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émanant des établissements d’enseignement et de
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ABSTRACT
The design of a novel prismatic drive is reported in this pa-

per. This transmission is based onSlide-O-Cam, a cam mecha-
nism with multiple rollers mounted on a common translating fol-
lower. The design of Slide-O-Cam was reported elsewhere. This
drive thus provides pure-rolling motion, thereby reducingthe
friction of rack-and-pinions and linear drives. Such properties
can be used to design new transmissions for parallel-kinematics
machines. In this paper, this transmission is optimized to replace
ball-screws in Orthoglide, a three-DOF parallel robot optimized
for machining applications.

1 Introduction
In robotics and mechatronics applications, whereby motion

is controlled using a piece of software, the conversion of motion
from rotational to translational is usually done byball screws
or linear actuators. Of these alternatives, ball screws are gain-
ing popularity, one of their drawbacks being the high number
of moving parts that they comprise, for their functioning relies
on a number of balls rolling on grooves machined on a shaft; one
more drawback of ball screws is their low load-carrying capacity,
stemming from the punctual form of contact by means of which
loads are transmitted. Linear bearings solve these drawbacks to
some extent, for they can be fabricated with roller bearings, their
drawback being that these devices rely on a form of direct-drive
motor, which makes them expensive to produce and to maintain.
A novel transmission, calledSlide-O-Cam, was introduced in [1]
(Fig. 1) to transform a rotation into a translation. Slide-O-Cam

is composed of four major elements: (i) the frame, (ii) the cam,
(iii) the follower and (iv) the rollers. The input axis on which
the cam is mounted, the camshaft, is driven at a constant angu-
lar velocity. Power is transmitted to the output, the translating
follower, which is the roller-carrying slider, by means of pure-
rolling contact between cam and roller. The roller comprises two
components, the pin and the bearing. The bearing is mounted at
one end of the pin, while the other end is press-fit into the roller-
carrying slider. Contact between cam and roller thus takes place
at the outer surface of the bearing. The mechanism uses two con-
jugate cam-follower pairs, which alternately take over themotion
transmission to ensure a positive action; rollers are driven by the
cams, throughout a complete cycle. The main advantage of us-
ing a cam-follower mechanism instead of an alternative transmis-
sion to transform rotation into translation is that contactthrough
a roller reduces friction, contact stress and wear.

This transmission will be optimized to replace the three ball
screws used by the Orthoglide prototype [2]. Orthoglide features
three prismatic joints mounted orthogonaly, three identical legs
and a mobile platform, which moves in the Cartesianx-y-zspace
with fixed orientation, as shown in Fig. 2. The motor used to
move each axis is SANYO DENKI (ref. P30B08075D) with a
constant torque of 1.2 Nm from 0 to 3000 rpm. This property en-
ables the mechanism to move throughout the workspace a 4 kg
load with an acceleration of 17 ms−2 and a velocity of 1.3 ms−1.
On the ball screws, the pitch is 50 mm per cam turn. The min-
imum radius of the camshaft is 8.5 mm. Unlike Lampinen [3],
who used a genetic algorithm, we use a deterministic method,
while taking into account geometric and machining constraints as
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Conjugate cams

Follower

Roller

Figure 1. Layout of Slide-O-Cam Figure 2. The Orthoglide

outlined in [4]. In section 2, we introduce the relations describing
the cam profile and the mechanism kinematics. In Section 3, we
derive conditions on the design parameters so as to have a fully
convex cam profile, to avoidundercutting, and to have a geomet-
rically feasible mechanism. In Section 4, the pressure angle, a
key performance index of cam mechanisms, is studied in order
to choose the design parameters that give the best pressure-angle
distribution, a compromise being done with the accuracy of the
mechanism.

2 Synthesis of the Planar Cam Mechanism
Let thex-y frame be fixed to the machine and theu-v frame

be attached to the cam, as depicted in Fig. 3.O1 is the origin
of both frames, whileO2 is the center of the roller andC is the
contact point between cam and roller. The geometric parameters
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the mechanism

defining the cam mechanism are illustrated in the same figure.
The notation of this figure is based on the general notation intro-
duced in [5], namely, (i)p: the pitch,i.e., the distance between
the center of two rollers on the same side of the follower; (ii)
e: distance between the axis of the cam and the line of centers
of the rollers; (iii) a4: radius of the roller bearing,i.e., the ra-
dius of the roller; (iv)ψ: angle of rotation of the cam, the input
of the mechanism; (v)s: position of the center of the roller,i.e,
the displacement of the follower, the output of the mechanism;
(vi) µ: pressure angle; (vii)f: force transmitted from the cam to
the roller. In this paper,p is set to 50 mm, in order to meet the
Orthoglide specifications.

