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Linear Prediction of Long-Memory Processes:

Asymptotic Results on Mean-squared Errors

Fanny Godet∗

Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629
Université de Nantes 2 rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3

14th May 2007

Abstract

We present two approaches for linear prediction of long-memory time series. The first ap-
proach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations
to the last k terms, which are the only available values in practice. We derive the asymptotic
behaviour of the mean-squared error as k tends to +∞. By contrast, the second approach is
non-parametric. An AR(k) model is fitted to the long-memory time series and we study the
error that arises in this misspecified model.

Keywords: long-memory, linear model, autoregressive process, forecast error
ARMA (autoregressive moving-average) processes are often called short-memory processes be-

cause their covariances decay rapidly (i.e. exponentially). On the other hand, a long-memory process
is characterised by the following feature: the autocovariance function σ decays more slowly i.e. it is
not absolutely summable. They are so-named because of the strong association between observa-
tions widely separated in time. The long-memory time series models have attracted much attention
lately and there is now a growing realisation that time series possessing long-memory characteristics
arise in subject areas as diverse as Economics, Geophysics, Hydrology or telecom traffic (see, e.g.,
[Mandelbrot and Wallis, 1969] and [Granger and Joyeux, 1980]). Although there exists substantial
literature on the prediction of short-memory processes(see [Bhansali, 1978] for the univariate case
or [Lewis and Reinsel, 1985] for the multivariate case), there are fewer results for long-memory time
series. In this paper, we consider the question of the prediction of the latter.

More precisely, we compare two prediction methods for long-memory process. Our goal is a linear
predictor of Xk+h based on observed time points which is optimal in the sense that it minimizes the
mean-squared error. The paper is organized as follows. First we introduce our model and our main
assumptions. Then, in section 2, we study the best linear predictor i.e. the Wiener-Kolmogorov
predictor proposed by [Whittle, 1963] and by [Bhansali and Kokoszka, 2001] for long-memory time
series. In practice, only the last k values of the process are available. Therefore we need to truncate
the infinite series in the definition of the predictor and to derive the asymptotic behaviour of the
mean-squared error as k tends to +∞.

∗fanny.godet@math.univ-nantes.fr

I would like to thank Anne Philippe, my PhD advisor, who monitored my work.
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In Section 3 we discuss the asymptotic properties of the forecast error if we fit a misspecified
AR(k) model to a long-memory time series. This approach has been proposed by [Ray, 1993] for
fractional noise series F(d). His simulations show that high-order AR-models predict fractional
integrated noise very well.

Finally in Section 4 we compare the two previous methods for h-step prediction. We give some
asymptotic properties of the mean-squared error of the linear least-squares predictor as h tends to
+∞ in the particular case of long-memory processes. Then we study our k-th order predictors order
as k tends to +∞.

1 Model

Let (Xn)n∈Z be a discrete-time (weakly) stationary process in L2 with mean 0 and σ its autocovari-
ance function. We assume that the process (Xn)n∈Z is a long-memory process i.e.:

∞∑

k=−∞

|σ(k)| = ∞.

The process (Xn)n∈Z admits an infinite moving average representation as follows:

Xn =

∞∑

j=0

bjεn−j (1)

where (εn)n∈Z is a white-noise series consisting of uncorrelated random variables, each with mean
zero and variance σ2

ε and (bj)j∈N are square-summable. We shall further assume that (Xn)n∈Z

admits an infinite autoregressive representation:

εn =
∞∑

j=0

ajXn−j , (2)

where the (aj)j∈N are absolutely summable. We assume also that (aj)j∈N and (bj)j∈N, occurring
respectively in (2) and (1), satisfy the following conditions for all δ > 0:

|aj | ≤ C1j
−d−1+δ (3)

|bj| ≤ C2j
d−1+δ . (4)

where C1 and C2 are constants and d is a parameter verifying d ∈]0, 1/2[. For example, a FARIMA
process (Xn)n∈Z is the stationary solution to the difference equations:

φ(B)(1 − B)dXn = θ(B)εn

where (εn)n∈Z is a white noise series, B is the backward shift operator and φ and θ are polynomials
with no zeroes on the unit disk. Its coefficients verify

|aj | ∼
+∞

C1j
−d−1

|bj | ∼
+∞

C2j
d−1
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and thus (3) and (4) hold. When φ = θ = 1, the process (Xn)n∈Z is called fractionally integrated
noise and denoted F(d). More generally, (aj)j∈N and (bj)j∈N verify conditions (3) and (4) if:

|aj | ∼
+∞

L(j)j−d−1

|bj | ∼
+∞

L′(j)jd−1

where L and L′ are slowly varying functions. A positive function L is a slowly varying function
in the sense of [Zygmund, 1968] if, for any δ > 0, x 7→ x−δL(x) is decreasing and x 7→ xδL(x) is
increasing.

