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Low frequency dispersive estimates for the wave equation in
higher dimensions

SIMON MOULIN

Abstract

We prove dispersive estimates at low frequency in dimensions n > 4 for the wave equation
for a very large class of real-valued potentials, provided the zero is neither an eigenvalue nor a
resonance. This class includes potentials V' € L>(R") satisfying V (z) = O ((z)~(nt1/2=¢),
e> 0.

1 Introduction and statement of results

High frequency dispersive estimates with loss of (n — 3)/2 have been recently proved in [f]
for the wave equation with a real-valued potential V'€ L®(R"), n > 4, satisfying

|V (z)] < C(z)~™°, VzeR", (1.1)

with constants C' > 0, § > (n + 1)/2. The problem of proving dispersive estimates at low
frequency, however, left open. The purposes of the present paper is to address this problem.
Such low frequency dispersive estimates for the Schrodinger group have been recently proved
in [ﬂ] for a large class of real-valued potentials (not necessarily in L°°), and in particular for
potentials satisfying (1.1) with § > (n +2)/2.

Denote by Gy and G the self-adjoint realizations of the operators —A and —A 4+ V
on L*(R"), respectively. It is well known that, under the condition (1.1), the absolutely
continuous spectrums of the operators Gy and G coincide with the interval [0, +00), and that
G has no embedded strictly positive eigenvalues nor strictly positive resonances. However,
G may have in general a finite number of non-positive eigenvalues and that the zero may be
a resonance. We will say that the zero is a regular point for G if it is neither an eigenvalue
nor a resonance in the sense that the operator 1 — VA~! is invertible on L' with a bounded
inverse denoted by T'. Let P,. denote the spectral projection onto the absolutely continuous
spectrum of G. Given any a > 0, set x4(0) = x1(c/a), where x; € C*(R), x1(c) = 0 for
o <1,x1(c) =1foro > 2. Set n, = x(1—xa), where x denotes the characteristic function of
the interval [0, 400). Clearly, 7,(G) + xa(G) = Pac. As in the case of the Schrédinger group
(see [[d]), the dispersive estimates for the low frequency part e*VCn,(G), a > 0 small, turn
out to be easier to prove when n > 4, and this can be done for a larger class of potentials.
In the present paper we will do so for potentials satisfying

sup / (|:I: — 7" 4 | — y|_("_1)/2) [V (z)|dz < C < +o0. (1.2)

yeR™
Clearly, (1.2) is fulfilled for potentials satisfying (1.1). Our main result is the following

Theorem 1.1 Letn >4, let V satisfy (1.2) and assume that the zero is a reqular point for
G. Then, there exists a constant ag > 0 so that for every 0 < a < ap, 0 < e < 1, t, we have



the estimates

<Oy~ =D/2160(|t] + 2 1.
. <C(t) og([t] +2), (1.3)

eit\/aGf(n+1)/4na(G)‘

Moreover, for every 2 < p < +00, we have the estimate

< CL(t)y~ (D2, (1.4)

Ll—Loe —

eit\/aG—(n+1)/4+ena(G) ‘

< O@)y~n-1/2 1.5
e {t) ; (1.5)

eit\/EGfa(nJrl)/élna(G) ’

where 1/p+1/p' =1, a = 1 — 2/p, provided the operator T is bounded on L¥".

Remark 1. Note that our proof of the above estimates works out in the case n = 3, too,
for potentials satysfying (1.2) as well as the condition V' € L3/2~¢ with some 0 < € < 1. In
this case, however, a similar result has been already proved by D’ancona and Pierfelice [E]
In fact, in [E] the whole range of frequencies has been treated for a very large subset of Kato
potentials.

Combining Theorem 1.1 with the estimates of [E], we obtain the following

Corollary 1.2 Letn >4, let V satisfy (1.1) and assume that the zero is a reqular point for
G. Then, for every 2 < p < 400, 0 < e K 1, t # 0, we have the estimates

‘ eit\/aG—(n+1)/4<G>—(n—3)/4—6Pac‘ L < C€|t|_(n_1)/2 log(|t| + 2), (16)
eit\/EGf(n+1)/4+e<G>7(n73)/4725PaC’ < Ce|t|7(n71)/2 (17)
Ll oo ’
eit\/an—oz(n—',-1)/4<Gv>—o¢(n—3)/4PaCH < C|t|—oz(n—1)/2 (18)
Lo —Lp — ’

where 1/p+1/p' =1, a =1—-2/p. Moreover, for every0 < q<(n—3)/2,2<p< H,
we have

eit\/aGfa(nJrl)/él<G>faq/2pacH < C|t|7a(n71)/2. (19)