The above parameters as well as the contact surface on the
cam, are determined by the geometric relations dictated by the
Aronhold-Kennedy Theorem in the plane [6]. When the cam
makes a complete turn (∆ψ = 2π), the displacement of the roller

is equal top, the distance between two rollers on the same side of
the roller-carrying slider (∆s= p). Furthermore, if we consider
the initial configuration of the roller as depicted in Fig. 4,the
roller is on the lower side of thex-axis forψ = 0, so that we have
s(0) = −p/2. Hence, the input-output functions is

s(ψ) =
p

2π
ψ− p

2
(1)

The expression for the first and second derivatives ofs(ψ) with
respect toψ will be needed:

s′(ψ) = p/(2π) and s′′(ψ) = 0 (2)

The cam profile is determined by the displacement of the contact
pointC around the cam. The Cartesian coordinates of this point
in theu-v frame take the form [5]

uc(ψ) = b2cosψ+(b3−a4)cos(δ−ψ) (3a)

vc(ψ) = −b2sinψ+(b3−a4)sin(δ−ψ) (3b)

with coefficientsb2, b3 andδ given by

b2 = −s′(ψ)sinα1 (4a)

b3 =
√

(e+s′(ψ)sinα1)2 +(s(ψ)sinα1)2 (4b)

δ = arctan

( −s(ψ)sinα1

e+s′(ψ)sinα1

)

(4c)

whereα1 is the directed angle between the axis of the cam and
the translating direction of the follower;α1 is positive in the ccw
direction. Considering the orientation adopted for the input angle
ψ and for the outputs, as depicted in Fig. 3, we have

α1 = −π/2 (5)

We now introduce the nondimensional design parameterη,
which will be extensively used:

η = e/p (6)

Thus, from Eqs. (1), (2), (4a-c), (5) and (6), we compute the
expressions for coefficientsb2, b3 andδ as

b2 =
p

2π
(7a)

b3 =
p

2π

√

(2πη−1)2+(ψ−π)2 (7b)

δ = arctan

(

ψ−π
2πη−1

)

(7c)
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whence a first constraint onη, η 6= 1/(2π), is derived. Anex-
tended angle∆ is introduced [7], so that the cam profile closes.
Angle∆ is obtained as the root of the equationvc(ψ) = 0. In the
case of Slide-O-Cam,∆ is negative, as shown in Fig. 5. Conse-
quently, the cam profile closes within∆ ≤ ψ ≤ 2π−∆.
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Figure 5. Extended angle ∆

2.1 Pitch-Curve Determination
The pitch curve is the trajectory of the centerO2 of the roller,

distinct from the trajectory of the contact pointC, which pro-
duces the cam profile. The Cartesian coordinates of pointO2 in
thex-y frame are(e,s), as depicted in Fig. 3. Hence, the Carte-
sian coordinates of the pitch-curve in theu-v frame are

up(ψ) = ecosψ+s(ψ)sinψ (8a)

vp(ψ) = −esinψ+s(ψ)cosψ (8b)

2.2 Geometric Constraints on the Mechanism
In order to lead to a feasible mechanism, the radiusa4 of the

roller must satisfy two conditions, as shown in Fig. 6a:
• Two consecutive rollers on the same side of the roller-carrying
slider must not be in contact. Sincep is the distance between the
center of two consecutive rollers, we have the constraint 2a4 < p.
Hence the first condition ona4:

a4/p < 1/2 (9)

• The radiusb of the shaft on which the cams are mounted must
be taken into consideration. Hence, we have the constrainta4 +
b ≤ e, the second constraint ona4 in terms of the parameterη
thus being

a4/p≤ η−b/p (10)

Considering the initial configuration of the roller, as depicted in
Fig. 4, thev-component of the Cartesian coordinate of the contact
pointC is negative in this configuration,i.e., vc(0) ≤ 0. Consid-
ering the expression forvc(ψ) and for parametersb3 andδ given

x

y

p

e

b

a4

(a)

x

y

e

b
b

a4

(b)
Figure 6. Constraints on the radius of the roller

in Eqs. (3b), (7b & c), respectively, the above relation leads to
the condition:

(

p
2πa4

√

(2πη−1)2+(−π)2−1

)

sin

[

arctan

( −π
2πη−1

)]

≤ 0

Further, we defineA andB as:

A =
p

2πa4

√

(2πη−1)2+ π2−1 andB = sin

[

arctan

( −π
2πη−1

)]

Since(2πη−1)2 > 0, we have,

√

(2πη−1)2+ π2 > π (11)

Hence,A > p/(2a4)− 1. Furthermore, from the constraint on
a4, stated in Eq. (9), we havep/(2a4)− 1 > 0, whenceA > 0.
Consequently, the constraintvc(0)≤ 0 leads to the constraintB≤
0. We rewrite the expression forB, by using the trigonometric
relation,

B≤ 0⇐⇒ −π
(2πη−1)

√

1+ π2/(2πη−1)2
≤ 0

which holds only if 2πη−1> 0. Finally, the constraintvc(0)≤ 0
leads to a constraint onη:

η > 1/(2π) (12)

2.3 Pressure Angle
The pressure angle is defined as the angle between the com-

mon normal at the cam-roller contact pointC and the velocity of
the follower [8], as depicted in Fig. 3, where the presure angle is
denoted byµ. This angle plays an important role in cam design.
The smaller|µ|, the better the force transmission. In the case of
high-speed operations,i.e., angular velocities of cams exceed-
ing 50 rpm, the recommended bounds of the pressure angle are
within 30◦. Nevertheless, as it is not always possible to have a
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pressure angle that remains below 30◦, we adopt theservice fac-
tor, which is the percentage of the working cycle with a pressure
angle within 30◦ [7]. The service angle will be useful to take
into consideration these notions in the ensuing discussion, when
optimizing the mechanism.