The condition (4) implies that the autocovariance function σ of the process (Xn)n∈Z verifies:

∀δ > 0,∃C3 ∈ R, |σ(j)| ≤ C3j
2d−1+δ . (5)

Notice that it suffices to prove (5) for δ near 0 in order to verify (5) for δ > 0 arbitrarily chosen.
So we prove (5) for δ < 1−2d

2 :

σ(k) =

+∞∑

j=0

bjbj+k

|σ(k)| ≤

+∞∑

j=1

|bjbj+k| + |b0bk|

≤ C2
2

+∞∑

j=1

jd−1+δ(k + j)d−1+δ + |b0bk|

≤ C2
2

∫ +∞

0
jd−1+δ(k + j)d−1+δdj + |b0bk|

≤ C2
2k2d−1+2δ

∫ +∞

0
jd−1+δ(1 + j)d−1+δdj + C2k

d−1+δ

≤ C3k
2d−1+2δ

More accurately, [Inoue, 1997] has proved than if:

bj ∼ L (j) jd−1

then
σ(j) ∼ j2d−1 [L (j)]2 β(1 − 2d, d)

where L is a slowly varying function and β is the beta function. The converse is not true, we
must have more assumptions about the series (bj)j∈N in order to get an asymptotic equivalent for
(σ(j))j∈N (see [Inoue, 2000]).

2 Wiener-Kolmogorov Next Step Prediction Theory

2.1 Wiener-Kolmogorov Predictor

The aim of this part is to compute the best linear one-step predictor (with minimum mean-square
distance from the true random variable) knowing all the past {Xk+1−j , j 6 1}. Our predictor is

3



therefore an infinite linear combination of the infinite past:

X̃k(1) =

∞∑

j=0

λ(j)Xk−j

where (λ(j))j∈N are chosen to ensure that the mean squared prediction error:

E
[(

X̃k(1) − Xk+1

)2]

is as small as possible. Following [Whittle, 1963], and in view of the moving average representation

of (Xn)n∈Z, we may rewrite our predictor X̃k(1) as:

X̃k(1) =
∞∑

j=0

φ(j)εk−j .

where (φ(j))j∈N depends only on (λ(j))j∈N and (ǫn)n∈Z and (aj)j∈N are defined in (2). From the
infinite moving average representation of (Xn)n∈Z given below in (1), we can rewrite the mean-
squared prediction error as:

E
[(

X̃k(1) − Xk+1

)2]
= E






∞∑

j=0

φ(j)εk−j −
∞∑

j=0

b(j)εk+1−j




2


= E




εk+1 −

∞∑

j=0

(φ(j) − b(j + 1)) εk−j




2


=


1 +

∞∑

j=0

(
bj+1 − φ(j)

)2

σ2

ε

since the random variables (εn)n∈Z are uncorrelated with variance σ2
ε . The smallest mean-squared

prediction error is obtained when setting φ(j) = bj+1 for j ≥ 0.
The smallest prediction error of (Xn)n∈Z is σ2

ε within the class of linear predictors. Furthermore,
if

A(z) =

+∞∑

j=0

ajz
j,

denotes the characteristic polynomial of the (a(j))j∈Z and

B(z) =
+∞∑

j=0

bjz
j ,

that of the (a(j))j∈Z, then in view of the identity, A(z) = B(z)−1, |z| ≤ 1, we may write:

X̃k(1) = −

∞∑

j=1

ajXk+1−j. (6)
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2.2 Mean Squared Prediction Error when the Predictor is Truncated

In practice, we only know a finite subset of the past, the one which we have observed. So the
predictor should only depend on the observations. Assume that we only know the set {X1, . . . ,Xk}
and that we replace the unknown values by 0, then we have the following new predictor:

X̃ ′
k(1) = −

k∑

j=1

ajXk+1−j. (7)

It is equivalent to say that we have truncated the infinite series (6) to k terms. The following
proposition provides us the asymptotic properties of the mean squared prediction error as a function
of k.

Proposition 2.2.1. Let (Xn)n∈Z be a linear stationary process defined by (1), (2) and verifying

conditions (3) and (4). We can approximate the mean-squared prediction error of X̃ ′
k(1) by:

∀δ > 0, E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε + O(k−1+δ).

Furthermore, this rate of convergence O(k−1) is optimal since for fractionally integrated noise, we
have the following asymptotic equivalent:

E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε + Ck−1 + o
(
k−1

)
.

Note that the prediction error is the sum of σ2
ε , the error of Wiener-Kolmogorov model and the

error due to the truncation to k terms which is bounded by O(k−1+δ) for all δ > 0.

Proof.

Xk+1 − X̃ ′
k(1) = Xk+1 − X̃k(1) + X̃k(1) − X̃ ′

k(1)

= Xk+1 −
+∞∑

j=0

bj+1εk−j −
+∞∑

j=k+1

ajXk+1−j

= εk+1 −

+∞∑

j=k+1

ajXk+1−j . (8)

The two parts of the sum (8) are orthogonal for the inner product associated with the mean square
norm. Consequently:

E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε +

∞∑

j=k+1

∞∑

l=k+1

ajalσ(l − j).

For the second term of the sum we have:
∣∣∣∣

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ =

∣∣∣∣2
+∞∑

j=k+1

aj

+∞∑

l=j+1

alσ(l − j) +

+∞∑

j=k+1

a2
jσ(0)

∣∣∣∣

≤ 2
+∞∑

j=k+1

|aj | |aj+1| |σ(1)| +
+∞∑

j=k+1

a2
jσ(0)

+2

+∞∑

j=k+1

|aj |

+∞∑

l=j+2

|al||σ(l − j)|

5



from the triangle inequality, it follows that:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣

≤ C2
1C3


2

+∞∑

j=k+1

j−d−1+δ(j + 1)−d−1+δ +

+∞∑

j=k+1

(
j−d−1+δ

)2


 (9)

