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1, rue de la Nöe, BP 22112 - 44321 NANTES CEDEX 3 - France

e-mail: natacha.buannic@principia.fr

Keywords: FETI-DP Method, micro-macro, Ship Structure.

Abstract. In the analysis of ship structures at small scale, with structural details heterogeneities
and because there is only one prototype produced, which is the final product, the designers rely
on finite element simulations. The finite element discretization of such structure, leads to a huge
global numerical model, that suffers for computational cost and memory resource that may be
unaffordable. In such a case, a multi-scale analysis should be performed. The classical local-
global analysis that is used by engineers has several limitations such as:

• structure details are not periodic, therefore classical homogenization methods are not
easily applicable;

• edge effects are not take into account;

• zooming techniques are not easy to use: the gluing they require with the global scale often
introduces artificial edge effects.

This paper presents a micro-macro strategy based on the domain decomposition FETI-DP
method as the solver in analysis of ship structure. With this approach, the two scales (micro
and macro) are coupled during the iterations of the solver and we can consider the structural
details in areas of interest, area where the fine mesh is used and a sub-domain is located.
Performances are discussed and results in term of convergence are presented for several exam-
ples.
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1 INTRODUCTION

Analysis of a large system like ship structure, to obtain the fine scale results is one of the
industrial challenges today. Since there is often only one prototype produced, which is the final
product and because real-scale test of such structures are very expensive and difficult, the de-
signers now often rely on finite element simulation. Due to the classification society rules and
regulations, extensive use of numerical simulations started only recently in this domain of en-
gineering. With the advent of new design for ships, the old rules and regulations were obsolete
and engineers shifted to the numerical simulation and in particular to the finite element method.
Due to different specifications, several discretized models are used:

• for global behavior of the structure, and regulations requirements of numerical tests, a so
called coarse finite element model is used, see Figure 1;

• for local stresses, and to take into account all details (skylight, doors, . . . ) a model at a
finer scale is required;

• for vibration analysis, . . . ;

• for fatigue life assessment , . . . ;

Figure 1: Global finite element model

To obtain a solution for the whole structure as well as a local solution near the details, a small
scale discretized model is required. This would lead to a huge global finite element model with
large number of unknowns that is very expensive to solve. Because of this large number of un-
knowns, memory and processors limits, computing this kind of problem with a classical direct
technique is not feasible at the moment, even with last generation sparse solvers. Therefore, us-
ing a simplified global model is mandatory and engineers have used approximate method based
on super-element or local-global analysis.
Briefly, the local-global methods, which are used in engineering consist of several steps:

• Solving a local or microscopic problem to derive its global behavior for very parts of the
structure;

• Construction of a global or macroscopic model of the ship with an equivalent homoge-
nized constitutive behavior by the results of the first step;

• Once the global model is solved, recovering the solution on the small scale of the details
with a post-processing step.

The use of such a strategy raises several difficulties:
First, we can not use the periodic homogenization approach, since the structural details are not
periodic. So we need the appropriate assumptions on boundary conditions for the local prob-
lems dealing with structural details.
Second, the same boundary conditions are used for the post-processing re-localization phase,
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needed to recover the small scale solution. Depending on the selected boundary conditions, ar-
tificial edge effects may appear that pollutes the local stress computations. These edge effects,
as well as approximations in the homogenized behavior, are the consequence of loosely coupled
global and local computations.
To overcome to the above mentioned drawbacks, we will use domain decomposition methods
that will allow to restore the coupling between the different scales along iterations. Numerous
domain decomposition methods are discussed in the literature. They differ in the way gluing
conditions are expressed between neighboring substructures.
Another difficulty lies in the fact that complex structures as ships are assemblies of different
structural elements like shells, joints and stiffeners. Usually the stiffeners are modeled with
beam finite elements while various panels uses shell or plate finite element and joints use spe-
cial transition elements.
Therefore, we propose to use a domain decomposition approach suited to:

• couple local fine scale models of predefined areas (or sub-domain);

• glue these local models to areas without zooming, i.e, with a coarse finite element model;

• provide a mechanism to homogenize fine scale sub-domains to coarse finite elements;

• deal with previously mentioned heterogeneities.

In this article, we will not tackle the problem of gluing local models to coarse models. We pro-
pose to use the dual-primal version of the FETI method, which is briefly described in Section
2. The same Section recalls the technology used in such methods to deal with classical hetero-
geneities.
The Section 3 presents the problem of interface in the case of the 3D mesh of the ship struc-
ture and different heterogeneity in this structure. We will present the results of the two simple
problems and a real 3D problem of a slice of the ship structure in Section 4. The results and
conclusion will be in the Section 5.