L —Lp

Note that when n = 2 and n = 3 similar dispersive estimates (without loss of derivatives)
for the high frequency part eit‘/axa (@) are proved in [E] for potentials satisfying (1.1) (see
also [{f], [{]). For higher dimensions Beals [fl] proved optimal (without loss of derivatives)
dispersive estimates for potentials belonging to the Schwartz class. It seems that to avoid
the loss of derivatives in dimensions n > 4 one needs to impose some regularity condition on
the potential. Similar phenomenon also occurs in the case of the Schrodinger equation (see
[E]) Note that dispersive estimates without loss of derivatives for the Schrédinger group ¢
in dimensions n > 4 are proved in [E] under the regularity condition V € L!. This result
has been recently extended in [ff] to potentials V' satisfying (1.1) with § > n — 1 as well as
Vel

To prove Theorem 1.1 we adapt the approach of [ﬂ] to the wave equation. It consists
of proving uniform L! — L* dispersive estimates for the operator ei*VCi(h2G), where
¥ € C§°((0,+00)), h > 1. To do so, we use Duhamel’s formula for the wave equation (which
in our case takes the form (2.12)). It turns out that when n > 4 one can absorb the remaining
terms taking the parameter h big enough, so one does not need anymore to work on weighted
L2 spaces (as in []). This allows to cover a larger class of potentials not necessarily in L.



2 Proof of Theorem 1.1

Let 1) € C§°((0,400)). The following proposition is proved in [{J] and that is why we omit
the proof.

Proposition 2.1 Under the assumptions of Theorem 1.1, there exist positive constants C, 3
and hqg so that the following estimates hold

| (R*Go)|| 10 SC, h >0, (2.1)
|0 (P*C)|| 1 < C, b= ho, (2.2)
[0(h*G) = p(B*Go)T || ;1 ;0 < Ch™%, h> h, (2:3)
where the operator
T=01-va)y .t (2.4)

18 bounded by assumption.

Set
B(t, h) = e™VOP(h2G) — T*e™VGorh(h2Go)T.

We will first show that Theorem 1.1 follows from the following

Proposition 2.2 Under the assumptions of Theorem 1.1, there exist positive constants C,
ho and B so that for all h > hg, t, we have

IRt W)l sy < CRT D=0 (= (07172, (2.5)
By interpolation between (2.5) and the trivial bound
19t W)l g2 p2 < € (2.6)

we obtain

1@, B)|| s o < Ch™OHI2m0B gy == D/2, (2.7)
for every 2 < p < 400, where 1/p+1/p' =1, a =1 — 2/p. Now, writing

o do
o e (o) = [ (o) AT o,
a*l

where ¢(0) = o' =D/ (0) € C§°((0, +00)), and using (2.7) we get (for 2 < p < +00)

VGGt iy, (G) — T etV Go Gy D Ay (Go)T |

9]
<
a—1

< C<t>—a(n—1)/2/ 9—1—aﬁ/2d9 < C<t>—a(n—1)/2, (28)

—1

Lr —Lp

971+a(n+1)/4d9
L?' —LP

D(t, \/5)‘

provided a is taken small enough. The estimate (1.5) follows from (2.8) and the fact that it
holds for Gy (see [f]). Clearly, (1.3) follows from (2.8) with p = +00 and the estimate (A.1)
in the appendix. In the same way we get

< C(ty~(n=b/2

f— )

L1 —Le

eit\/EGf(n+l)/4+ena(G) _ T*eit\/G_oGa(n+1)/4+6na(GO)T’

which together with the estimate (A.2) in the appendix imply (1.4).

