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ABSTRACT
A new class of 4-PSK Space Time Trellis Codes (STTC) for
2 and 3 transmit antennas is proposed in this paper. We call
these codes Balanced STTC because they use the points of the
constellation with the same probability. Comparing to known
codes, these codes offer the best performance. Therefore, the
systematic search for good codes can be reduced to this class.
It is shown that all the best published codes are balanced. The
paper presents the design of these balanced STTC and gives
a complete list of the best 4-state codes. Several 16-state ba-
lanced codes for 2 and 3 transmit antennas are also given.

1. INTRODUCTION

Space Time Trellis Coded Modulation (STTCM) was intro-
duced in 1998 by Tarokhet al. [1] by combining channel co-
ding with the Multiple Input Multiple Output (MIMO) concept
to improve the data rate and the reliability of wireless commu-
nications. Many performance criteria have been established
to maximize both diversity and coding gain of STTC. The
rank and determinant criteria for slow fading channels with
the Euclidian distance and the product distance criteria for
fast fading channels have been proposed in [1]. In [2] Chen
introduced the trace criterion which governs the coding for
systems with a great product of the numbers of transmit (Tx)
and receive (Rx) antennas.

Based on above criteria, many different STTC for 2 Tx
antennas have been found by a systematic code search [3–7].
The performance study of these codes was carried out over
slow and fast Rayleigh fading channels to identify the most
efficient ones [8]. It has been shown that over slow fading
channels, the codes constructed with the trace criterion give
similar or even better results that the codes constructed with
the rank and the determinant criteria. Over fast fading chan-
nels, “trace criterion codes” as Chen’s codes outperform the
other tested codes. In the same way, some codes for 3 Tx an-
tennas have been published in [6, 9]. We remark that all the
codes which achieve the best performance have the same pro-
perty: they use the points of the constellation with the same
probability if the data are generated by a binary memoryless
source with equally probable symbols. Therefore, we call
these codes “Balanced-STTC” (B-STTC).

Until now, no efficient construction method of STTC has
been proposed and systematic code search has been employed
to obtain STTC with good performance [3–7]. The main con-
tribution of this paper is the description of a method of cons-
truction of this new class of codes which offers the best per-
formance. Therefore, the systematic search for good codes
can be reduced to this class. A table with all the best 4-state
STTC and a table with some best 16-state STTC for 2 Tx an-
tennas are given. Some best 16-state STTC for 3 Tx antennas
are also presented. Finally, the performance of all these codes
is evaluated by simulation.

The rest of the paper is organized as follows. Section
II briefly describes the STTC. Their performance criteria are
presented in Section III. The new class of balanced codes is
introduced in Section IV and their properties are listed in Sec-
tion V. The design of 4-PSK balanced space-time trellis codes
for 2 and 3 Tx antennas is described in Section VI and VII
respectively. Finally, it is shown in Section VIII that the best
B-STTC outperform or equal previously known codes.

2. SPACE TIME TRELLIS CODING

We consider the case of2n-PSK space-time trellis encoder as
shown on Fig.1.
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Fig. 1. ST trellis encoder with 4-PSK andnT Tx antennas



This encoder is composed of one input block ofn bits
and ν memory blocks ofn bits. At each timet ∈ Z, all
the bits of a block are replaced by then bits of the previ-
ous block. Theith bit bt−j+1

i , i = 1 . . . n, of thejth block,
j = 1 . . . ν + 1, is associated tonT multiplier coefficients
ck
i,j ∈ Z2n , k = 1 . . . nT wherenT is the number of Tx

antennas. A ST trellis encoder is thus classically defined by
its generator matrixC of nT × n(ν + 1) coefficients:

C =

2
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(1)

The encoder outputs for thekth antenna are computed as

yk
t =

n
∑

i=1

ν+1
∑

j=1

bt−j+1

i ck
i,j mod 2n (2)

whereyk
t ∈ Z2n represents the index of the2n-PSK symbol

sk
t = eyk

t
π
2 sent to thekth antenna. The modulated streams

for all antennas are then transmitted simultaneously.

