃4(A)n − ∂
∂xn

w̃4(A)m

)

(θ, x), Bm,n,l(x) =

∂
∂xl

Bm,n(x), for θ ∈ S
d−1, x ∈ R

d, m, n = 1..d.

Remark 5.1. Let d = 3, l = 1..d. Formula (5.12b) gives in fact

θ ⋆ (−PB2,3,l(θ, x), PB1,3,l(θ, x),−PB1,2,l(θ, x)) =

θ ⋆ (w̃4(A)2,3,l(θ, x),−w̃4(A)1,3,l(θ, x), w̃4(A)1,2,l(θ, x)), (5.13)

for any (θ, x) ∈ TS
2 where ⋆ denotes the usual scalar product on R

3.

Proof of Proposition 5.2. Under the conditions (5.1), from (5.11) it follows that

∂

∂xk
w̃4(A)i(y, x) = − yk

|y|2
d
∑

j=1

yj

∫ +∞

−∞
Bi,j(σy + x)dσdτ (5.14)
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+

d
∑

j=1

yj

{

∫ − x⋆y

|y|2

−∞

∫ τ

−∞

∂

∂xk
Bi,j(σy + x)dσdτ

−
∫ +∞

− x⋆y

|y|2

∫ +∞

τ

∂

∂xk
Bi,j(σy + x)dσdτ

}

for any (y, x) ∈ R
d\{0}×R

d and i, k = 1..d. Let i, k, l = 1..d be fixed. From (5.14)
it follows that

∂

∂xk
w̃4(A)i(θ, x)− ∂

∂xi
w̃4(A)k(θ, x)

= − θk

d
∑

j=1

θj

∫ +∞

−∞
Bi,j(σθ + x)dσdτ + θi

d
∑

j=1

θj

∫ +∞

−∞
Bk,j(σθ + x)dσdτ

+

d
∑

j=1

θj

{
∫ 0

−∞

∫ τ

−∞
[

∂

∂xk
Bi,j(σθ + x) − ∂

∂xi
Bk,j(σθ + x)]dσdτ

−
∫ +∞

0

∫ +∞

τ

[
∂

∂xk
Bi,j(σθ + x) − ∂

∂xi
Bk,j(σθ + x)]dσdτ

}

(5.15)

for x ∈ R
d, θ ∈ S

d−1, θ = (θ1, . . . , θd). From (5.1) and (5.2) it follows that

∂

∂xk
Bi,j(x) − ∂

∂xi
Bk,j(x) =

∂

∂xj
Bi,k(x), x ∈ R

d, j = 1..d. (5.16)

Let θ ∈ S
d−1 be fixed. Using (5.15), (5.1) and (5.16) we obtain (5.12a). Under con-

ditions (5.1), the function hi,k,θ which is defined by hi,k,θ(x) = ∂
∂xk

w̃4(A)i(θ, x)

− ∂
∂xi

w̃4(A)k(θ, x), x ∈ R
d, satisfies hi,k,θ ∈ C1(Rd, R) and (5.12b) follows imme-

diatly from (5.12a).
Proposition 5.2 is proved. ⊓⊔

Proposition 5.3. Let A ∈ C2(Rd, Rd) satisfy (5.1).
i. if d = 2 then w4(A, θ, x) given for all (θ, x) ∈ TS

d−1 does not determine
uniquely the magnetic field B defined by (5.2),

ii. if d ≥ 3 then w4(A, θ, x) given for all (θ, x) ∈ TS
d−1 uniquely determines

the magnetic field B defined by (5.2). In addition the following formulas are valid:
if d = 3 then

(−FB2,3,l(0),FB1,3,l(0),−FB1,2,l(0)) = (5.17a)

(2π)−3/2
3
∑

j=1

[

θj ⋆

(

∫

Π
θj

w̃4(A)2,3,l(θ
j, y)dy,−

∫

Π
θj

w̃4(A)1,3,l (θj, y)dy,

∫

Π
θj

w̃4(A)1,2,l(θ
j , y)dy

)]

