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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53022017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00145161


CALIBRATION OF QUASI-ISOTROPIC PARALLEL 

KINEMATIC MACHINES: ORTHOGLIDE  
 

Anatoly Pashkevich, Roman Gomolitsky 
Robotic Laboratory, Department of Control Systems  

Belarusian State University of Informatics and Radioelectronics 

6 P.Brovka St., Minsk 220027, Belarus 

pap@bsuir.unibel.by 

Philippe Wenger, Damien Chablat 
Institut de Recherche en Communications et Cybernétique de Nantes  

1, rue de la Noe B.P. 6597, 44321 Nantes Cedex 3, France 

{ Philippe.Wenger, Damien.Chablat}@irccyn.ec-nantes.fr  

Keywords: Parallel robots, calibration, parameter identification, error compensation. 

Abstract: The paper proposes a novel approach for the geometrical model calibration of quasi-isotropic parallel 

kinematic mechanisms of the Orthoglide family. It is based on the observations of the manipulator leg 

parallelism during motions between the specific test postures and employs a low-cost measuring system 

composed of standard comparator indicators attached to the universal magnetic stands. They are 

sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the 

TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint 

offsets and the leg lengths that are treated as the most essential parameters. Validity of the proposed 

calibration technique is confirmed by the experimental results. 

1 INTRODUCTION 

Parallel kinematic machines (PKM) are commonly 

claimed as appealing solutions in many industrial 

applications due to their inherent structural rigidity, 

good payload-to-weight ratio, high dynamic 

capacities and high accuracy (Tlusty et al., 1999; 

Merlet, 2000; Wenger et al., 2001). However, while 

the PKM usually exhibit a much better repeatability 

compared to serial mechanisms, they may not 

necessarily posses a better accuracy, which is 

limited by manufacturing/assembling errors in 

numerous links and passive joints (Wang and 

Masory, 1993). Thus, the PKM accuracy highly 

relies on the accurate kinematic model, which must 

be carefully tuned for each manipulator separately. 

Similar to the serial manipulators, the PKM 

calibration techniques are based on the minimization 

of a parameter-dependent error function, which 

incorporates residuals of the kinematic equations. 

For the parallel manipulators, the inverse kinematic 

equations are considered computationally more 

efficient (contrary to the direct kinematics, which is 

usually analytically unsolvable for the PKM) 

(Innocenti, 1995; Iurascu & Park, 2003; Jeong et al., 

2004, Huang et al., 2005). But the main difficulty 

with this technique is the full-pose measurement 

requirement, which is very hard to implement 

accurately. Hence, a number of studies have been 

directed at using the subset of the pose measurement 

data, which however creates another problem, the 

identifiability of the model parameters.  

Popular approaches in the parallel robot 

calibration deal with one-dimensional pose errors 

using a double-ball-bar system or other measuring 

devices, as well as imposing mechanical constraints 

on some elements of the manipulator (Daney, 2003). 

However, in spite of hypothetical simplicity, it is 

hard to implement in practice since an accurate extra 

mechanism is required to impose these constraints. 

Additionally, such methods reduce the workspace 

size and consequently the identification efficiency. 



 

Another category of the methods, the self- or 

autonomous calibration, is implemented by 

minimizing the residuals between the computed and 

measured values of the active and/or redundant joint 

sensors. Adding extra sensors at the usually 

unmeasured joints is very attractive from 

computational point of view, since it allows getting 

the data in the whole workspace and potentially 

reduces impact of the measurement noise. However, 

only a partial set of the parameters may be identified 

in this way, since the internal sensing is unable to 

provide sufficient information for the robot end-

effector absolute location. 

More recently, several hybrid calibration 

methods were proposed that utilize intrinsic 

properties of a particular parallel machine allowing 

extracting the full set of the model parameters (or 

the most essential of them) from a minimum set of 

measurements. It worth mentioning an innovative 

approach developed by Renaud et al. (2004, 2005) 

who applied the vision-based measurement system 

for the PKM calibration from the leg observations. 

In this technique, the source data are extracted from 

the leg images, without any strict assumptions on the 

end-effector poses. The only assumption is related to 

the manipulator architecture (the mechanism is 

actuated by linear drives located on the base). 

However, current accuracy of the camera-based 

measurements is not high enough yet to apply this 

method in industrial environment. 