3. DESIGN CRITERIA

Design criteria have been proposed in [1] [2] to exploit the
nT nR spatial diversity order and to offer optimal coding gain.
Cases of slow and fast Rayleigh fading are mainly studied.
The transmittednT dimension symbolsst =

[

s1
t s

2
t . . . snT

t

]T
,

where[·]T denotes the transpose operator, are assumed to be
grouped in a frame of lengthLf . For each case, criteria are
derived from the minimization of the Pairwise Error Proba-
bility (PEP), i.e. the probability of transmitting thenT × Lf

dimension coded frameS =
[

stst+1 . . . st+Lf−1

]

and de-
ciding erroneously in favour of anothernT × Lf dimension
coded frameE =

[

etet+1 . . . et+Lf−1

]

. ThenT × nT pro-
duct matrixA = BB

∗ is introduced whereB∗ denotes the
hermitian of thenT × Lf difference matrixB = E − S.

B =







e
1
t − s

1
t . . . e

1
t+q − s

1
t+q . . . e

1
t+Lf−1

− s
1
t+Lf−1

...
... · · ·

...
...

e
nT
t − s

nT
t . . . e

nT
t+q − s

nT
t+q . . . e

nT
t+Lf−1

− s
nT
t+Lf−1






(3)

In [2], Chen proposes a new criterion which is valid in the
case of slow and fast Rayleigh fading channels since the pro-
duct rank(A).nR > 3. Under this assumption, the PEP is
minimized if the sum of all the eigenvalues of the product
matrix is maximized. For a square matrix, the sum of all the
eigenvalues is equal to the trace of the matrixA

tr(A) =

nT
∑

k=1

λk =

nT
∑

k=1
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∣ek
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 (4)

For each pair of coded frames, a matrixA and thentr(A)
can be computed. The minimum trace is the minimum of all

these valuestr(A). Since the productrank(A).nR > 3, the
minimization of the PEP amounts to use a code which has the
maximum value of the minimum trace.

4. BALANCED CODES

4.1. Why balanced codes?

The concept of “balanced codes” is based on the observation
that all the good STTC proposed in the literature present the
same property: the generated symbols of the constellation are
equally probable.

Indeed, if the binary input data is generated by a me-
moryless sourceS = {0, 1} with equally probable symbols,
then, in the case of 4 - PSK modulation, from a given state
X=[x1x2... xL]

T
∈Z

L
2 of the shift-register realized by(ν+1)

blocks ofn bits, the MIMO symbolY=[y1y2... ynT
]
T
∈ Z

nT

4

generated by the STTC encoder shown in Fig.1 is:

Y = C · X (5)

whereC is the generator matrix (1). This is a deterministic
relation. Therefore, the STTC is defined by a map:

Φ : Z
L
2 → Z

nT

4 (6)

which associates to the stateX an unique codewordY. Note
thatΦ(ZL

2 ) ⊆ Z
nT

4 represents the set of generated codewords
Y. A given codewordY can be obtained for several states
X ∈ Z

L
2 . Let n(Y) be the number of occurrences of the

codewordY.
By definition, a STTC isbalancedif and only if each

generated codewordY ∈ Φ(ZL
2 ) has the same number of

occurrencesn(Y) = n0 ≥ 1.
In addition, ifΦ(ZL

2 ) = Z
nT

4 , then all the codewords are
generated and the STTC isfully balanced.

Due to the random sourceS = {0, 1}, from a given state
X the encoder can have only 4 equally probable next states.
The matrixT of the transition probabilities between these
states corresponds to a Markov chain. Due to the symmetry
of the matrixT, the steady state probabilities of the statesX

are all equal. For a balanced code, by using (5), the generated
codewords Y are also equally probable. In other words, the
generated symbols of the constellation are equally probable.

4.2. Properties of balanced STTC

The design of the B-STTC is based on the following pro-
perties:
Theorem 1 If a MIMO code with aL-length shift-register is
fully balanced thenL ≥ Lmin = n.nT . One can observe that
Lmin = dim(ZnT

2n ).
Theorem 2Let us consider a balanced MIMO code with aL-
length shift-register. Then, for any additional column matrix
Ci ∈ Z

nT

2n , the resulting MIMO code with a(L + 1)-length
shift-register is also balanced.