θj ,
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for any orthonormal basis (θ1, θ2, θ3) and where Πp′ is the vector plane {y ∈ R
3|y⋆

p′ = 0} for p′ ∈ R
3\{0}, and F denotes the classical Fourier transform on L1(R3);

(−FB2,3,l(p),FB1,3,l(p),−FB1,2,l(p)) = (5.17b)

(2π)−3/2
2
∑

j=1



θj
p ⋆





∫

Π
θ

j
p

e−iy⋆pw̃4(A)2,3,l(θ
j
p, y)dy, −

∫

Π
θ

j
p

e−iy⋆pw̃4(A)1,3,l(θ
j
p, y)dy,

∫

Π
θ

j
p

e−iy⋆pw̃4(A)1,2,l(θ
j
p, y)dy







 θj
p,

for p ∈ R
3\{0} and any orthonormal family {θ1

p, θ
2
p} of the plane Πp (and where

i =
√
−1);
if d ≥ 4 then

PBj,k(θ, x) =
∂

∂xk
w̃4(A)j(θ, x) − ∂

∂xj
w̃4(A)k(θ, x) (5.17c)

for (θ, x) ∈ Ṽj,k, where Ṽj,k is the (2d−4)-dimensional manifold {(θ, x) ∈ TS
d−1|θ

= (θ1, ..., θd), θj = θk = 0}.
Proof of Proposition 5.3. We first prove the item (i). Let ξ ∈ C1(R+, R) be such
that

A(x) = (−x2ξ(|x|2), x1ξ(|x|2)), x ∈ R
2,

satisfies (5.1) and

B(x) =

(

0 2|x|2ξ′(|x|2)
−2|x|2ξ′(|x|2) 0

)

6≡ 0

(e.g. ξ(t) = 1
(1+t)σ , t ∈ R

+, σ > 1 or ξ(t) = e−t, t ∈ R
+). We define w5(A, θ, x) =

∫ 0

−∞
∫ τ

−∞2|σθ + x|2ξ′(|σθ + x|2)dσdτ −
∫ +∞
0

∫ +∞
τ

2|σθ + x|2ξ′(|σθ + x|2)dσdτ, for

(θ, x) ∈ TS
d−1. Let (θ, x) ∈ TS

d−1 be fixed. Using |σθ + x|2 = σ2 + |x|2 we
obtain w5(A, θ, x) = 0. From this equality and (5.3b) it follows that w4(A, θ, x) =
w5(A, θ, x)(θ2,−θ1) = 0 (θ = (θ1, θ2)). The item (i) is proved.

We prove the item (ii). We shall distinguish the case d = 3 from the case
d ≥ 4.

First let d ≥ 4. Let j, k = 1..d be fixed, j 6= k. Formula (5.12a) implies (5.17c).
Let x′ ∈ R

d. As d ≥ 4, the dimension of the vector space Hj,k = {(x1, . . . , xd)

∈ R
d|xj = xk = 0} is greater than or equal to 2. Let {e1, e2} be an orthonormal

family of Hj,k. Let Y be the affine plane of R
d which passes through x′ and

whose tangent vector space is the vector space spanned by {e1, e2}. From (5.17c),
it follows that the integral of Bj,k over any straight line of Y is known from
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∂
∂xk

w̃4(A)j(θ, x) − ∂
∂xj

w̃4(A)k(θ, x) given for all (θ, x) ∈ Ṽj,k. Thus using results

on inversion of the X-ray transform P (see [GGG], [Na] and [No1]), we obtain
that Bj,k|Y can be reconstructed from ∂

∂xk
w̃4(A)j(θ, x) − ∂

∂xj
w̃4(A)k(θ, x) given

for all (θ, x) ∈ Ṽj,k (where Bj,k|Y denotes the restriction of Bj,k to Y ). Hence

Bj,k(x′) can be reconstructed from ∂
∂xk

w̃4(A)j(θ, x) − ∂
∂xj

w̃4(A)k(θ, x) given for

all (θ, x) ∈ Ṽj,k.
Then let d = 3 and let l = 1..3 be fixed. Under conditions (5.1), Bj,k,l ∈