2 GENERAL DESCRIPTION OF THE FETI-DP METHOD

Domain decomposition methods are both an efficient and flexible tool for structural analysis
[6],[4]. As an iterative approach, they often outperform direct methods when the size of the
model increases, and they allow a parallel treatment of the resolution phase. In this article, we
are not concerned with the parallelization of the resolution, but we focuss on the modularity,
especially for coupling different areas (different sub-domains) that may have been modeled dif-
ferently, or with different discretization levels.
To reach numerically scalability, the domain decomposition method needs a multi-scale fea-
ture, mainly to be able to built a coarse problem that maintains the convergence rate weakly
dependent on the number of substructures, among these methods, one can refer to BDD [7],
CBDD [8], aggregation technique [10], [9], FETI [3], FETI-DP [2], [1], LATIN micro-Macro
[5]. Moreover, when this coarse problem is related to an homogenized model of the same struc-
ture, this provides an efficient tool to deal with heterogeneous structures.
The different versions of the FETI method (FETI-1 [3], FETI-2, FETI-DP [2], [4], . . . ) belongs
to the family of the non overlapping domain decomposition methods with lagrange multiplier.
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These methods have been developed for solutions of the large scale systems of equations in
structural analysis by finite element method. Among all the domain decomposition methods
that were presented by many others author, we choose the FETI-DP method for the following
reasons:
Usually with a multi-scale domain decomposition method, the reference problem is split into
sub-domains and the coarse space problem is numerically built from this fine scale description.
The coarse problem can be discrete by nature, and is not always related to any finite element
model.
In the case we are interested in, the coarse problem is already provided, and the reference prob-
lem is built from this coarse problem by selecting zooming area that are coarse finite elements
(a panel or a stiffener, for instance). A selected coarse finite element is re-meshed at a fine scale
with the corresponding structural details (skylight, door, . . . ) and is identified as a sub-domain.
The initial coarse finite element possesses nodes that are suitable to be chosen as corner nodes
of the FETI-DP method.
Moreover, as detailed in the following (see Figure 2), the coarse finite element model consti-
tutes a structural homogenization of the detailed sub-structures, and the compatibility of coarse
displacement field is ensured automatically with neighboring coarse elements.

Figure 2: Coarse finite element model and a fine scale sub-domain

2.1 Basic FETI-DP method

Let us consider the domainΩ, decomposed that intoN non-overlapping sub-domains (or
substructures)Ωs. LetKs , us andf s be the stiffness matrix, displacement and prescribed force
vectors associated with sub-domain ofΩs, respectively. By splittingus into corner and reminder
points we will have:
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u =

[
ur
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]
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(1)

Whereuc is the global or primal solution vector of the corners degrees of freedoms (d.o.f) and
us

r is solution vector of the remaining sub-domains degrees of freedoms. With this kinematic
description, the solution at corner point is globally continuous. Using this notation, we can split
the sub-domain stiffness matrix into:

Ks =

[
Ks

rr Ks
rc

KsT

rc Ks
cc

]
(2)

By writing the equilibrium equation for each sub-domain in the global form and considering the
continuous boundary condition on the interface of the sub-domains we will have the following
relations:

Ks
rru

s
r + Ks

rcB
s
cuc + BsT

r λ = f s
r forallsin1, ..., Ns (3)

s=Ns∑
s=1

BsT

c KsT

rc us
r +

s=Ns∑
s=1

BsT

c Ks
ccB

s
cuc =

s=Ns∑
s=1

BsT

c f s
c = fc (4)

WhereBs
c are boolean matrices that map the local corner d.o.fs of a sub-domain to the global

corner d.o.fs:

us
c = Bs

cuc (5)

The interface continuity condition can be written as follows:

s=Ns∑
s=1

Bs
ru

s
r = 0 (6)

whereBs
r are signed boolean matrices.

With the above equations and after some algebraic transformations, we obtain the following
dual-primal problem. with Lagrange multiplierλ and primal displacementuc as unknowns.[

FIrr FIrc

FIT
rc

−K∗
cc

] [
λ
uc

]
=

[
dr

−f ∗c

]
(7)

where:

FIrr =
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rK

s−1

rr BsT

r (8)
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rK
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rr Ks
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s
c (9)
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rcB

s
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T Ks−1

rr (Ks
rcB

s
c) (10)
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dr =
s=Ns∑
s=1

Bs
rK

s−1

rr f s
r f ∗c = fc −

s=Ns∑
s=1

BsT

c KsT

rc Ks−1

rr f s
r (11)

The symmetric positive definite dual interface problem is obtained by condensing theuc on the
λ:

(FIrr + FIrcK
∗−1

cc F T
Irc

)λ = dr − FIrcK
∗−1

cc f ∗c (12)

We use the preconditioning conjugate gradient algorithm (PGC), as a solver of the above inter-
face problem. Indeed because the number of unknowns in the above equation can be large and
because computing and assembling that for each substructure would be very expensive, (2.1) is
not solved by a direct method.
The kernel of the equation (2.1) is the computation of the coarse FETI-DP matrixK∗

cc. The
matrixK∗

cc is sparse and its pattern is that of a stiffness matrix obtained by considering only the
super-elements defined by the corner nodes.