This paper extends our previous research 

(Pashkevich et al., 2006) and focuses on the 

calibration of the Orthoglide-type mechanisms, 

which is also actuated by linear drives located on the 

manipulator base and admits technique of Renaud et 

al. (2004, 2005). But, in contrast to the known 

works, our approach assumes that the leg location is 

observed for specific manipulator postures, when the 

tool-center-point moves along the Cartesian axes. 

For these postures and for the nominal Orthoglide 

geometry, the legs are strictly parallel to the 

corresponding Cartesian planes. So, the deviation of 

the manipulator parameters influences on the leg 

parallelism that gives the source data for the 

parameter identification. The main advantage of this 

approach is the simplicity and low cost of the 

measuring system that can avoid using computer 

vision and is composed of standard comparator 

indicators attached to the universal magnetic stands. 

The remainder of the paper is organized as 

follows. Section 2 describes the manipulator 

geometry, its inverse and direct kinematics, and also 

contains the sensitivity analysis of the leg 

parallelism at the examined postures with respect to 

the geometrical parameters. Section 3 focuses on the 

parameter identification, with particular emphasis on 

the calibration accuracy under the measurement 

noise. Section 4 contains experimental results that 

validate the proposed technique, while Section 5 

summarizes the main contributions. 

2 ORTHOGLIDE MECHANISM 

2.1 Manipulator architecture 

The Orthoglide is a three degrees-of-freedom 

parallel manipulator actuated by linear drives with 

mutually orthogonal axes. Its kinematic architecture 

is presented in Figure 1 and includes three identical 

parallel chains, which will be further referred as 

“legs”. Each manipulator leg is formally described 

as PRPaR - chain, where P, R and Pa denote the 

prismatic, revolute, and parallelogram joints 

respectively (Figure 2). The output machinery (with 

a tool mounting flange) is connected to the legs in 

such a manner that the tool moves in the Cartesian 

space with fixed orientation (translational motions). 

 

 

Figure 1: The Orthoglide kinematic architecture. 

(© CNRS Photothèque / CARLSON Leif) 

The Orthoglide workspace has a regular, quasi-

cubic shape. The input/output equations are simple 

and the velocity transmission factors are equal to 

one along the x, y and z direction at the isotropic 

configuration, like in a conventional serial PPP 

machine (Wenger et al., 2000; Chablat and Wenger, 

2003). The latter is an essential advantage of the 

Orthoglide architecture, which also allows referring 

it as the “quasi-isotropic” kinematic machine. 

Another specific feature of the Orthoglide 

mechanism, which will be further used for the 

calibration, is displayed during the end-effector 

motions along the Cartesian axes. For example, for 



 

the x-axis motion in the Cartesian space, the sides of 

the x-leg parallelogram must also retain strictly 

parallel to the x-axis. Hence, the observed deviation 

of the mentioned parallelism may be used as the data 

source for the calibration algorithms. 
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Figure 2: Kinematics of the Orthoglide leg. 

For a small-scale Orthoglide prototype used for 

the calibration experiments, the workspace size is 

approximately equal to 200200200 mm
3
 with the 

velocity transmission factors bounded between 1/2 

and 2 (Chablat & Wenger, 2003). The legs nominal 

geometry is defined by the following parameters:  

Li = 310.25 mm, d = 80 mm, r = 31 mm where Li, d 

are the parallelogram length and width, and r is the 

distance between the points Ci and the tool centre 

point P (see Figure 2). 

2.2 Modelling assumptions 

Following previous studies on the PKM accuracy 

(Wang & Massory, 1993; Renaud et al., 2004), the 

influence of the joint defects is assumed negligible 

compared to the encoder offsets and the link length 

deviations. This validates the following modelling 

assumptions:  

(i) the manipulator parts are supposed to be rigid 

bodies connected by perfect joints; 

(ii) the manipulator legs (composed of a prismatic 

joint, a parallelogram, and two revolute joints) 

generate a four degrees-of-freedom motions; 

(iii) the articulated parallelograms are assumed to 

be perfect but non-identical; 

(iv) the linear actuator axes are mutually orthogonal 

and intersected in a single point to insure a 

translational movement of the end-effector; 

(v) the actuator encoders are perfect but located 

with some errors (offsets). 

Using these assumptions, there will be derived 

new calibration equations based on the observation 

of the parallel motions of the manipulator legs. 