For the case at hand, the expression for the pressure angleµ
is given in [8] as

µ= arctan

(

s′(ψ)−e
s(ψ)

)

Considering the expressions forsands′, and using the parameter
η given in Eqs. (1), (2a) and (6), respectively, the expression for
the pressure angle becomes

µ= arctan

(

1−2πη
ψ−π

)

(13)

We are only interested in the value of the pressure angle withthe
cam driving the roller, which happens with

π ≤ ψ ≤ 2π−∆ (14)

Indeed, if we start the motion in the initial configuration depicted
in Fig. 5b, with the cam rotating in the ccw direction, the cam
begins to drive the roller only whenψ = π; and the cam can
drive the follower until contact is lost,i.e., whenψ = 2π−∆, as
shown in Figs. 5c & d.

Nevertheless, as shown in Fig. 7, the conjugate cam can also
drive the follower when 0≤ ψ ≤ π−∆; there is therefore a com-
mon interval, forπ ≤ ψ ≤ π− ∆, during which two cams can
drive the follower. In this interval, the conjugate cam can drive
a roller with lower absolute values of the pressure angle. Weas-
sume that, when the two cams can drive the rollers, the cam with
the lower absolute value of pressure angle effectively drives the
follower. Consequently, we are only interested in the valueof the
pressure angle in the interval,

π−∆ ≤ ψ ≤ 2π−∆ (15)

We study here the influence of parametersη anda4 on the
values of the pressure angle while the cam drives the roller,i.e.,
with π−∆ ≤ ψ ≤ 2π−∆, as explained above.

• Influence of parameterη: Figure 8 shows the influence of
the parameterη on the pressure angle, witha4 andp being fixed.
From these plots we have one result:The lowerη, the lower|µ|.

• Influence of the radius of the roller a4: a4 does not appear
in the expression for the pressure angle, but it influences the value

of the extended angle∆, and hence, the plot boundaries of the
pressure angle, as shown in Fig. 7.

By computing the value of the extended angle∆ for sev-
eral values ofa4, we can say that the highera4, the lower|∆|.
Consequently, since the boundaries to plot the pressure angle are
π− ∆ and 2π− ∆, we can say that when we increasea4, −∆
decreases and the boundaries are translated toward the left, i.e.,
toward higher absolute values of the pressure angle.

µ

ψπ

π−∆

2π−∆
-6 -2 2 6 10

100

50

-50

Figure 7. Pressure angle distribu-

tion

πη = 1/

η = 5
η = 2
η = 1.5

η = 1
η = 0.8

η = 0.4

µ

ψ864

-20

-40

-60

-80

Figure 8. Influence of parameter

η on the pressure angle µ (in de-

gree), with p = 50 mm and a4 =
10mm

3 Convexity of the Cam Profile and Undercutting
In order to enhance machining accuracy, we need the cam

profile to be fully convex. In this section we establish conditions
on the design parametersη anda4 in order to have a fully con-
vex cam profile. So, we study the sign of the curvature of the
cam profile via that of the pitch curve. Furthermore, for cam
design in roller-follower mechanisms, we should also consider
undercutting. Undercutting occurs when the radius of the roller
is greater than or equal to the minimum absolute value of the ra-
dius of curvature of the pitch curve. Upon avoiding undercutting,
the sign of the curvature of the pitch curve is identical to that of
the cam profile.

3.1 Curvature of the Cam Profile
The curvature of any planar parametric curve, in terms of

the Cartesian coordinatesu andv, and parameterized with any
parameterψ, is given by [8]:

κ =
v′(ψ)u′′(ψ)−u′(ψ)v′′(ψ)

[u′(ψ)2 +v′(ψ)2]3/2
(16)

The sign ofκ in Eq. (16) tells whether the curve is convex or
concave at a point: a positiveκ implies a convexity, while a neg-
ativeκ implies a concavity at that point. To obtain the curvature
of the cam profile for a given roller-follower, we use the Carte-
sian coordinates of the pitch curve, since obtaining its first and
second derivatives leads to simpler expressions as compared with
those associated with the cam profile itself. Then, the curvature
of the cam profile is derived by a simple geometric relationship
between the curvatures of the pitch curve and of the cam profile.