+ 2C2
1C3

+∞∑

j=k+1

j−d−1+δ
+∞∑

l=j+2

l−d−1+δ|l − j|2d−1+δ (10)

for all δ > 0 from inequalities (3) and (5). Assume now that δ < 1/2 − d. For the terms (9),
since j 7→ j−d−1+δ(j + 1)−d−1+δ is a positive and decreasing function on R

+, we have the following
approximations:

2C2
1C3

+∞∑

j=k+1

j−d−1+δ(j + 1)−d−1+δ ∼ 2C2
1C3

∫ +∞

k
j−d−1+δ(j + 1)−d−1+δdj

∼
2C2

1C3

1 + 2d − 2δ
k−2d−1+2δ

Since the function j 7→
(
j−d−1+δ

)2
is also positive and decreasing, we can establish in a similar way

that:

C2
1C3

+∞∑

j=k+1

(
j−d−1+δ

)2
∼ C2

1C3

∫ +∞

k

(
j−d−1+δ

)2
dj

∼
C2

1C3

1 + 2d − 2δ
k−2d−1+2δ.

For the infinite double series (10), we will similarly compare the series with an integral. In the
next Lemma, we establish the necessary result for this comparison:

Lemma 2.2.1. Let g the function (l, j) 7→ j−d−1+δ l−d−1+δ |l − j|2d−1+δ . Let m and n be two

positive integers. We assume that δ < 1 − 2d and m ≥ δ−d−1
δ+2d−1 for all δ ∈

]
0, δ−d−1

δ+2d−1

[
. We will call

An,m the square [n, n + 1] × [m,m + 1]. If n ≥ m + 1 then
∫

An,m

g(l, j) dj dl ≥ g(n + 1,m).

Assume now that δ < 1− 2d without loss of generality. Thanks to the previous Lemma and the
asymptotic equivalents of (9), there exists K ∈ N such that if k > K:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ ≤ C

∫ +∞

k+1
j−d−1+δ

[∫ +∞

j
l−d−1+δ(l − j)2d−1+δdl

]
dj + O

(
k−2d−1+2δ

)

By using the substitution jl′ = l in the integral over l we obtain:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ ≤ C ′

∫ +∞

k+1
j−2+3δ

∫ +∞

1
l−d−1+δ(l − 1)2d−1+δdldj + O

(
k−2d−1

)
.
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Since if δ < (1 − d)/2 ∫ +∞

1
l−d−1+δ(l − 1)2d−1+δdl < +∞,

it follows:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ ≤ O
(
k−1+3δ

)
+ O

(
k−2d−1

)

≤ O
(
k−1+3δ

)
. (11)

If δ > 0, δ < 1 − 2d and δ < (1 − d)/2, we have:

∣∣∣∣
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j)

∣∣∣∣ = O
(
k−1+3δ

)
.

Notice that if the equality is true under the assumptions δ > 0, δ < 1 − 2d and δ < (1 − d)/2, it is
also true for any δ > 0. Therefore we have proven the first part of the theorem.
We prove now that there exists long-memory processes whose prediction error attains the rate of
convergence k−1. Assume now that (Xn)n∈Z is fractionally integrated noise F(d), which is the
stationary solution of the difference equation:

Xn = (1 − B)−dεn (12)

with B the usual backward shift operator, (εn)n∈Z is a white-noise series and d ∈ ]0, 1/2[ (see for
example [Brockwell and Davis, 1991]). We can compute the coefficients and obtain that:

∀j > 0, aj =
Γ(j − d)

Γ(j + 1)Γ(−d)
and ∀j ≥ 0, σ(j) =

(−1)jΓ(1 − 2d)

Γ(j − d + 1)Γ(1 − j − d)
σ2

ε

then we have:
∀j > 0, aj < 0 and ∀j ≥ 0, σ(j) > 0

and

aj ∼
j−d−1

Γ(−d)
and σ(j) ∼

j2d−1Γ(1 − 2d)

Γ(d)Γ(1 − d)
when j → ∞.

In this particular case, we can estimate the prediction error more precisely:

+∞∑

k+1

+∞∑

k+1

ajalσ(l − j) =

+∞∑

k+1

|aj|

+∞∑

j+1

|al||σ(l − j)| +

+∞∑

k+1

a2
jσ(0)

∼
Γ(1 − 2d)

Γ(−d)2Γ(d)Γ(1 − d)

∫ +∞

k+1
j−2

∫ +∞

1/j+1
l−d−1(l − 1)2d−1dldj + O

(
k−2d−1

)

+∞∑

k+1

+∞∑

k+1

ajalσ(l − j) ∼
Γ(1 − 2d)Γ(2d)

Γ(−d)2Γ(d)Γ(1 + d)
k−1 (13)

The asymptotic bound O(k−1) is therefore as small as possible.
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In the specific case of fractionally integrated noise, we may write the prediction error as:

E
([

Xk+1 − X̃ ′
k(1)

]2)
= σ2

ε + C(d)k−1 + o
(
k−1

)

and we can express C(d) as a function of d:

C(d) =
Γ(1 − 2d)Γ(2d)

Γ(−d)2Γ(d)Γ(1 + d)
. (14)

It is easy to prove that C(d) → +∞ as d → 1/2 and we may write the following asymptotic
equivalent as d → 1/2:

C(d) ∼
1

(1 − 2d)Γ(−1/2)2Γ(1/2)Γ(3/2)
. (15)

As d → 0, C(d) → 0 and we have the following equivalent as d → 0:

C(d) ∼ d2.