2.3 Basic equations 

Since the kinematic parallelograms are admitted to 

be non-identical, the kinematic model developed in 

in our previous papers (Pashkevich et al., 2005, 

2006) should be extended to describe the 

manipulator with different length of the legs.  

Under the adopted assumptions, similar to the 

equal-leg case, the articulated parallelograms may be 

replaced by the kinematically equivalent bar links. 

Besides, a simple transformation of the Cartesian 

coordinates (shift by the vector (r, r, r)
T
, see Figure 

2) allows to eliminate the tool offset. Hence, the 

Orthoglide geometry can be described by a 

simplified model, which consists of three rigid links 

connected by spherical joints to the tool centre point 

(TCP) at one side and to the allied prismatic joints at 

another side. Corresponding formal definition of 

each leg can be presented as PSS, where P and S 

denote the actuated prismatic joint and the passive 

spherical joint respectively.  

Thus, if the origin of a reference frame is located 

at the intersection of the prismatic joint axes and the 

x, y, z-axes are directed along them, the manipulator 

kinematics may be described by the following 

equations 
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where p = (px, py, pz)
T
 is the output vector of the TCP 

position,  = (x, y, z)
T
 is the input vector of the 

prismatic joints variables,  = (x, y, z)
T
 is 

the encoder offset vector, i, i, i{x, y, z} are the 

parallelogram orientation angles (internal variables), 

and Li are the length of the corresponding leg.  

After elimination of the internal variables i , i , 

the kinematic model (1) can be reduced to three 

equations  
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)( ikjiii Lppp   , (2) 

which includes components of the input and output 

vectors p and  only. Here, the subscripts 

},,{,, zyxkji  , kji   are used in all 

combinations, and the joint variables i are obeyed 

the prescribed limits maxmin   i  defined in 

the control software (for the Orthoglide prototype, 

min = -100 mm and max = +60 mm). 

It should be noted that, for the case 

0 zyx   and LLLL zyx  , the 

nominal „„mechanical-zero‟‟ posture of the 

manipulator corresponds to the Cartesian 

coordinates p0 = (0, 0, 0)
T
 and to the joints variables 

0 = (L, L, L). Moreover, in such posture, the x-, y-

and z-legs are oriented strictly parallel to the 

corresponding Cartesian axes. But the joint offsets 

and the leg length differences cause the deviation of 

the “zero” TCP location and corresponding 

deviation of the leg parallelism, which may be 

measured and used for the calibration. 

Hence, six parameters (x, y, z , Lx, Ly, Lz) 

define the manipulator geometry and are in the focus 

of the proposed calibration technique. 

2.4 Inverse and direct kinematics 

The inverse kinematic relations are derived from the 

equations (2) in a straightforward way and only 

slightly differ from the “nominal” case: 

ikjiiii ppLsp   222 , (3) 

where sx, sy, sz { ±1} are the configuration indices 

defined for the “nominal” geometry as the signs of 

x – px , y – py, z – pz, respectively. It is obvious 

that expressions (3) give eight different solutions, 

however the Orthoglide prototype assembling mode 

and the joint limits reduce this set to a single case 

corresponding to the sx = sy = sz = 1. 

For the direct kinematics, equations (2) can be 

subtracted pair-to-pair that gives linear relations 

between the unknowns px, py, pz, which may be 

expressed in the parametric form as  
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where t is an auxiliary scalar variable. This reduces 

the direct kinematics to the solution of a quadratic 

equation 02  CBtAt  with the coefficients 
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Figure 3: Specific postures of the Orthoglide (for the x-leg 

motion along the Cartesian axis X). 
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where },,{,, zyxkji  . From two possible solutions 

that gives the quadratic formula, the Orthoglide 

prototype (see Figure 1) admit a single one 

AACBBt 2/)4( 2   corresponding to the 

manipulator assembling mode. 



 

2.5 Differential relations 

To obtain the calibration equations, first let us derive 

the differential relations for the TCP deviation for 

three types of the Orthoglide postures: 

(i) “maximum displacement” postures for the 

directions x, y, z (Figure 3a);  

(ii)  “mechanical zero” or the isotropic posture 

(Figure 3b);  

(iii) “minimum displacement” postures for the 

directions x, y, z (Figure 3c);  

These postures are of particular interest for the 

calibration since, in the “nominal” case, a 

corresponding leg is parallel to the relevant pair of 

the Cartesian planes. 