4 Copyright  2004 by ASME



The Cartesian coordinates of the pitch curve were recalled
in Eqs. (8a & b), while Eqs. (2a & b) give their first and second
derivatives

s(ψ) = p/(2π)ψ− p/2 , s′(ψ) = p/(2π) , s′′(ψ) = 0

With the above-mentioned expressions, we can compute the first
and second derivatives of the Cartesian coordinates of the pitch
curve with respect to the angle of rotation of the cam,ψ:

u′p(ψ) = ( s′(ψ)−e)sinψ+s(ψ)cosψ (17a)

v′p(ψ) = ( s′(ψ)−e)cosψ−s(ψ)sinψ (17b)

u′′p(ψ) = (2s′(ψ)−e)cosψ−s(ψ)sinψ (17c)

v′′p(ψ) = −(2s′(ψ)−e)sinψ−s(ψ)cosψ (17d)

By substituting η, η = e/p, along with Eqs. (17a-d), into
Eq. (16), the curvatureκp of the pitch curve is obtained as

κp =
2π
p

[(ψ−π)2+2(2πη−1)(πη−1)]

[(ψ−π)2+(2πη−1)2]3/2
(18)

provided that the denominator never vanishes for any value of ψ,
i.e., provided that

η 6= 1/(2π) (19)

Let ρc andρp be the radii of curvature of both the cam profile
and the pitch curve, respectively, andκc the curvature of the cam
profile. Since the curvature is the reciprocal of the radius of cur-
vature, we haveρc = 1/κc andρp = 1/κp. Furthermore, due to
the definition of the pitch curve, it is apparent that

ρp = ρc +a4 (20)

Writing Eq. (20) in terms ofκc andκp, we obtain the curvature
of the cam profile as

κc =
κp

1−a4κp
(21)

with κp given in Eq. (18). As we saw previously, we want the
cam profile to be fully convex, which happens if the pitch curve
is fully convex too. We thus find first the convexity conditionof
the pitch curve.

3.2 Convexity Condition of the Pitch Curve
Considering the expression forκp in Eq. (18), we have,

for every value ofψ, κp ≥ 0 if (2πη − 1)(πη − 1) ≥ 0 and
η 6= 1/(2π), whence the condition onη:

κp ≥ 0 if η ∈ [0,1/(2π)[ ∪ [1/π,+∞[ (22)

Figure 9 shows pitch curve profiles and their curvatures for two
values ofη. The condition onη given in Eq. (22) must be

-20
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(a) η = 0.2 (η ∈] 1
2π , 1

π [)

-20

-20

-40

40

40

20

20

(b) η = 0.7 (η > 1/π)

ψ
κp0.2

-0.2
-0.6
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2 4 6

(c) Pitch curve curvature
with η = 0.2 (η ∈] 1

2π , 1
π [)

ψ

κp

0.022

0.024

0.026

0 1 2 3 4 5 6 7

(d) Pitch curve curvature
with η = 0.7 (η > 1/π)

Figure 9. Concave (a) and convex (b) pitch curve profiles and their cor-

responding curvatures with p = 50mm

combined with the condition appearing in Eq. (12),η > 1/(2π);
hence, the finalconvexity condition of the pitch curve is:

η ≥ 1/π (23)

3.3 Undercutting Avoidance
We assume in this subsection that the pitch curve is fully

convex,i.e., κp ≥ 0 andη ≥ 1/π. In order to avoid undercutting,
i.e., in order to have both the cam profile and the pitch curve fully
convex, we needκc to be positive. Considering the expression for
the curvature of the cam profileκc of Eq. (21), the condition to
avoid undercutting is 1−a4κp > 0, whence the condition on the
radius of the followera4 is

a4 <
1

κp(ψ)
∀ψ ∈ R

Sinceκp is positive, this condition can be written as

a4 <
1

κpmax
with κpmax= max

ψ∈R

κp(ψ) (24)
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• Expression forκpmax: In order to compute the expression
for κpmax, we need the first derivativeκ′

p of κp with respect toψ
and its roots. With the conditionη ≥ 1/π, the expression forκp

given in Eq. (18) is differentiable for every value ofψ. Thus, we
obtain

κ′
p = −2π

p
(ψ−π)(ψ2−2πψ+ π2+4η2π2−10ηπ +4)

[(ψ−π)2+(2πη−1)2]5/2
(25)

The roots ofκ′
p are, apparently,ψ1 = π and the rootsψ2 andψ3

of the polynomial

P(ψ) = ψ2−2πψ+ π2+4η2π2−10ηπ +4

Let βψ be the discriminant of the equationP = 0, i.e.,

βψ = −4η2π2 +10ηπ−4

Therefore, the sign ofβψ and, consequently, the rootsψ2 andψ3,
depend on the value ofη. Let βη be the discriminant ofβψ = 0,
a quadratic equation inη. Hence,βη = 9π2, which is positive.
The two roots ofβψ are 1/2π and 2/π. Thus,

βψ > 0 if η ∈ [
1
π

,
2
π
[ or βψ < 0 if η ∈]

2
π

,+∞[

βψ = 0 if η =
2
π

We now study the roots ofκ′
p according to the value ofη.