Figure 2.1: Behaviour of constant C(d), d ∈ [0, 1/2[, defined in (14)

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

d

C
(d

)

As the figure 2.1 suggests and the asymptotic equivalent given in (15) proves, the mean-squared
error tends to +∞ as d → 1/2. By contrast, the constant C(d) takes small values for d in a large
interval of [0, 1/2[. Although the rate of convergence has a constant order k−1, the forecast error
is bigger when d → 1/2. This result is not surprising since the correlation between the random
variable, which we want to predict, and the random variables, which we take equal to 0, increases
when d → 1/2.
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Truncating to k terms the series which defines the Wiener-Kolmogorov predictor amounts to using
an AR(k) model for predicting. Therefore in the following section we look for the AR(k) which
minimizes the forecast error.

3 The Autoregressive Models Fitting Approach

In this section we develop a generalisation of the “autoregressive model fitting” approach developed
by [Ray, 1993] in the case of fractionally integrated noise F(d) (defined in (12)). We study the
asymptotic properties of the forecast mean-squared error when we fit a misspecified AR(k) model
to the long-memory time series (Xn)n∈Z.

3.1 Rationale

Let Φ a kth degree polynomial defined by:

Φ(z) = 1 − a1,kz − . . . − ak,kz
k.

We assume that Φ has no zeroes on the unit disk. We define the process (ηn)n∈Z by:

∀n ∈ Z, ηn = Φ(B)Xn

where B is the backward shift operator. Note that (ηn)n∈Z is not a white noise series because
(Xn)n∈Z is a long-memory process and hence does not belong to the class of autoregressive processes.
Since Φ has no root on the unit disk, (Xn)n∈Z admits a moving-average representation as the fitted
AR(k) model in terms of (ηn)n∈Z:

Xn =

∞∑

j=0

c(j)ηn−j .

If (Xn)n∈Z was an AR(k) associated with the polynomial Φ, the best next step linear predictor
would be:

X̂n(1) =
∞∑

j=1

c(i)ηt+1−i

= a1,kXn + . . . + ak,kXn+1−k si n > k.

Here (Xn)n∈Z is a long-memory process which verifies the assumptions of Section 1. Our goal is to
derive a closed formula for the polynomial Φ which minimizes the forecast error and to estimate
this error.

3.2 Mean-Squared Error

There exists two approaches in order to define the coefficients of the kth degree polynomial Φ: the
spectral approach and the time approach.

In the time approach, we choose to define the predictor as the projection mapping on to the
closed span of the subset {Xn, . . . ,Xn+1−k} of the Hilbert space L2(Ω,F , P) with inner product

9



< X,Y >= E(XY ). Consequently the coefficients of Φ verify the equations, which are called the
kth order Yule-Walker equations:

∀j ∈ J1, kK,

k∑

i=1

ai,kσ(i − j) = σ(j) (16)

The mean-squared prediction error is:

E
[(

X̂n(1) − Xn+1

)2]
= c(0)2E(η2

n+1) = E(η2
n+1).

We may write the moving average representation of (ηn)n∈N in terms of (εn)n∈N:

ηn =

∞∑

j=0

min(j,p)∑

k=0

Φkb(j − k)εn−j

=
∞∑

j=0

t(j)εn−j

with

∀j ∈ N, t(j) =

min(j,p)∑

k=0

Φkb(j − k).

Finally we obtain:

E
[(

X̂n(1) − Xn+1

)2]
=

∞∑

j=0

t(j)2σ2
ε .

In the spectral approach, minimizing the prediction error is equivalent to minimizing a contrast
between two spectral densities: ∫ π

−π

f(λ)

g(λ,Φ)
dλ

where f is the spectral density of Xn and g(.,Φ) is the spectral density of the AR(p) process defined
by the polynomial Φ (see for example [Yajima, 1993]),so:

∫ π

−π

f(λ)

g(λ,Φ)
dλ =

∫ π

−π

∣∣∣
∞∑

j=0

b(j)e−ijλ
∣∣∣
2∣∣∣Φ(e−iλ)

∣∣∣
2
dλ

=

∫ π

−π
|

∞∑

j=0

t(j)e−ijλ|2dλ

= 2π
∞∑

j=0

t(j)2.

In both approaches we need to minimize
∑∞

j=0 t(j).
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3.3 Rate of Convergence of the Error by AR(k) Model Fitting

In the next theorem we derive an asymptotic expression for the prediction error by fitting autore-
gressive models to the series:

Theorem 3.3.1. Assume that (Xn)n∈Z is a long-memory process which verifies the assumptions of
Section 1. If 0 < d < 1

2 :

E
[(

X̂k(1) − Xk+1

)2]
− σ2

ε = O(k−1)

Proof. Since fitting an AR(k) model minimizes the forecast error using k observations, the error by
using truncation is bigger. Since the truncation method involves an error bounded by O

(
k−1

)
, we

obtain:
E
[(

X̂k(1) − Xk+1

)2]
− σ2

ε = O(k−1).

Consequently we only need to prove that this rate of convergence is attained . This is the case
for the fractionally integrated processes defined in (12). We want the error made when fitting an
AR(k) model in terms of the Wiener-Kolmogorov truncation error. Note first that the variance of
the white noise series is equal to:

σ2
ε =

∫ π

−π
f(λ)

∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

dλ.

Therefore in the case of a fractionally integrated process F(d) we need only show that:

∫ π

−π
f(λ)

∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

dλ −
σ2

ε

2π

∫ π

−π

f(λ)

g(λ,Φk)
dλ ∼ C(k−1).