The manipulator Jacobian with respect to the 

parameters  =(x, y, z ) and  L = ( Lx, Ly, Lz) 

can be derived by straightforward differentiating of  

the kinematic equations  (2), which yields 



















































zz

yy

xx

zzyx

zyyx

zyxx

ρp

ρp

ρp

ρppp

pρpp

ppρp

00

00

00

ρ

p













































z

y

x

zzyx

zyyx

zyxx

L

L

L

ρppp

pρpp

ppρp

00

00

00

L

p . 

Thus, after the matrix inversions and 

multiplications, the desired Jacobian can be written 

as 
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It should be noted that, for the computing 

convenience, the above expression includes both the 

Cartesian coordinates px, py, pz and the joint 

coordinates x, y, z, but only one of these sets may 

be treated as an independent taking into account the 

inverse/direct kinematic relations. 

For the “Zero” posture, the differential relations 

are derived in the neighbourhood of the point 

{p0 = (0, 0, 0) ; 0 = (L, L, L)}, which after 

substitution to (5) gives the Jacobian matrix  
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Hence, in this case, the TCP displacement is related 

to the joint offsets and the leg legs variations Li by 

trivial equations  

;iii Lp    },,{ zyxi . (7) 

For the “XMax” posture, the Jacobian is 

computed in the neighbourhood of the point 

{ )0,0,( LSp ; ),,(  LCLCLSLρ }, where 

 is the angle between the y-, z-legs and the X-

axes: )/sin( max La   ; )(sin  S , )cos( C . 

This gives the Jacobian 
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where )tan( T . Hence, the desired equations 

for the TCP displacement may be written as 

xxx Lp    

yxyxy LCLTTp  1
   

zxzxz LCLTTp  1
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(9) 

It can be proved that similar results are valid for the 

“YMax” and “ZMax” postures (differing by the indices 

only), and also for the “XMin”, “YMin”, “ZMin” postures. 

In the latter case, the angle  should be computed 

as )/sin( min La   . 

3 CALIBRATION METHOD  

3.1 Measurement technique 

To evaluate the leg/surface parallelism, we propose 

a single-sensor measurement technique. It is based 



 

on the fixed location of the measuring device for two 

distinct leg postures corresponding to the 

minimum/maximum values of the joint coordinates 

(Figure 4). Relevant calibration experiment consists 

of the following steps: 

Step 1. Move the manipulator to the “Zero” 

posture; locate two gauges in the middle of the 

X-leg (parallel to the axes Y and Z); get their 

readings. 

Step 2. Move the manipulator to the “XMax” and 

“XMin” postures, get the gauge readings, and 

compute differences. 

Step 3+. Repeat steps 1, 2 for the Y- and Z-legs 

and compute corresponding differences. 

 

 

 

Figure 4:  Measuring the leg/surface parallelism. 

 

3.2 Calibration equations 

The system of calibration equations can be derived 

in two steps. First, it is required to define the gauge 

initial locations that are assumed to be positioned at 

the leg middle at the “Zero” posture, i.e. at the points 

2/)( irp , },,{ zyxi  where the vectors ri define 

the prismatic joints centres:  )0;0;( xL
x

r ;  

)0;;0( yL
y
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Hence, using the equation (7), the gauge initial 

locations can be expressed as 
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Afterwards, in the “XMax”, “YMax”, “ZMax” 

postures, the leg location is also defined by two 

points, namely, (i) the TCP, and (ii) the centre of the 

prismatic joint ri. For example, for the “XMax” 

posture, the TCP position is 

);;(max  xLxLS
x

p , 

and the joint position is  

)0;0;(max
xLSL

x
 r . 

So, the leg is located along the line  

maxmax )1()(
xxx

rps   , 

where  is a scalar parameter, [0, 1]. Since the x-

coordinate of the gauge is independent of the 

posture, the parameter  may be obtained from the 

equation 
xxxx

]0[)]([ gs  , which solution yields: 

L
x

LSS /5.0 


 , 

Hence, after some transformations, the deviations of 
the X-leg measurements (between the “XMax” and 
“Zero” postures) may be expressed as 
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Similar approach may be applied to the “XMin” 

posture, as well as to the corresponding postures for 

the Y- and Z-legs. This gives the system of twelve 

linear equations in six unknowns: 
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where 

ii Sa  ,
iii TSb  )5.0( , 5.0)5.0( 1  

ii
CSci    

and 0)/(asin
max1

 L , 0)/(asin
min2

 L . 