L1(R3), for j, k = 1..3. Let p ∈ R
3 be fixed. From (5.12b) and (5.13) we obtain

θ ⋆ (−FB2,3,l(p),FB1,3,l(p),−FB1,2,l(p)) = (5.18)

(2π)−3/2θ ⋆

(
∫

Πθ

e−iy⋆pw̃4(A)2,3,l(θ, y)dy, −
∫

Πθ

e−iy⋆pw̃4(A)1,3,l(θ, y)dy,

∫

Πθ

e−iy⋆pw̃4(A)1,2,l(θ, y)dy

)

for any θ ∈ S
2, θ ⋆ p = 0. The formula (5.18) implies (5.17a). To prove that (5.18)

also implies (5.17b), we shall use the following

Lemma 5.1. Under the conditions (5.1), (−FB2,3,l(p),FB1,3,l(p),−FB1,2,l(p)) ⋆
p = 0, for p ∈ R

3.

Lemma 5.1 and (5.18) imply (5.17b).
Let m, n = 1, 2, 3 m 6= n. Using the injectivity of the Fourier transform and

(5.17a) and (5.17b), we obtain that Bm,n,l is uniquely determined by w4(A, θ, x)

given for all (θ, x) ∈ TS
d−1. Since Bm,n vanishes at infinity, we deduce that Bm,n

is uniquely determined by w4(A, θ, x) given for all (θ, x) ∈ TS
d−1.

Proposition 5.3 is proved. ⊓⊔
Proof of Lemma 5.1. We define λ : R

3 → R by

λ(p) = (−FB2,3,l(p),FB1,3,l(p),−FB1,2,l(p)) ⋆ p, p = (p1, p2, p3) ∈ R
3. (5.19)

Now we shall use the tempered distributions and F shall denotes the Fourier
transform of tempered distributions. Under conditions (5.1), Ai defines a tempered
distribution of S′(R3).

From (5.2) and (5.19) it follows that

< λ(p), φ >= < p1plp2FA3 − p1plp3FA2 − p2plp1FA3

+ p2plp3FA1 + p3plp1FA2 − p3plp2FA1, φ >

=0 (5.20)

for φ ∈ S(R3). Since Bm,n,l ∈ L1(R3) , FBm,n,l is a continuous function on R
3

for any m, n = 1, 2, 3. Thus λ is continuous on R
3. From the continuity of λ and

(5.20), it follows that λ ≡ 0.
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Lemma 5.1 is proved. ⊓⊔
Now we are ready to prove Proposition 1.2. We note that

w4(A, θ, x) =
1

2
(w2(V,A, θ, x)− w2(V,A,−θ, x)), (5.21a)

PV (θ, x)θ+

∫ +∞

0

∫ +∞

τ

∇V (sθ + x)dsdτ −
∫ 0

−∞

∫ τ

−∞
∇V (sθ + x)dsdτ (5.21b)

=
1

2
(w2(V,A, θ, x) + w2(V,A,−θ, x)),

for (θ, x) ∈ TS
d−1. The formulas (5.21), Proposition 1.1 of [Jo] and Proposition

5.3 imply Proposition 1.2. ⊓⊔
Remark 5.2. If we replace the conditions (5.1) and the formula (5.2) by the
conditions (4.11b), (4.11c) and (4.11d), then Propositions 5.1, 5.2, 5.3 and Lemma
5.1 still hold. To prove Propositions 5.1, 5.2 and 5.3 under the conditions (4.11b),
(4.11c) and (4.11d), we use the transversal gauge (given by (4.12)) and we follow
Proof of Propositions 5.1, 5.2 and 5.3 under the conditions (5.1). To prove Lemma
5.1 under the conditions (4.11b), (4.11c) and (4.11d), we use the transversal gauge
A (given by (4.12)) and we note that (4.13a) implies that Ai defines a tempered
distribution on S(Rd) for i = 1..d, and we follow Proof of Lemma 5.1 under the
conditions (5.1).
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