• η ∈ [1/π,2/π[: βψ > 0, and the polynomialP has two rootsψ2

andψ3, so thatκ′
p has three roots:

ψ1 = π (26a)

ψ2 = π +
√

−4η2π2 +10ηπ−4 (26b)

ψ3 = π−
√

−4η2π2 +10ηπ−4 (26c)

• η ∈]2/π,+∞[: βψ < 0, and the polynomialP has no real roots,
so thatκ′

p has only one root,ψ1 = π.
• η = 2/π: βψ = 0, and the polynomialP has one double root
equal toπ, so thatκ′

p has one triple rootψ1 = π.
To decide whether these roots correspond to minima or max-

ima, we need to know the sign of the second derivativeκ′′
p of κp

with respect toψ, for the corresponding values ofψ. If the sec-
ond derivative is negative, the stationary value is a maximum;
if positive, a minimum. The expressions for the second deriva-
tives were computed with Maple, for the values ofψ given in

κp

µ (rad)
2 6 6

0.02

0.04

(a) η = 1/π

2

κp

µ (rad)0.023

0.025

0.027

0 6 6

(b) η = 2/π

Figure 10. Pitch-curve curvature for p = 50mm

Eqs. (26a-c):

κ′′
p(ψ1) =

4π(ηπ−2)

p|2ηπ−1|3(2ηπ−1)

κ′′
p(ψ2) = κ′′

p(ψ3) =
8π(ηπ−2)

9p(2ηπ−1)
√

6ηπ−3

• If η ∈ [1/π,2/π[, κ′′
p(ψ1) > 0 andκ′′

p(ψ2) = κ′′
p(ψ3) < 0,

the curvature of the pitch curve has one local minimum forψ1

and two maxima, forψ2 andψ3. Hence, the value ofκpmax is

κpmax1= κp(ψ2) = κp(ψ3) =
4π

3p
√

6ηπ−3
(27)

Figure 10a shows a plot of the pitch-curve curvature withη =
1/π and p = 50 mm. Sinceη is taken equal to the convexity
limit 1/π, the curvature remains positive and only vanishes for
ψ = π.

• If η ∈]2/π,+∞[, κ′′
p(ψ1) < 0, the curvature of the pitch

curve has a maximum forψ1. Hence, the value ofκpmax is

κpmax2= κp(ψ1) =
4π
p

(2η2π2−3ηπ +1)

(4η2π2−4ηπ +1)3/2
(28)

Figure 9d shows a plot of the pitch-curve curvature withη = 0.7
(η > 2/π) andp = 50 mm.

• If η = 2/π, κ′′
p(ψ1) = 0, we cannot tell whether we are in

the presence of a maximum or a minimum. We solve this un-
certainty graphically, by plotting the curvature of the pitch curve
for η = 2/π andp = 50 mm. Figure 10b reveals that the curva-
ture has a maximum forψ1. The value of this maximum can be
obtained by substitutingη by 2/π into eitherκpmax1 or κpmax2,
expressed in Eqs. (27) and (28), respectively.

In summary, to have a fully convex cam profile, taking the
geometric constraints on the mechanism into consideration, pa-
rameterη must obey the condition given in Eq. (23),i.e. η≥ 1/π.
We combine the condition ona4 to avoid undercutting, as given
in Eq. (24), with the geometric constraints on the mechanism, as
given in Eqs. (9) and (10), which are, respectively,a4/p < 1/2
anda4/p≤ η−b/p:

if η ∈ [
1
π

,
2
π

], a4 < min

{

1
κpmax1

,
p
2
, ηp−b

}

(29a)
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if η ∈ [
2
π
,+∞[, a4 < min

{

1
κpmax2

,
p
2
, ηp−b

}

(29b)

whereκpmax1andκpmax2are given in Eqs. (27) and (28), respec-
tively.

4 Optimization of the Roller Pin
We concluded in previous section that the lowest values of

parametersη and a4 led to the lowest values of the pressure
angle. Nevertheless, we must take into consideration that the
smaller the radius of the roller, the bigger the deformationof the
roller pin, and hence, a decrease of the stiffness and the accu-
racy of the mechanism. In this section we formulate and solve
an optimization problem to find the best compromise on param-
etersη anda4 to obtain the lowest pressure angle values with an
acceptable deformation of the roller pin.