2.2 Preconditioning for heterogenous problems

Like all iterative methods, FETI-DP solver performances depend on spectral properties of
the matrix of the linear system and demand a good conditioning of the equations. In this article,
we do not develop a new preconditioner for FETI-DP method. The preconditioner [4] are:

F
D−1

Irr
=

s=Ns∑
s=1

W sBs
r

[
0 0
0 Ss

brbr

]
BsT

r W s (13)

where, for the Dirichlet preconditioner :

Ss
brbr

= Ks
brbr

−KsT

ibr
Ks−1

ii Ks
ibr

(14)

and for the Lumped preconditioner:

Ss
brbr

= Ks
brbr

(15)

W s is a scaling diagonal matrix for the heterogeneous cases andi, b andr are internal nodes,
boundary nodes and total internal and boundary nodes, respectively.
For more informations the reader can refer to [3], [2], [1].

3 INTERFACE PROBLEM IN THE CASE OF SHIP STRUCTURES

The ship structure is assemblage of the very different structural elements such as shell, plate ,
stiffeners, joints, etc. We consider stiffeners in two categories, primary and secondary stiffeners.
All secondary stiffeners is considered into the plate sub-domain and all primary are consider like
the one sub-domain. As a rule we decompose the structure in the line of intersection of the all
plate and primary stiffeners. For this reason in interface line there are three lagrange multiplier.
We applied the DKQ element (with 6 d.o.fsu, v, w, θx, θy, θz at each node) and 2 node beam
element (with 6 d.o.fsu, v, w, θx, θy, θz at each node).
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4 NUMERICAL EXAMPLES

For illustration of the performance of the above mentioned method we present two examples.
The problem is a model problem of a 2D stiffened plate and is used to test the convergence of
the method. The second problem concerns a 3D analysis of a slice of a ship with a fine finite
element model.

4.1 2D stiffened plate

We consider herein the 2D static deflection and plane stress analysis of a plate with (problem
I) or without (problem II) stiffeners. Both are related to a rectangular domain, clamped on the
bottom side.
We use DKT elements (three node triangular plane stress elements with two d.o.fs at each node)
made with steel (young’s modulusE = 2.0× 1011 N/m2 and Poisson’s ratioν = 0.3)
For problem II, an assembling of plates and stiffeners is considered. The stiffeners are dis-
cretized with two node beam elements (three d.o.f for each node, two displacements,u and
v, and rotationθ). The material characteristics of the stiffeners are Young’s modulusE =
2.0 × 1011 N/m2, Poisson’s ratioν = 0.3, cross section areaS = 0.00295 m2 and section
moment of inertia toI = 1.4471× 10−6 m4 for bending.
We suppose that the stiffeners lie on the interfaces of the decomposition into sub-domain. We
prescribe an uniform shear force on the top side of the two above problems (see Figure 3).
The results of the above mentioned problems with different sub-domain sizesH and delement

Figure 3: Plane stress problem

sizesh with application of the FETI-DP solver and Dirichlet preconditioner are shown in Fig-
ures 4 and 5.

The rate of convergence is still higher for the problem without stiffeners, even when using
the Dirichlet preconditioner. With diagonal scaling and three lagrange multipliers this behavior
is still to be studied to recover the initial convergence rate.
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Figure 4: Convergence behavior (plate without stiffener)

4.2 A 3D analysis of a slice of ship

In order to tackle a more realistic problem, we consider a slice of the passenger ship as
shown in Figure 2. Pre and post processing is performed with the FE code Cast3M (CEA sacly,
France) and reduction is achieved in a prototype FE platform in Matlab environment.
The finite element characteristic of this structural model as shown in Table 4.2:

Item No.
Length, Breadth, Depth 11.6 m, 9.43 m, 22.1 m

Number of fine mesh nodes 11082
Number of element 11065
Number of d.o.fs 66492

Number of sub-domain (mesh coarse) 237

Table 1: Characteristic of the slice of the ship.

5 CONCLUSIONS

In this paper we was succeed to use domain decomposition method and FETI-DP method
such as solver in the static analysis of the ship structure. We considered one coarse mesh that the
fine mesh (structural details) is hidden behind that and also we consider all primaries stiffeners
in one sub-domain.
The obtained results is comparable of the CAST3M finite elements code. A Matlab code is
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Figure 5: Convergence behavior (plate with stiffener)

developed for this reason and it will be continued to decrease the rate of the convergence and
applicable of the method in the free vibrational analysis.
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Figure 6: Stress in the structure
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