Definition 1 The vectorsC1,C2, . . . ,CL are linearly inde-
pendent if the equation

x1C1 + x2C2 + · · · + xLCL = 0 ∈ Z
nT

2n (7)

with xi ∈ {0, 1} holds if and only if allxi = 0 .
Definition 2 A set of linearly independent vectorsC1, . . . ,Cm

is called a base forZnT

2n if and only if

span(C1,C2, ...,Cm) =

(

m
X

i=1

xiCi/xi ∈ {0, 1}

)

= Z
nT
2n .

In this case,m = n.nT is the dimension of the setZ
nT

2n .

5. PROPERTIES OF THE BASES OFZ
NT

4

In the following, a method to design fully balanced codes is
presented. The properties of the bases ofZ

nT

4 , which charac-
terize the fully balanced codes are listed. Further, the syste-
matic search will be performed only for these fully balanced
codes.

Property 1: The null vector0 ∈ Z
nT

4 can not be used to
form a base.

Property 2: If the vectorCi ∈ Z
nT

4 is used to form a base,
thenCj = −Ci does not belong to this base.

Property 3: If the vectorsC1,C2, . . . ,Cm ∈ Z
nT

4 with
m < Lmin = n.nT are linearly independent, then the vectors

Cm+1 =

m
∑

i=1

λiCi ∈ Z
nT

4 , λi ∈ {−1, 0, 1} (8)

can not be used to obtainm + 1 linearly independent vectors.
Property 4: C0 = 2Z

nT

2 is a normal subgroup of the addi-
tive groupZ

nT

4 . For each elementv ∈ Z
nT

2 we consider the
cosetCv = v + 2Z

nT

2 , where addition is inZnT

4 .
Property 5: If u1 ∈ Cu andv1 ∈ Cv thenu1 + v1 ∈ Cu⊕v,

where⊕ represents the addition inZnT

2 .
Property 6: If u1 ∈ Cu thenu1 + Cv = Cu⊕v.
Property 7: u + Cu = C0 = 2Z

nT

2 .
Property 8: The sum of two cosets is defined by

Cu + Cv = {u1 + v1/u1 ∈ Cu and v1 ∈ Cv} (9)

Property 9: The direct sum of two cosets is a coset:
Cu + Cv = Cu⊕v

Property 10: If u1 ∈ Cu then−u1 ∈ Cu.
Property 11: If p1, p2, ..., pnT

∈ Z
nT

2 \ {0} are linearly
independent then span(2p1, 2p2, ..., 2pnT

) = 2Z
nT

2 = C0.
Property 12: If p ∈ Z

nT

2 then the sum of 2 different
elements of the cosetCp is an element ofC0\{2p}.

Property 13: One base ofZnT

4 contains at least one vector
in C0.

Property 14: One base ofZnT

4 contains at mostnT vectors
in the same coset.

Property 15: One base ofZnT

4 always containsnT vectors
which belong tonT cosetsCp1

, Cp2
, ..., CpnT

different fromC0

such as the vectorsp1, p2, ..., pnT
are linearly independent.

Similarly, the cosetsCp1
, Cp2

, ..., CpnT
are called linearly

independent.

6. DESIGN OF 4-PSK STTC WITH 2 TX ANTENNAS

The design of the fully balanced codes includes 2 steps:
• First step: generation of all the bases ofZ

2
4.

• Second step: permutation of the column vectors of each
obtained base to generate all the fully balanced codes.
Table 1 shows the partition ofZ2

4 in 4 cosets.

Table 1. Partition ofZ2
4 in cosets

C[ 0

0 ]
0
0

0
2

2
0

2
2

C[ 0

1 ]
0
1

0
3

2
1

2
3

C[ 1

0 ]
1
0

1
2

3
0

3
2

C[ 1

1 ]
1
1

1
3

3
1

3
3

One base ofZ2
4 contains at least one vector inC0 and at most

2 vectors inC0 (Property 13, 14). Then, there are two types
of fully balanced codes ofZ2

4:

• TypeI codes which contain only1 non-null vector inC0

• TypeII codes which contain2 non-null vectors inC0

6.1. Design of fully balanced codes of typeI

A base of a fully balanced code of type I contains only one
vector 2pi ∈ C0\{0} = C∗

0 . A second vector2pj ∈ C∗
0

is obtained as the sum of 2 different vectors of a cosetCpj
:

there are 3 possibilities to choose this coset. Due to the struc-
ture of a cosetCpj

= {pj ,−pj , qj ,−qj}, there are4 dif-
ferent ways to choose these2 vectors :{pj , qj}, {−pj , qj},
{pj ,−qj}, {−pj ,−qj}. The last vector can be chosen in a
different coset, so there are2 · 4 = 8 possibilities. Therefore,
there are3 · 4 · 8 = 96 different bases of type I inZ2

4.