4.1 Minimization of the Elastic Deformation on the
Roller Pins

Here we find the expression for the maximum elastic defor-
mation on the pin, which will be minimized under given con-
straints. Figure 11 displays the free part of the pin,i.e., the part
not fixed to the roller-carrying slider, as a cantilever beam, where

the loadF =
√

f 2
x + f 2

y denotes the magnitude of the forcef

transmitted by the cam. This force is applied at a single point
at the end of the pin in the worst loading case. Although the di-
mensions of the pin are not those of a simple beam, we assume
below that the pin can be modelled as such, in order to obtain an
explicit formula for its deflection. This assumption was found to
be plausible by testing it with FEA [9].

ff

L
a5

x
yy

z

Figure 11. Approximation of the roller pin as a cantilever beam

The displacementvL at the free end of the pin turns out to be

vL =
√

v2
x +v2

y =
FL3

3EI
(30)

whereE is the Young modulus andI = πa4
5/4, with a5 denoting

the radius of the pin, is the polar moment of inertia of the cross
section. Moreover,vx andvy are the pin elastic displacements in
thex- andy-directions, respectively, at the free end.

Before proceeding, we prove that the vertical componentfy
of the transmitted force is constant, and hence, we will consider
only the magnitude of thex-component ofvL. Since we assume
that the mechanism undergoes a pure-rolling motion, the force

exerted by the cam onto the roller, denoted byf = [ fx fy]T ,
passes through the center of the roller,i.e., its line of action
passes through pointsO2 andC, as depicted in Fig. 3. With
a constant torqueτ provided by the motor, we haveτ = ||f||d,
whered denotes the distance from the center of the input axis to
the line of action of the forcef. Moreover, we haved = b2sinδ.
Hence, τ = ||f||(b2sinδ) = b2(||f||sinδ) = b2 fy. Finally, since
b2 = 2π/p we obtain the expression forfy sought:

fy =
2πτ
p

= F0 (31)

Sinceτ is constant,fy is also constant throughout one cycle. Con-
sequently we only have to consider thex-component off, and
hence,vx for the minimization problem:

vx =
| fx|L3

3EI
=

4| fx|L3

3Eπa4
5

= β
| fx|
a4

5

, β =
4L3

3Eπ
(32)

β thus being a constant factor. The objective functionz, to be
minimized, is thus defined as

z=
f 2
max

a4
5

→ min
η,a4,a5

(33)

where fmax is the maximum value offx throughout one cycle.
Since

fx =
fy

tanδ
=

F0

tanδ
(34)

we obtain

z=
1

a4
5

max
ψ

{

f 2
x

}

=
1

a4
5

max
ψ

{

F2
0

tan2 δ

}

=
F2

0

a4
5

max
ψ

{

1
tan2 δ

}

with δ, a function ofψ, given in Eq. (7c). Moreover, the sys-
tem operates by means of two conjugate mechanisms, which al-
ternately take over the power transmission. We establishedin
Eq. (15) that when one mechanism is in positive action,ψ is
bounded betweenψi = π − ∆ and ψ f = 2π− ∆, which corre-
sponds toδ bounded betweenδi andδ f with 0 ≤ δi < δ f ≤ π.
Moreover, functions 1/ tan2 δ and cos2 δ are both unimodal in
−π ≤ δ ≤ 0 and in 0≤ δ ≤ π, their common maxima finding
themselves at−π, 0 andπ. Since cos2 δ is better behaved than
1/ tan2 δ, we redefinezas

z=
1

a4
5

max
δi≤δ≤δ f

{

cos2 δ
}
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Furthermore, the function cos2 δ attains its global minimum of 0
in [0, π], its maximum in the interval[δi , δ f ], included in[0, π],
occurring at the larger of the two extremes of the interval,δi or
δ f . It follows that the objective function to be minimized be-
comes

z=
1

a4
5

max
{

cos2 δi , cos2 δ f
}

with δi andδ f the values ofδ for ψi = π−∆ andψ f = 2π−∆,
respectively. Using the expression forδ given in Eq. (7c) and the
trigonometric identity

cos(arctanx) =
1√

1+x2

we obtain the expression for cos2 δ:

cos2 δ =
(2πη−1)2

(2πη−1)2+(ψ−π)2 (35)

Hence,

cos2 δi =
(2πη−1)2

(2πη−1)2+(ψi −π)2 (36a)

cos2 δ f =
(2πη−1)2

(2πη−1)2+(ψ f −π)2 (36b)

Furthermore, sinceψi = π − ∆, ψ f = 2π − ∆ and ∆ < 0, we
haveψ f > ψi > π, ψ f −π > ψi −π > 0 and, consequently, from
Eqs. (36a & b), cos2 δi > cos2 δ f and the objective function to
minimize becomes

z=
cos2 δi

a4
5

→ min
η,a4,a5

(37)

with cos2 δi given in Eq. (36a) andψi = π−∆.