Proof of Proposition 2.2. We will derive (2.5) from the following



Proposition 2.3 Under the assumptions of Theorem 1.1, there exist positive constants C,
ho and 3 so that we have, for Vf € L*,

SVEYIGo)f || < ORI f > v, (2.9)
/ HVe“\/G_"w(hQGO)fHLl dt < Ch==D/2|flls, h>0, (2.10)
/ HVe“‘/aq/)(hQG)fHLl dt < Ch=Y8||f|[11, h> ho. (2.11)

We use Duhamel’s formula

. . B
eit\/a _ ez’t\/G_o + Z-Sln (t\/CTO) (\/6 _ \/G_o) 7/ sin ((t T)\/G_O) VeiT\/EdT
0

VGo VGo

to get the identity

O(t;h) = D;(th), (2.12)

1

<.
I

where
1 (t;h) = (¥2(B*G) = T*01 (h2Go)) €V Op(h?G)

FT 41 (h2Go)e™C (y(h2G) — 1 (h2Go)T)
T (B2Go) sin (#v/Go ) ((h°G) — Y (h2Go)T)
HT* 1 (12Go) sin (1v/Go ) (9(12G) — 9(H*Go)T) |

Byt h) = —h/ T4y (h2Go) sin ((t - T)\/G_()) Vel™VGy(h2G)dr,

0

where ¢ € C5°((0,400)), ¥1 = 1 on supp, ¥(a) = o/2¢(0), U1 (c) = 0~ /%1; (o). Let
t > 0. By Propositions 2.1 and 2.3, we have

191t h) f | g < CHZCFDRZE(H =D 10 4 CH2 @ (8 1) fll e (2.13)
()" D2 (@2(t:0) £, 9)]

t/2
< h/ (t —r)(n=1/2
0

sin ((t - T)\/G—o) Jl(hQGO)TgHLx HVe”‘/EQ/J(hQG)fHL1 dr

t
+h /t/2 |Vsin ((t = 1v/Go) hr (nGo)Tg| (D02 e Eppiayg|

gch*n—l)/?ngnLl/ vaifmw(h%)fup dr

+h sup <T>("71)/2
t/2<7t<t

6iﬂ/a7/)(h2G)fHLoo /O; HVSin ((t — T)\/(To) Jl(h2Go)TQHL1 dr

< Ch= P gl | fllor + CRP gl sup (m)mH72
t/2<7t<t

SRTURCV
which clearly implies

(BTN Dy (5 h) fl o < CRTFDZB £



+Ch™P sup <T>("_1)/2
t/2<r<t

By (2.12)-(2.14), we conclude

e”@w(iﬂ(z)fHLx . (2.14)

@2 |@ (6 ) fll e < CBZ 2B f 4 CREO ) D2 (8 1) fl e

+Ch™? sup (r)" D2 @ (rsh) f| e - (2.15)

t/2<t<t

Taking h big enough we can absorb the second and the third terms in the RHS of (2.15),
thus obtaining (2.5). Clearly, the case of ¢ < 0 can be treated in the same way. |

3  Proof of Proposition 2.3.
We will make use of the fact that the kernel of the operator e®*VG i (h2Gy) is of the form
K (@ — yl, ), where

—2v

Kh(O’, t) = W

/ e T, (N B(RAAN = h Ky (ch~ th™Y),  (3.1)
0

where J,(z) = 2¥J,(2), Ju(2) = (Hf(z) + H, (z)) /2 is the Bessel function of order v =
(n —2)/2. Tt is shown in [f] (Section 2) that K} satisfies the estimates (for all o,t > 0,
h>1)

[Ki(o,t)] < C(t)~*(o)*~"=D/2, s >0, (3-2)

|Kn(o,t)] < Ch=m /21y =s5s=(n=D/2 0 < 5 < (n—1)/2. (3.3)

Clearly, (2.9) follows from (3.3) with s = (n —1)/2. It is not hard to see that (2.10) follows
from (1.2) and the following

Lemma 3.1 For allo,h >0,0<s < (n—1)/2, we have

/ (#]° | K (0, £)] dt < Ch=("=D/2gs=(n=1)/2, (3.4)

Proof. In view of (3.1), it suffices to show (3.4) with h = 1. When 0 < ¢ < 1, this follows
from (3.2). Let now o > 1. We will use the fact that the function 7, can be decomposed as
T (2) = b} (2) + e~ b (z), where b (2) are symbols of order (n — 3)/2 for z > 1. Then,
we can decompose the function K; as K 1+ + K|, where K 1i are defined by replacing in the
definition of K the function J, (o) by et b* (o). Integrating by parts, we get

|Ki(0,1)] < Croo™ " D2t £ o7, (3.5)

for every integer m > 0. By (3.5),
/ It]* | KT (0,1)] dt < 0—5/ |Ki (0,1)| dt +/ |t + 0| |K{ (0,1)] dt