6.2. Design of fully balanced codes of typeII

A base of a fully balanced coset code of typeII contains2
different vectors inC∗

0 = 2Z
2
2\{0}. These2 vectors generate

C0 = 2Z
2
2. Therefore, it is sufficient to choose a vectoru1

in a cosetCu to obtain the whole cosetCu. In the same way,
if we choose another vectorv1 in a cosetCv, the whole coset
Cv is also generated. Moreover,u1 + v1 ∈ Cu⊕v. Therefore,
the sum of the vectoru1 + v1 with the cosetC0 givesCu⊕v.
Hence, all the vectors ofZ2

4 are generated.
The algorithm to obtain a base of type II is as follows:

1. Choose2 different vectors inC∗
0 (3 possibilities);

2. Choose2 different cosetsCu andCv different fromC0

(3 possibilities);

3. For each of these2 cosets, choose one representative
(4 possibilities for each coset).

Therefore, there are3 · 3 · 4 · 4 = 144 bases of typeII in Z
2
4.

Finally, the total number of the bases ofZ
2
4 is: 96+144 = 240

bases.



7. DESIGN OF 4-PSK STTC WITH 3 TX ANTENNAS

Similarly to the design of 4-PSK STTC with2 Tx antennas,
this section is focused on the design of bases ofZ

3
4. There-

after, the vectors forming one base will be permuted to obtain
different balanced codes. Table 2 shows the partition ofZ

3
4.

Table 2. Partition ofZ3
4 in 8 cosets

Ch

0
0
0

i

0
0
0

0
0
2

0
2
0

0
2
2

2
0
0

2
0
2

2
2
0

2
2
2

Ch

0
0
1

i

0
0
1

0
0
3

0
2
1

0
2
3

2
0
1

2
0
3

2
2
1

2
2
3

Ch

0
1
0

i

0
1
0

0
1
2

0
3
0

0
3
2

2
1
0

2
1
2

2
3
0

2
3
2

Ch

0
1
1

i

0
1
1

0
1
3

0
3
1

0
3
3

2
1
1

2
1
3

2
3
1

2
3
3

Ch

1
0
0

i

1
0
0

1
0
2

1
2
0

1
2
2

3
0
0

3
0
2

3
2
0

3
2
2

Ch

1
0
1

i

1
0
1

1
0
3

1
2
1

1
2
3

3
0
1

3
0
3

3
2
1

3
2
3

Ch

1
1
0

i

1
1
0

1
1
2

1
3
0

1
3
2

3
1
0

3
1
2

3
3
0

3
3
2

Ch

1
1
1

i

1
1
1

1
1
3

1
3
1

1
3
3

3
1
1

3
1
3

3
3
1

3
3
3

One base ofZ3
4 contains at least one vector inC0 and at most

3 vectors inC0 (Property 13, 14). Then, there are three types
of fully balanced codes ofZ3

4:

• TypeI codes which contain only1 non-null vector inC0

• TypeII codes which contain2 non-null vectors inC0

• TypeIII codes which contain3 non-null vectors inC0

Design of fully balanced codes of typeIII

The algorithm to obtain a typeIII base ofZ3
4 is as follows:

1. Choose3 linearly independent vectors ofC0 (28 possi-
bilities). They generateC0.

2. Choose3 linearly independent vectorsu, v, w ∈ Z
3
2 (28

possibilities). Therefore, the cosetsCu, Cv, Cw ∈ Z
3
4 are

linearly independent.

3. Choose the vectorsu1 ∈ Cu, v1 ∈ Cv, w1 ∈ Cw (8 pos-
sibilities for each coset). Becauseu1 + C0 = Cu (Pro-
perty 6), the whole cosetCu is generated. In the similar
way,Cv andCw are generated. By usingProperty 9, the
other cosets are also generated.

Finally, the total sum of the bases for the fully balanced
codes of typeIII is 28.28.8.8.8 = 401 408 bases.