4.2 Geometric Constraints
Two neighboring pins cannot be tangent to each other, as

depicted in Fig. 12, and hence the radiusa5 of the pin is bounded
as

a5/p < 1/4 (38)

Furthermore,a4 anda5 are not independent. From the SKF cat-
alogue, for example, we have information on bearings available

p
p/2a4

a5

Figure 12. Geometric

constraint on the roller-

pin radius
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Figure 13. Dimensions of the SKF bearings

in terms of the outer radiusD and the inner radiusd, as shown
in Fig. 13. We divide these bearings into five series, from 1 to5.
Hence, each series can be represented by a continuous function.
We chose series 2, in which the basic dynamic load ratingC lies
between 844 and 7020 N. Furthermore, for series 2, the relation
betweenD andd can be approximated by a linear functionD vs.
d, D≃ 1.6d+10 (in mm). SinceD = 2a4 andd = 2a5, the above
equation leads to

a4 ≃ 1.6a5+5 in mm (39)

We define now two non-dimensional parametersα4 andα5:

α4 = a4/p α5 = a5/p (40)

whereα5 can be derived from Eq. (39) as

α5 = (5/8)α4−25/(8p) with p in mm. (41)

The optimization problem is now expressed as

z(η,α4) =
cos2 δi

α4
5

→ min
η,α4

(42)

Moreover, we recall the geometric constraint defined in Eqs.(23)
and (29) that can be rewritten as

g1 =
1
π
−η ≤ 0 (43a)

g2 = α4−
1
2

< 0 (43b)

g3 = α4−
1

pκpmax
< 0 (43c)

g4 = α4−η+
b
p
≤ 0 (43d)

g5 = α5−
1
4

< 0 (43e)

with cos2 δi andα5 given in Eqs. (36a) and (41), respectively.
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4.3 Results of the Optimization Problem
We solve the foregoing optimization problem with an algo-

rithm implemented Matlab, usingp = 50 mm andb = 9.5 mm.
One solution is found, corresponding toη = 0.69 anda4 =
24.9992 mm, with a value ofz= 249. The algorithm finds the
values ofη anda4 as big as possible considering the constraints.
For this solution, constraints (43d & e) are active. Nevertheless,
as we saw in subsection 3.3. about the influence of parameters
h anda4, we want these parameters to be as small as possible in
order to have low pressure-angle values. For the solution found
above, the service factor is equal to 0%. Consequently, we must
find a compromise between the pressure angle and the roller-pin
elastic deformation. Table 1 shows solutions found by the op-
timization algorithm upon reducing the boundaries ofη. Each
time the algorithm finds the corresponding value ofa4 as big as
possible, constraint (43d) becomes active. Recorded in this ta-
ble is also the corresponding maximum elastic deformation of
the roller pinvLmax (its expression is derived below), the min-
imum and the maximum absolute values of the pressure angle,
|µmin| and|µmax|, respectively, and the service factor, as defined
in section 2.4. From Eqs. (30) and (32) we have

vL =
β
a4

5

√

f 2
x + f 2

y

Using Eqs. (31) and (34), the above equation leads to

vL =
βF0

a4
5

√

1+
1

tan2 δ

Which can be simplified by means of the expression for cos2 δi

given in Eq. (36a) as

vLmax =
βF0

a4
5

√

(2πη−1)2+(ψi −π)2

|ψi −π| (44)

with β, F0 anda5 given in Eqs. (32), (31) and (39), respectively,
andψi = π−∆. In Table 1 we record the value ofvLmax with
L = 10 mm,τ = 1.2 Nm (according to the Orthoglide specifica-
tions recalled in section 1) andE = 2×105 MPa. We conclude
from Table 1 that for this cam profile we cannot find an accept-
able compromise between a low deformation of the roller pin,
and hence a high stiffness and accuracy of the mechanism, and
low pressure-angle values. Indeed, for an acceptable deforma-
tion of the roller pin,vLmax = 8.87 µm, obtained withη = 0.38,
the service factor equals 54.68%, which is too low. On the other
hand, for an acceptable service factor of 79.43%, obtained with
η = 1/π, the deformation of the roller pin is equal to 710.19µm.

η a4

(mm)
a5

(mm)
z

vLmax

(µm)
|µmin|
(◦)

|µmax|
(◦)

service
factor (%)

0.69 24.99 12.50 249 0.09 42.11 80.68 0

0.5 15.5 6.56 2968 0.50 28.59 69.81 6.85

0.4 10.5 3.44 32183 4.32 20.31 57.99 46.68

0.39 10 3.12 45490 6.07 19.46 56.42 50.68

0.38 9.5 2.81 66659 8.87 18.61 54.78 54.68

0.37 9 2.50 102171 13.63 17.75 53.04 58.69

0.36 8.5 2.19 165896 22.31 16.89 51.22 62.69

0.35 8 1.87 290765 39.71 16.03 49.31 66.70

0.34 7.5 1.56 566521 79.18 15.17 47.31 70.72

0.33 7 1.25 1.29 106 186.06 14.31 45.21 74.73

1/π 6.41 0.88 4.68 106 710.19 13.31 42.64 79.43

Table 1. Results of the optimization problem, with p = 50 mm, b =
9.5 mm, L = 10mm, τ = 1.2 Nm and E = 2×105 MPa
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Figure 14. Layout of the non-coaxial conjugate-cam mechanism