∫ π

−π
f(λ)

∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

dλ −
σ2

ε

2π

∫ π

−π

f(λ)

g(λ,Φk)
dλ =

∫ π

−π
f(λ)



∣∣∣∣∣∣

+∞∑

j=0

aje
ijλ

∣∣∣∣∣∣

2

−

∣∣∣∣∣∣

k∑

j=0

aj,ke
ijλ

∣∣∣∣∣∣

2
 dλ

=
+∞∑

j=0

+∞∑

l=0

(ajal − aj,kal,k) σ(j − l)

we set aj,k = 0 if j > k.

+∞∑

j=0

+∞∑

l=0

(ajal − aj,kal,k) σ(j − l) (17)

=
+∞∑

j=0

+∞∑

l=0

(ajal − aj,kal)σ(j − l) +
+∞∑

j=0

+∞∑

l=0

(aj,kal − aj,kal,k)σ(j − l)

=

+∞∑

j=0

(aj − aj,k)

+∞∑

l=0

alσ(l − j) +

k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l) (18)

11



We first study the first term of the sum (18). For any j > 0 , we have
∑+∞

l=0 alσ(l − j) = 0:

εn =

∞∑

j=0

alXn−l

Xn−jεn =
∞∑

l=0

alXn−lXn−j

E (Xn−jεn) =
∞∑

l=0

alσ(l − j)

E

(
∞∑

l=0

blεn−j−lεn

)
=

∞∑

l=0

alσ(l − j)

and we conclude that
∑+∞

l=0 alσ(l − j) = 0 because (εn)n∈Z is an uncorrelated white noise. We can
thus rewrite the first term of (18) like:

+∞∑

j=0

(aj − aj,k)

+∞∑

l=0

alσ(l − j) = (a0 − a0,k)

+∞∑

l=0

alσ(l)

= 0

since a0 = a0,k = 1 according to definition. Next we study the second term of the sum (18):

k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l).

And we obtain that:

k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l) =

k∑

j=1

(aj,k − aj)

k∑

l=1

(al − al,k)σ(j − l)

+

k∑

j=1

(aj,k − aj)

+∞∑

l=k+1

alσ(j − l) (19)

+

k∑

j=0

aj

k∑

l=1

(al − al,k)σ(j − l) (20)

+

k∑

j=0

aj

+∞∑

l=k+1

alσ(j − l)

Similarly we rewrite the term (19) using the Yule-Walker equations:

k∑

j=1

(aj,k − aj)
+∞∑

l=k+1

alσ(j − l) = −
k∑

j=1

(aj,k − aj)
k∑

l=0

alσ(j − l)

12



We then remark that this is equal to (20). Hence it follows that:

k∑

j=0

aj,k

+∞∑

l=0

(al − al,k)σ(j − l) =
k∑

j=1

(aj,k − aj)
k∑

l=1

(al − al,k)σ(j − l)

+2
k∑

j=1

(aj,k − aj)
+∞∑

l=k+1

alσ(j − l)

+
k∑

j=0

aj

+∞∑

l=k+1

alσ(j − l) (21)

On a similar way we can rewrite the third term of the sum (21) using Fubini Theorem:

k∑

j=0

aj

+∞∑

l=k+1

alσ(j − l) = −

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(j − l).

This third term is therefore equal to the forecast error in the method of prediction by truncation.
In order to compare the prediction error by truncating the Wiener-Kolmogorov predictor and

by fitting an autoregressive model to a fractionally integrated process F(d), we need the sign of all
the components of the sum (21). For a fractionally integrated noise, we know the explicit formula
for aj and σ(j):

∀j > 0, aj =
Γ(j − d)

Γ(j + 1)Γ(−d)
< 0 and ∀j ≥ 0, σ(j) =

(−1)jΓ(1 − 2d)

Γ(j − d + 1)Γ(1 − j − d)
σ2

ε > 0.

In order to get the sign of aj,k −aj we use the explicit formula given in [Brockwell and Davis, 1988]
and we easily obtain that aj,k − aj is negative for all j ∈ J1, kK.

aj − aj,k =
Γ(j − d)

Γ(j + 1)Γ(−d)
−

Γ(k + 1)Γ(j − d)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(j + 1)Γ(−d)Γ(k − d + 1)

= −aj

(
−1 +

Γ(k + 1)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(k − d + 1)

)

= −aj

(
k...(k − j + 1)

(k − d)...(k − d − j + 1)
− 1

)

> 0

since ∀j ∈ N
∗ aj < 0. To give an asymptotic equivalent for the prediction error, we use the sum

given in (21). We have the sign of the three terms: the first is negative, the second is positive
and the last is negative. Moreover the third is equal to the forecast error by truncation and we
have proved that this asymptotic equivalent has order O(k−1). The prediction error by fitting an
autoregressive model converges faster to 0 than the error by truncation only if the second term is
equivalent to Ck−1, with C constant. Consequently, we search for a bound for aj − aj,k given the

13



explicit formula for these coefficients (see for example [Brockwell and Davis, 1988]):

aj − aj,k =
Γ(j − d)

Γ(j + 1)Γ(−d)
−

Γ(k + 1)Γ(j − d)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(j + 1)Γ(−d)Γ(k − d + 1)

= −aj

(
−1 +

Γ(k + 1)Γ(k − d − j + 1)

Γ(k − j + 1)Γ(k − d + 1)

)

= −aj

(
k...(k − j + 1)

(k − d)...(k − d − j + 1)
− 1

)

= −aj

(
j−1∏

m=0

(
1 − l

k

1 − l+d
k

)
− 1

)

= −aj

(
j−1∏

m=0

(
1 +

d
k

1 − d+l
k

)
− 1

)
.