In a similar way, we obtain946 176 bases for the fully
balanced codes of typeII and 516 096 bases for the fully
balanced codes of typeI. Finally, the total number of the
bases inZ3

4 is: 401 408 + 946 176 + 516 096 = 1 863 680
bases.

8. CODE PERFORMANCE

Before showing all the best codes based on the trace crite-
rion, we propose herein some trace properties of 4-state 4-
PSK STTC:

• Property P1: the codes C =
h

C1C2 C3C4

i

,

C′=
h

– C1C2 C3C4

i

andC′′=
h

C1C2 – C3C4

i

have the
same minimum trace.

• PropertyP2: the codes C=
h

C1C2 C3C4

i

and

C′=
h

C2C1 C3C4

i

have the same minimum trace.

• PropertyP3: the codes C=
h

C1C2 C3C4

i

and

C′=
h

C3C4 C1C2

i

achieve the same minimum trace.
• PropertyP4: the same minimum trace is obtained by

using a permutation between the rows of the generator matrix
C, i.e, a permutation between the indices of the Tx antennas.

An exhaustive computer search is carried out to detect all
the 4-state 4-PSK STTC with 2 Tx antennas that achieve the
maximum rank and the maximum trace. A set of80 codes
with min (rank(A)) = 2 andmin (tr(A)) = 10 is found. All
these codes offer a minimum product distanced2

p = 4·6 = 24
which is the best product distance that can be achieved for 4-
state 4-PSK STTC with 2 Tx antennas. Besides, it can be
observed that all these codes are fully balanced STTC of type
II. Since the minimum trace value has been obtained, all these
80 codes can be generated by using the trace propertiesP1 to
P4.

Table 3 contains all the 4-state fully balanced codes of
type II which offer the best performance over fast and slow
Rayleigh fading channels with two or more Rx antennas.

Table 3. 4-state 4-PSK fully balanced STTC with 2 Tx antennas and
min (tr(A)) = 10

h

1 2 0 2
2 0 2 1

i h

1 2 0 2
2 0 2 3

i h

3 2 0 2
2 0 2 1

i h

3 2 0 2
2 0 2 3

i

h

2 1 2 0
0 2 1 2

i h

2 1 2 0
0 2 3 2

i h

2 3 2 0
0 2 1 2

i h

2 3 2 0
0 2 3 2

i

h

2 0 2 1
1 2 0 2

i h

2 0 2 3
1 2 0 2

i h

2 0 2 1
3 2 0 2

i h

2 0 2 3
3 2 0 2

i

h

0 2 1 2
2 1 2 0

i h

0 2 3 2
2 1 2 0

i h

0 2 1 2

2 3 2 0

i h

0 2 3 2
2 3 2 0

i

In this table, all the codes are related due to the trace pro-
perties presented before.

In order to confirm the utility of the fully balanced STTC,
an exhaustive computer search of all 4-state STTC has also
been carried out. The obtained results confirm that Table 3
contains all the best STTC. There are not other codes with
better performance than the codes given in this table.

For the 16-state 4-PSK STTC, the construction and the
research of the best codes are made from the 4-state 4-PSK
STTC by using Theorem 2. Table 4 herein contains all the 16-
state Balanced STTC which offer the best performance over
fast and slow Rayleigh fading channels with two or more Rx
antennas. All these codes havemin (tr(A)) = 16 and offer
a minimum product distanced2

p = 128. Among them, we



found the code proposed by Chen
[

1 2 1 2 3 2

2 0 3 2 2 0

]

(in

bold in Tab. 4).

Table 4. 16-state 4-PSK fully balanced STTC with 2 Tx antennas
andmin (tr(A)) = 16

