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On the codimension-one foliation theorem of W. Thurston

FRANÇOIS LAUDENBACH

Abstract. This article has been withdrawn due to a mistake which is explained in version 2.

We consider a 3-simplex σ in an affine space E. Let x1, x2, x3, x4 be its vertices; the edges are
oriented by the ordering of the vertices. Let Fi be the 2-face opposite to xi. We are looking at
germs of codimension-one foliation along σ (or along a subcomplex of σ) which are transversal
to σ and to all its faces of positive dimension.

If such a foliation H is given along the three 2-faces F2, F3, F4 through x1 and if H does not
trace spiralling leaves on F2 ∪ F3 ∪ F4, then H extends to σ transversally to F1. If H is only
given along F2 ∪ F4 (resp. F3 ∪ F4), then H extends to F3 (resp. F2) with no spiralling on
F2 ∪ F3 ∪ F4, and hence to σ.

But, on contrary of what is claimed on version 1 of this paper, it is in general not true when
H is given along F2 ∪ F3. It is only true when an extra condition is fulfilled: The separatrices

of x2 in F3 and of x3 in F2 cross F2 ∩ F3 = [x1, x4] respectively at points y2 and y3 which lie in

the order y2 < y3.

The first place where this extension argument is misused is corollary 4.5. Moreover the state-
ment of this corollary is wrong. Let us explain why.

Let σpl ⊂ E be a so-called pleated 3-simplex associated to σ and H be a germ of codimension-
one foliation transversal to its simplices. We recall that σpl and σ have the same boundary
and we assume that H traces spiralling leaves on ∂σ, making the pleating necessary according
to the Reeb stability theorem. Let x ∗ σpl be the (abstract) cone on σpl. If dimE is large
enough, it embeds into E. Certainly H does not extend to x ∗ σpl, contradicting the statement
of corollary 4.5. Indeed, if it does, then we get a foliation of x ∗ ∂σpl = x ∗ ∂σ transversal to all
faces. Proposition 4.4 states that, if all 3-faces through x in the 4-simplex x ∗ σ are foliated,
then the foliation extends to the face opposite to x, which is σ itself. But this is impossible
due to the spiralling leaves on ∂σ.
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