< CmoH”*l)/?/ |tio|*mdt+cma*<”*1>/2/ [t £ 0| ™ dt < Co*=(""D/2 (3.6)

which clearly implies (3.4) in this case. O

To prove (2.11) we will use the formula

eVGp(h2G) = (imh)~! /0 et () (RT() = R-(V) A, (3.7)

5



where ¢, (\) = @1(hA), p1(A) = Mp(A\2), and RT()\) = (G — A2 £i0)~! satisfy the identity
RE(N) (1+VRF (V) = RF(N). (3.8)

Here R(jf (M) denote the outgoing and incoming free resolvents with kernels given in terms of
the Hankel functions, HF, of order v = (n — 2)/2 by the formula

[Ry (W], y) = 4™ (2m) ™|z — y| "2 HE (Mz — y)),
where HE(z) = 2 HF (2) satisfy
|0IHE(2)| < C(2)" 32 V2> 0,5 =0,1,
|HE(2) — HE(0)] < O3 ()92 vz > 0.
It follows easily from these bounds and (1.2) that
[VREN|| 1 €C 0< A<, (3.9)
[VRE(N) = VRF(0)]|,, ., SCAY2 0<A<1. (3.10)

Since 1 + VRT(0) = 1 — VA~! is invertible on L' by assumption with a bounded inverse
denoted by T, it follows from (3.10) that there exists a constant A\g > 0 so that the operator
1+ VRE()) is invertible on L' for 0 < A < Ag. In view of (3.8), we have

STHVREN) = - S £ (1+VREW) == Y £T (1 + (VRE(N) — VRE(0))T)
+ + +
=" T(VRE(N) — VRE(0))T (1 + (VRE(N) — VRE(0)T) . (3.11)
+
By (3.7) and (3.11),
VeVey(h2G) = (irh) ™! pE: /OO TV PE(t — 1)UL (1)dr, (3.12)
j: — 00

where
PE(t) = / G (N) (REO) — RE(0)) dA,

UE(t) = /OO e on(NT (1+ (VR () — vzi%g(o))T)‘1 dX,
0

where ¢n(A) = @1(hA), @1 € C§°((0,+00)) is such that 1 = 1 on supp¢i. The kernel of
the operator P;"(t) is of the form AF(|z — y|,t), where

Af(o,t) = +id~ (2m) Vo2 /O b eMh(\) (HE (o)) — HE(0)) d\ = h' =" AT (0/h, t/h).
(3.13)

Lemma 3.2 Forallo >0, h > 1, we have

/OO | A5 (0, t)| dt < Ch™Y/2 (a—"+5/2 + 0_(”_1)/2) . (3.14)



Proof. In view of (3.13), it suffices to prove (3.14) with h = 1. Consider first the case
0 < o < 1. Using the inequality

1
1Flzr < 03" supiy) 23]
=0

we get

0”72/ |Ait(0',t)|dt§0 sup ("Hf(ok)—Hf(O)|+J‘8AHf(0/\)D SC’Ul/Q,

AEsupp ¢1

which is the desired bound. Let now o > 1. We have

Af(o,t) = KE(o,t) + cto 2 / e &1 (N)dA,
0

where ¢t are constants and Kli are as in the proof of Lemma 3.1. Hence, in this case, (3.14)
(with h = 1) follows from (3.6) (with s = 0). O

By (3.12), (3.14) and (1.2), we have

/_O:O Hveit\/@p(mc)fHLl dt < Oh—lzi:/: /_O:O |VPE(E =) UE () f]] . drdt
<o S [ [ VO G it ][00 0] i

<ot S [ [ el ([ 1 oler) ([ okl ar ) deay
<oy L W@l (lo =12 o=l ) [ )] drdody

< Ch™3/? h UE (1) f(y)| drdy. (3.15)
g/n/m\ i () ()] drdy

Thus, (2.11) follows from (3.15) and the following

Lemma 3.3 There exists a constant hg > 0 so that for h > hg we have

/n/jo Uy (8)f ()| dtdz < C|f 1. (3.16)

Proof. Using the identity

T(1+(VREO) — VEEO)T) !