h

2 3 2 3 2 1
0 2 2 1 0 2

i h

2 1 2 3 2 3
0 2 2 1 0 2

i h

2 3 2 1 2 1
0 2 2 1 0 2

i h

2 1 2 1 2 3
0 2 2 1 0 2

i

h

0 2 2 1 0 2
2 3 2 3 2 1

i h

0 2 2 1 0 2
2 1 2 3 2 3

i h

0 2 2 1 0 2
2 3 2 1 2 1

i h

0 2 2 1 0 2
2 1 2 1 2 3

i

h

2 1 2 1 2 3
0 2 2 3 0 2

i h

2 3 2 1 2 1
0 2 2 3 0 2

i h

2 1 2 3 2 3
0 2 2 3 0 2

i h

2 3 2 3 2 1
0 2 2 3 0 2

i

h

0 2 2 3 0 2
2 1 2 1 2 3

i h

0 2 2 3 0 2
2 3 2 1 2 1

i h

0 2 2 3 0 2
2 1 2 3 2 3

i h

0 2 2 3 0 2
2 3 2 3 2 1

i

h

3 2 3 2 1 2
2 0 1 2 2 0

i h

1 2 3 2 3 2
2 0 1 2 2 0

i h

3 2 1 2 1 2
2 0 1 2 2 0

i h

1 2 1 2 3 2
2 0 1 2 2 0

i

h

2 0 1 2 2 0
3 2 3 2 1 2

i h

2 0 1 2 2 0
3 2 1 2 1 2

i h

2 0 1 2 2 0
1 2 3 2 3 2

i h

2 0 1 2 2 0
1 2 1 2 3 2

i

h

1 2 1 2 3 2

2 0 3 2 2 0

i h

3 2 1 2 1 2
2 0 3 2 2 0

i h

1 2 3 2 3 2
2 0 3 2 2 0

i h

3 2 3 2 1 2
2 0 3 2 2 0

i

h

2 0 3 2 2 0
1 2 1 2 3 2

i h

2 0 3 2 2 0
3 2 1 2 1 2

i h

2 0 3 2 2 0
1 2 3 2 3 2

i h

2 0 3 2 2 0
3 2 3 2 1 2

i

Finally, the performance of all these 4-state and 16-state
codes is evaluated by simulation and described by the Frame
Error Rate (FER) and Bit Error Rate (BER) over fast Rayleigh
fading channels. The results are showed in Fig. 2. Note that
all the codes given in Tab. 3 achieve the same performance
than the code of Chen [2] and they offer better performance
than the codes proposed in [5].
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Fig. 2. Performance of STTC 4-PSK with 2 Tx and 2 Rx antennas
over fast Rayleigh fading channels, frame length 128 symbols

For the 16-state 4-PSK with 3 antennas, after having ana-
lyzed the fully balanced codes of typeIII, a set of7296 codes
with min (rank(A)) = 3 andmin (tr(A)) = 24 is found. All

of them achieve the same trace than

[

1 2 1 2 3 2

2 0 3 2 2 0

1 2 2 0 1 2

]

given in [9] and

[

1 1 3 2 2 2

2 3 2 0 2 0

3 2 3 2 0 2

]

proposed in [10].

Some of these7 296 codes are represented in Tab.5. Similarly
to the case with 2 Tx antennas, by using the trace properties
for 3 Tx antennas, we can also generate the other codes with
the same performance from each code in Tab.5.

Table 5. 16-state 4-PSK fully balanced STTC with 3 Tx antennas
andmin (tr(A)) = 24
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3 2 2 3 0 2
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1 2 2 3 2 0

2 0 2 3 0 2

0 2 2 2 1 2
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0 1 0 0 0 2

0 1 3 2 3 2

2 0 1 2 0 0
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0 2 2 0 2 3

3 2 0 2 2 2

2 0 1 2 2 1
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4

2 3 0 2 0 2

2 3 3 2 2 0

2 2 2 0 1 2

3
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3 2 2 3 2 0

3 2 2 0 0 2

2 2 0 2 2 3

3

7

5
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6

4

3 2 3 0 2 0

1 2 2 1 0 2

3 2 0 0 2 2
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9. CONCLUSION
In this paper, we proposed a new class of 4-PSK Balanced
STTC for 2 and 3 transmit antennas. These codes generate
the points of the constellation with the same probability. It has
been shown that the best STTC belong to this class. There-
fore, the systematic search for good codes can be reduced to
this class. A method to design the balanced codes has been
described. A complete list of the best 4-state codes with 2
transmit antennas and several 16-state codes for 2 and 3 an-
tennas have also been given. All the 4-state fully balanced
STTC listed in this paper are equivalent,i.e. they have the
same rank, trace and product distance. The simulation results
have shown that they outperform the other 4-state STTC for 2
transmit antennas.
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