Then we use the following inequality:

∀x ∈ R, 1 + x ≤ exp(x)

which gives us:

aj − aj,k ≤ −aj

(
exp

(
j−1∑

m=0

d
k

1 − d+l
k

)
− 1

)

≤ −aj

(
exp

(
d

j−1∑

m=0

1

k − d − l

)
− 1

)

≤ −aj exp

(
d

j−1∑

m=0

1

k − d − l

)

According to the previous inequality, we have:

k∑

j=1

(aj − aj,k)

+∞∑

l=k+1

−alσ(j − l) =

k−1∑

j=1

(aj − aj,k)

+∞∑

l=k+1

−alσ(j − l)

+(ak − ak,k)
+∞∑

l=k+1

−alσ(k − l)

≤

k−1∑

j=1

−aj exp

(
d

j−1∑

m=0

1

k − d − m

)
+∞∑

l=k+1

−alσ(j − l)

+(−ak) exp

(
d

k−1∑

m=0

1

k − d − m

)
+∞∑

l=k+1

−alσ(k − l)

≤

k−1∑

j=1

−aj exp

(
d

∫ j

0

1

k − d − m
dm

) +∞∑

l=k+1

−alσ(j − l)

+(−ak)k
3

2
d

+∞∑

l=k+1

−alσ(k − l)
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As the function x 7→ 1
k−d−x is increasing, we use the Integral Test Theorem. The inequality on the

second term follows from:

k−1∑

m=0

1

k − d − m
∼ ln(k)

≤
3

2
ln(k)

for k large enough. Therefore there exists K such that for all k ≥ K:

k∑

j=1

(aj − aj,k)
+∞∑

l=k+1

−alσ(j − l) ≤
k−1∑

j=1

−aj exp

(
d ln

(
k − d

k − d − j

)) +∞∑

l=k+1

−alσ(j − l)

+(−ak)k
3

2
d

+∞∑

l=k+1

−alσ(0)

≤ C(k − d)d
k−1∑

j=1

j−d−1(k − d − j)−d
+∞∑

l=k+1

l−d−1(l − j)2d−1

+Ck−d−1k
3

2
dk−d

≤
C

(k − d)2

∫ 1

1/(k−d)
j−d−1(1 − j)−d

∫ +∞

1
l−d−1(l − 1)2d−1dldj

+Ck− 1

2
d−1

≤ C ′(k − d)−2+d + Ck− 1

2
d−1

and so the positive term has a smaller asymptotic order than the forecast error made by truncating.
Therefore we have proved that in the particular case of F(d) processes, the two prediction errors
are equivalent to Ck−1 with C constant.

The two approaches to next-step prediction, by truncation to k terms or by fitting an autoregres-
sive model AR(k) have consequently a prediction error with the same rate of convergence k−1. So
it is interesting to study how the second approach improves the prediction. The following quotient:

r(k) :=

∑k
j=1(aj,k − aj)

∑k
l=1(al − al,k)σ(j − l) + 2

∑k
j=1(aj,k − aj)

∑+∞
l=k+1 alσ(j − l)

∑k
j=0 aj

∑+∞
l=k+1 alσ(j − l)

(22)

is the ratio of the difference between the two prediction errors and the prediction error by truncating
in the particular case of a fractionally integrated noise F(d). The figure 3.1 shows that the prediction
by truncation incurs a larger performance loss when d → 1/2. The improvement reaches 50 per
cent when d > 0.3 and k > 20.

After obtaining asymptotic equivalent for next step predictor, we will generalize the two methods
of h-step prediction and aim to obtain their asymptotic behaviour as k → +∞ but also as h → +∞.

4 The h-Step Predictors

Since we assume that the process (Xn)n∈Z has an autoregressive representation (2) and moving
average representation (1), the linear least-squares predictor, X̃k+h, of Xk+h based on the infinite

15



Figure 3.1: Ratio r(k), d ∈]0, 1/2[ defined in (22)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

d

di
ffe

re
nc

e

k=75
k=20

past (Xj , j ≤ k) is given by:

X̃k(h) = −

+∞∑

j=1

ajX̃k(h − j) =

+∞∑

j=h

bjεk+h−j

(see for example Theorem 5.5.1 of [Brockwell and Davis, 1991]). The corresponding mean squared
error of prediction is:

E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

h−1∑

j=0

b2
j .

As the prediction step h tends to infinity, The mean-squared prediction error converges to σ2
ε

∑+∞
j=0,

which is the the variance of the process (Xn)n∈Z. But if the mean-squared prediction error is equal
to σ(0), we have no more interest in the prediction method since its error is equal to the error of
predicting the future by 0. Remark that the mean-squared error increases more slowly to σ(0) in
the long-memory case than in the short-memory case since the sequence bj decays more slowly to
0. More precisely in the case of a long-memory process, if we assume that:

bj ∼
+∞

jd−1L(j)

where L is a slowly varying function, we can express the asymptotic behaviour of the prediction
error. As j 7→ L2(j) is also a slowly varying function according to the definition of [Zygmund, 1968],
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b2
j = j2d−2L2(j) is ultimately decreasing. The rest of the series and the integral are then equivalent

and we may write:

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

+∞∑

j=h

b2
j

∼
+∞∑

j=h

j2d−2L2(j)

∼

∫ +∞

h
j2d−2L2(j)dj

According to Proposition 1.5.10 of [Bingham et al., 1987]:

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

∼

∫ +∞

h
j2d−2L2(j)dj

∼
h→+∞

1

1 − 2d
h2d−1L2(h) (23)

In the case of a long-memory process with parameter d which verifies bj ∼ jd−1L(j), the convergence
of the mean-squared error to σ(0) is slow as h tends to infinity. On the contrary, for a moving average

process of order q, the sequence σ(0)−E

[(
X̃k(h) − Xk+h

)2
]

is constant and equal to 0 as soon as

h > q. More generally, we can study the case of an ARMA process, which canonical representation
is given by:

Φ(Xt) = Θ(εt)

where Φ and Θ are two coprime polynomials with coefficients of degree 0 are equal to 1 and εt is a
white noise. Φ has no root in the unit disk |z| ≤ 1 and Θ has no root in the open disk |z| < 1. bj

is bounded by:
|bj | ≤ Cjm−1ρ−j

where ρ is the smallest absolute value of the roots of Φ and m the multiplicity of the corresponding
root (see for example [Brockwell and Davis, 1991] p92). Thus the mean-squared prediction error is
bounded by:

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

+∞∑

j=h

b2
j

≤ σ2
εC

2
+∞∑

j=h

j2m−2ρ−2j

≤ σ2
εC

2
+∞∑

j=h

j2m−2 exp (−2j log(ρ))

≤ σ2
εC

2

∫ +∞

h
j2m−2 exp (−2j log(ρ)) dj

17



By using the substitution t = 2 log(ρ)j ,

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

≤ σ2
εC

2 (2 log(ρ))1−2m
∫ +∞

2 log(ρ)h
t2m−2 exp (t) dt

≤ σ2
εC

2 (2 log(ρ))1−2m Γ(2m − 1, 2 log(ρ)h)

where Γ(., .) is the incomplete Gamma function defined in equation 6.5.3 of [Abramowitz and Stegun, 1984].
We know an equivalent of this function:

Γ(2m − 1, 2 log(ρ)h) ∼
h→+∞

(2 log(ρ)h)2m−2 exp (2 log(ρ)h)

We conclude that the rate of convergence is exponential. The mean-squared prediction error goes
faster to σ(0) when the predicting process is ARMA than when the process is a long-memory
process.
The h-step prediction is then more interesting for the long-memory process than for the short-
memory process, having observed the infinite past. We consider the truncating effect next.

4.1 Truncated Wiener-Kolmogorov predictor

In practice, we only observe a finite number of samples. We assume now that we only know k
observations (X1, . . . ,Xk). We then define the h-step truncated Wiener-Kolmogorov of order k as:

X̃ ′
k(h) = −

h−1∑

j=1

ajX̃ ′
k(h − j) −

k∑

l=1

ah−1+jXk+1−j (24)

We now describe the asymptotic behaviour of the mean-squared error of the predictor (24).
First we write the difference between the predicting random variable and its predictor:

X̃ ′
k(h) − Xk+h = −

h−1∑

j=1

ajX̃
′
k(h − j) −

k∑

l=1

ah−1+jXk+1−j − εk+h +

+∞∑

j=1

ajXk+h−j

= −εk+h +

h−1∑

j=1

aj

(
Xk+h−j − X̃ ′

k(h − j)
)

+

k∑

j=1

ah−1+j (Xk+1−j − Xk+1−j)

+

+∞∑

j=k+1

ah−1+jXk+1−j

= −εk+h +
h−1∑

j=1

aj

(
Xk+h−j − X̃ ′

k(h − j)
)

+
+∞∑

j=k+1

ah−1+jXk+1−j

We will use the process of induction on h to show that

X̃ ′
k(h) − Xk+h = −

h−1∑

l=0


 ∑

j1+j2+...+jh=l

(−1)card({j,j 6=0})aj1aj2 . . . ajh


 εk+h−l

+

+∞∑

j=k+1


 ∑

i1+i2+...+ih=h−1

(−1)card({il ,il 6=0,l>1})aj+i1ai2 . . . aih


Xk+1−j.
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For h = 2, we have for example

X̃ ′
k(2) − Xk+2 = −(a0εk+2 − a1εk+1) +

+∞∑

j=k+1

(−a1aj + aj+1)Xk+1−j .

Let A(z) and B(z) denote A(z) = 1 +
∑+∞

j=1 ajz
j and B(z) = 1 +

∑+∞
j=1 bjz

j . Since we have

A(z) = B(z)−1, we obtain the following conditions on the coefficients:

b1 = −a1

b2 = −a2 + a2
1

b3 = −a3 + 2a1a2 − a3
1

. . .