This system can be solved using the 

pseudoinverse of Moore-Penrose, which ensures the 

minimum of the residual square sum. 

4 EXPERIMENTAL RESULTS  

The measuring system is composed of standard 
comparator indicators attached to the universal 
magnetic stands allowing fixing them on the 
manipulator bases. The indicators have resolution of 
10 m and are sequentially used for measuring the 
X-, Y-, and Z-leg parallelism while the manipulator 
moves between the Max, Min and Zero postures. For 
each measurement, the indicators are located on the 
mechanism base in such manner that a 
corresponding leg is admissible for the gauge 
contact for all intermediate postures (Figure 5).  

For each leg, the measurements were repeated 
three times for the following sequence of motions: 
Zero  Max  Min  Zero …. Then, the results 
were averaged and used for the parameter 
identification (the repeatability of the measurements 
is about 0.02 mm). 

To validate the developed calibration technique 
and the adopted modelling assumptions, there were 
carried out three experiments targeted to the 
following objectives: (#1) validation of modelling 
assumptions; (#2) collecting the experimental data 

for the parameter identification; and (#3) verification 
of the calibration results. 

 

Figure 5:  Experimental Setup. 

 
Table 1: Calibration results. 

Parameters (mm) R.m.s. 

(mm) x y z Lx Ly Lz 

4.66 -5.36 1.46 5.20 -5.96 3.16 0.12 

-0.48 0.49 -1.67 – – – 0.14 

– – – 0.50 -0.52 1.69 0.14 

 

The first experiment produced rather high 

parallelism deviation, which impels to conclude that 

the mechanism mechanics requires more careful 

tuning. Consequently, the location of the joint axes 

was adjusted mechanically to ensure the leg 

parallelism for the Zero posture. 

The second experiment (after mechanical tuning) 

yielded lower deviations, twice better than for the 

first experiment. For these data, the developed 

calibration algorithm was applied for three sets of 

the model parameters: for the full set {, L} and 

for the reduced sets {} and {L}. As follows 

from the identification results (Table 1), the 

algorithms is able to identify simultaneously both 

the joint offsets and  and the link lengths L. 

However, both  and L (separately) demonstrate 

roughly the same influence on the residual 

reduction, from 0.32 mm to 0.14 mm, while the full 

set {, L} gives further residual reduction to the 

0.12 mm only. This motivates considering  as the 

most essential parameters to be calibrated. 

Accordingly, the identified vales of the joint offsets 

were input into the control software. 

The third experiment demonstrated good 

agreement with the expected results. In particular, 

the average deviation reduced down to 0.15 mm, 



 

which corresponds to the measurement accuracy. On 

the other hand, further adjusting of the model to the 

new experimental data does not give the residual 

reduction. 

Hence, the calibration results confirm validity of 

the proposed identification technique and its ability 

to tune the joint offsets and link lengths from 

observations of the leg parallelism. Other conclusion 

is related to the modelling assumption: for further 

accuracy improvement it is prudent to generalize the 

manipulator model by including parameters 

describing the orientation of the prismatic joint axes, 

i.e. relaxing assumption (iv) (see sub-section 2.2).  

5 CONCLUSIONS  

This paper proposes further developments for a 
novel calibration approach for parallel manipulators, 
which is based on observations of manipulator leg 
parallelism with respect to some predefined planes. 
This technique employs a simple and low-cost 
measuring system composed of standard comparator 
indicators, which are sequentially used for 
measuring the deviation of the relevant leg location 
while the manipulator moves the TCP along the 
Cartesian axes. From the measured differences, the 
calibration algorithm estimates the joint offsets and 
the link lengths that are treated as the most essential 
parameters to be tuned. The validity of the proposed 
approach and efficiency of the developed numerical 
algorithm were confirmed by the calibration 
experiments with the Orthoglide prototype, which 
allowed essential reduction of the residuals and 
corresponding improvement of the accuracy. 

Future work will focus on the expanding the set of 
the identified model parameters, their identifiably 
analysis, and compensation of the non-geometric 
errors. 
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