5 A Non-Coaxial Conjugate-Cam Mechanism
This Section describes a new mechanism, based on Slide-

O-Cam, that enables us to decrease considerably the pressure
angle while meeting the Orthoglide specifications. This mech-
anism is composed of three conjugate cams mounted on three
parallel shafts, the rollers being placed on one single sideof the
roller-carrying slider. One motor provides the torque to the cen-
tral camshaft, this torque then being transmitted to the twoother
camshafts through a parallelogram mechanism coupling them,
whose detailed design is reported in [10]. We denote by 1, 2 and
3 the three cams, as shown in Fig. 14. The profile of each cam is
described in Section 2. The cams are mounted in such a way that
the angle between theu-axis of cam 1 and cam 2 is 120◦, and the
angle between theu-axis of cam 1 and cam 3 is 240◦. According
to the configuration of the mechanism depicted in Fig. 14, and
denoting byy12 andy13 the distance between the origin of 1 and
2, and between the origin of 1 and 3, respectively, we have

y12 = p/2+ p+s(2π/3) , y13 = p/2+2p+s(4π/3)

Using the expression of the input-output functions given in
Eq. (1), we obtain

y12 = 4p/3 , y13 = 8p/3 (45)
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Figure 15 shows the pressure angle variation for each cam vs.ψ
where1, 2 and3 denote the plot of the pressure angle for cams
1, 2 and 3, respectively. Moreover, cams2 and3 are rotated by
angles 2π/3 and 4π/3, respectively, from cam1. We can also
consider that the plot for cam 3 that drives the follower before
cam 1 in a previous cycle, refereed to as3’ in Fig. 15, is a trans-
lation of−2π/3 from cam1. As we saw in Eq. (14), cam 1 can
drive the follower withinπ ≤ ψ ≤ 2π−∆, which corresponds in
Fig. 15 to the part of the plot1 between pointsB andD. Conse-
quently, cam 2 can drive the follower within

π +2π/3≤ ψ ≤ 2π−∆ +2π/3 i.e. 5π/3≤ ψ ≤ 8π/3−∆

and cam 3 within

π +4π/3≤ ψ ≤ 2π−∆ +4π/3 i.e. 7π/3≤ ψ ≤ 10π/3−∆

which is equivalent to saying that cam 3 can drive the follower
in a previous cycle, within

π−2π/3≤ ψ ≤ 2π−∆−2π/3 i.e. π/3≤ ψ ≤ 4π/3−∆

The above interval corresponds in Fig. 15 to the part of the
plot 3’ between pointsA andC. Consequently, there is a com-
mon part for cams 1 (plot1) and 3 (plot3’) during which these
two cams can drive the follower, namely, between pointsB and
C, which corresponds toπ ≤ ψ ≤ 4π/3− ∆. Moreover, dur-
ing this common part, cam 3 has lower absolute pressure angle
values than 1, and hence, we consider that only cam 3 drives
the follower. Consequently, cam 1 drives the follower only
within 4π/3−∆ ≤ ψ ≤ 2π−∆. These boundaries allow us to
have a pressure angle lower than with coaxial conjugate cams,
since we do not use anymore the part of the cam profile within
π−∆ ≤ ψ ≤ 4π/3−∆, which has high absolute pressure angle
values. We can thus obtain a higher service factor for the mech-
anism. The drive thus design is sketched in Fig. 16.
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Figure 16. A sketch of the

prismatic drive

6 Conclusions
The non-coaxial conjugate-cam mechanism reported here

allows us to drive the Orthoglide with prismatic actuators using
rotary DC motors. Moreover, the maximum roller-pin deforma-
tion vLmax derived in eq.(44) is reasonable low. In Table 2, we

η a4 (mm) a5 (mm)
vLmax

(µm)
|µmin| (◦) |µmax| (◦)

service
factor (%)

0.5 15.5 6.56 0.26 28.59 49.41 10.49

0.4 10.5 3.44 2.88 20.31 37.20 70.02

0.39 10 3.12 4.14 19.46 35.81 76.02

0.38 9.5 2.81 6.20 18.61 34.39 82.02

0.37 9 2.50 9.76 17.75 32.95 88.03

0.36 8.5 2.19 16.39 16.89 31.48 94.04

0.35 8 1.87 29.89 16.03 29.98 100

0.34 7.5 1.56 61.07 15.17 28.47 100

0.33 7 1.25 147.02 14.31 26.93 100

1/π 6.41 0.88 576.95 13.31 25.12 100

Table 2. Design parameters, roller pin deformation and pressure angle

for the non-coaxial conjugate-cam mechanism, with p = 50 mm, b =
9.5 mm, L = 10mm, τ = 1.2 Nm and E = 2×105 MPa.

record the values ofη, a4, a5, vLmax, |µmin|, |µmax| and the ser-
vice factor for the non-coaxial conjugate-cam mechanism. The
best compromise is to use the non-coaxial conjugate-cam mecha-
nism withη = 0.37, whence the radius of the roller isa4 = 9 mm
and the roller-pin deformation isvLmax = 9.76 µm with a good
service factor of 88.03%.
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