So we obtain:

X̃ ′
k(h) − Xk+h = −

h−1∑

l=0

blεk+h−l +
+∞∑

j=k+1

h−1∑

m=0

aj+mbh−1−mXk+1−j. (25)

Since the process (εn)n∈Z is uncorrelated and then the two terms of the sum (25) are orthogonal,
we can rewrite the mean-squared error:

E

[
X̃ ′

k(h) − Xk+h

]2
=

h−1∑

l=0

b2
l σ

2
ε (26)

+E




+∞∑

j=k+1

(
h−1∑

m=0

aj+h−1−mbm

)
Xk+1−j




2

. (27)

The first part of the error (26) is due to the prediction method and the second (27) due to the
truncating of the predictor. We now approximate the error term (27) by using (3) and (4). We
obtain the following upper bound:

∀δ > 0,

∣∣∣∣∣

h−1∑

m=0

aj+h−1−mbm

∣∣∣∣∣ ≤
h−1∑

m=1

|aj+h−1−mbm| + |b0aj+h−1|

≤ C1C2

∫ h

0
(j + h − 1 − l)−d−1+δld−1+δdl + C1(j + h)−d−1

≤ C1C2h
−1+2δ

∫ 1

0

(
j

h
+ 1 − l

)−d−1+δ

ld−1+δdl + C1(j + h)−d−1

≤ C1C2h
−1+2δj−d−1+δ

∫ 1

0

(
1

h
+

1 − l

j

)−d−1+δ

ld−1+δdl + C1(j + h)−d−1

≤ C1C2h
d+2δj−d−1+δ

∫ 1

0
ld−1+δdl + C1(j + h)−d−1

∣∣∣∣∣

h∑

m=0

aj+h−mbm

∣∣∣∣∣ ≤ C1C2
hd+2δ

d
j−d−1+δ (28)
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This bound is in fact an asymptotic equivalent for the fractionally integrated process F(d) because,
in that case, the sequences aj and bj have a constant signs. Using Proposition 2.2.1 for the one-step
prediction and we have:

Proposition 4.1.1. Let (Xn)n∈Z be a linear stationary process defined by (1), (2) and possessing

the features (3) and (4). We can approximate the mean-squared prediction error of X̃ ′
k(1) by:

∀δ > 0, E

[
X̃ ′

k(h) − Xk+h

]2
=

h−1∑

l=0

b2
l σ

2
ε + O

(
h2d+δk−1+δ

)
. (29)

Having k observations, we search for the step h for which the variance of the predictor has for
upper bound σ(0). Then the prediction error have for asymptotic bound O

(
h2dk−1

)
. We want to

choose h to have the prediction error negligible with respect to the information given by the linear
least-squares predictor given the infinite past (see (23)) and we obtain:

h2dk−1 = o(h2d−1)

and then h = o(k). With the truncated Wiener-Kolmogorov predictor, it is interesting to compute
the h-step predictor if we have k observations h = o(k).

4.2 The k-th Order Linear Least-Squares Predictor

For next step predictor, when we fitted an autoregressive process, we search the linear least-squares
predictor knowing the finite past (X1, . . . ,Xk) and the predictor is then the projection of the random

variable onto the past. Let X̂k(h) denote the projection of Xk+h onto the span of (X1, . . . ,Xk).

X̂k(h) verifies the recurrence relationship

X̂k(h) = −

k∑

j=1

aj,kX̂k(h − j)

where X̂k(h − j) is the direct linear least-squares predictor of Xk+h−j based on the finite past
(X1, . . . ,Xk). By induction, we obtain the predictor as a function of (X1, . . . ,Xk): For next step
prediction by fitting an autoregressive process, the best linear least-squares predictor knowing the
finite past is a projection of the random variable Xk+1 onto the past.

X̂k(h) = −

k∑

j=1

cj,kXk+1−j.

Since X̂k(h) is the projection of Xk+h onto (X1, . . . ,Xk) in L2, the vector (cj,k)1≤j≤k minimizes the
mean-squared error:

E

[
X̂k(h) − Xk+h

]2
=

∫ π

−π
f(λ)

∣∣∣∣∣∣
exp(iλ(h − 1)) +

k∑

j=1

cj,k exp(−iλj)

∣∣∣∣∣∣

2

dλ

The vector (cj,k)1≤j≤k is a solution of the equation:

∇c E

[
X̂k(h) − Xk+h

]2
= 0
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where ∇c is the gradient. The vector (cj,k)1≤j≤k is then equal to:

(cj,k)1≤j≤k = −Σ−1
k (σh−1+j)1≤j≤k. (30)

The corresponding mean squared error of prediction is given by:

E

[
X̂k(h) − Xk+h

]2
=

∫ π

−π
f(λ)

∣∣∣∣∣∣
exp(iλ(h − 1)) +

k∑

j=1

cj,k exp(−iλj)

∣∣∣∣∣∣

2

dλ

= σ(0) + 2

k∑

j=1

cj,kσ(h − 1 + j) +

k∑

j,l=1

cj,kcl,kσ(j − l)

= σ(0) + 2 t(cj,k)1≤j≤k(σh−1+j)1≤j≤k + t(cj,k)1≤j≤kΣk(cj,k)1≤j≤k

= σ(0) − t(σh−1+j)1≤j≤kΣ
−1
k (σh−1+j)1≤j≤k

The matrix Σ−1
k is symmetric positive definite and the prediction error of this method is always

lower than σ(0).

As X̂k(h) is the projection of Xk+h onto (X1, . . . ,Xk), the mean-squared prediction error is also
lower than the prediction error of the truncated Wiener-Kolmogorov predictor (see figure 4.1). The
mean-squared error of prediction due to the projection onto the span of (X1, . . . ,Xk) tends at least
as fast to zero as the mean-squared due to truncation of the least-squares predictor. For one-step
predictor,we have shown that the two methods can have the same rate of convergence.
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Figure 4.1: Mean-squared error of X̃k(h) (MMSE), X̃ ′
k(h) (TPMSE) and X̂k(h) (LLSPE) for d = 0.4

and k = 80
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