=T T(VRE(N) ~ VR (O)T (1+ (VRE(N) ~ VREO)T) ",

we obtain -
U~ (t) = T@n(t) — / TVPE(t — YU (7)dr. (3.17)

— 00
Since

/ T Bu®ldt = h? / T ettt = / NEROTS

7



as above, we have

[ wiwsel e <cisie [ g

— 00

+C’/Z/Z/n/n|v(z)|}/lf(|zy|,t7)} }Uff(T)f(y)}dzdydet

SCHfHLlnLCh*l/Q/Rn/i |Uﬁt(7)f(y)}d7'dy,

which implies (3.16) provided h is taken big enough. O

A Appendix

The following low frequency dispersive estimates for the free wave group are more or less
known, but we will give a proof for the sake of completeness. We have the following

Proposition A.1 Let n > 3. Then for every 0 < € < 1, t, we have the estimates

GGy I (G|, < OO log (1] +2) (A1)
eit\/CToG()—(n+1)/4+ena(GO)‘ o < Oy ~(=D/2, (A.2)

Proof. The kernel of the operator in the LHS of (A.1) is of the form K (|z — y|,t), where
K(o,t) = cn07"+2/ NI HD/2 (A2 T, (0 N)dA.
0

When [t| < 2, using that J,(z) = O(2""2), Vz > 0, we have |K (0, t)| < Const, which implies
(A.1) in this case. In what follows we will suppose |t| > 2. Let ¢ € C*(R), ¢(u) = 1 for
|p] <1, ¢(p) =0 for |u| > 2. We write K = Ky + K», where

Ky (Uv t) = Cno—inJrQ/ eit/\)\li(n+1)/2na(/\2)(¢ju)(o—/\)d>‘a
0

Ks(0,t) = cpo "+ / PN 2 (A2)(1— 6)7,) (0N dA.
0

Since ((1 — ¢)J,)(2) = O(2("=3/2), ¥z > 0, we have
Const
Ka(o,1)| < Co—(n=1)/2 / ALdA < Co= =D 21og (o). (A.3)
o1
It follows from (A.3) that for |¢t|/2 < o < 2|t|, we have
|Ks(0,t)] < CJt|= =D/ 210g |¢]. (A.4)
Let now o ¢ [|t|/2,2[t]]. We write Ko as K5 + K, , where
K5 (01) = a2 [ OO 2, 00) (1 g oA
0

with functions b satisfying

1096 ()] < C;z=/270 0 Wi >0, 2> 1.



Integrating by parts m > 1 times we get

K5 (0.0)] < Co~ ek [ 37 om i [0 2, 02 | (0517 (1 = )b o)
=0

Const m
7n+2|t:|:0_| m/ Zo_m iz- (n+1)/2— j(O’)\)(n 3)/2—(m— ])d/\

Const
< Co™ (=12 4 O'|7m/

o

Aflfmd/\ < Co_mf(nfl)/2|t:|: O_|7m/ ‘uflfmdﬂ
1

< Com N2 4 |7 < O™ (D2 (A.5)

since |t £+ | > |t|/2 in this case, for all integers m > 1, and hence for all real m > 1. Taking
m=(n—1)/2in (A.5) we get

[Ka(0,t)| < Clt[~"7D2if o ¢ [|t]/2,2]¢]. (A.6)

To deal with K; we will use that (¢J,)(z) = 2" ?¢(z) with a function g € C§°(R). We
write

Ki(o,t) = cn/ N =3/2n (A2 g(oN)dA.
0

Lemma A.2 For every k > 1, we have

/ eit*Ak-lna<A2>g(oA)dA‘ < Clt| 7, (A7)
0

with a constant Cy, > 0 indpendent of t and o.

Proof. If k > 1 is an integer, we integrate by parts k times to get

/ e”’\)\k_lna()\2)g(a)\)d)\‘
0

g|t|—k/ 105 (V1 (\2)g (o)) dA + [ |05 (10 (A)g (0A)) o)
<i [ Za—w SN+ [ 02 lloN)lix+ 1 lg(0)
0

k oo . o0
S / (N1 (0 g) (0N [d(oN) + [+ / I, (A2)[dA + [~ 1g(0)] < Cilt] ™.

For all real k > 1, (A.7) follows easily by complex interpolation. O
Applying (A.7) with k = (n — 1)/2 we get
|K1(0,t)| < CJt)~ =172, (A.8)

Now (A.1) follows from (A.4), (A.6) and (A.8).
To prove (A.2) observe that the function

Fa(o,1) = cno—+? / eI (D2 (32)((1 — 6).7,) (o A)dA
0



satisfies the bound

Const
| Ky (0, )| < Ca—<"—1>/2/ AN < Com (P 1/2 (A.9)
0-71
Hence, for |t|/2 < o < 2]t|, we have
|Ralo,t)] < Cle~ =112, (4.10)
The rest of the proof is exactly as above. O
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