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Abstract 

Using the Landauer-Buttiker theory we calculate the thermal conductance associated to plasmons modes in one 

dimensional arrays of nanoparticles closely spaced in a host fluid. Our numerical simulations show that the near-

field interactions between particles have a negligible effect on the thermal conductivity of  nanoparticles 

colloidal solutions (nanofluids).  
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Recent experiments have revealed [1-4] that many colloidal solutions, also called nanofluids, 

built by dispersing nanometer-size particles in a liquid display an anomalously high thermal 

conductivity that the classical theory of effective media [5] fails to explain. Several scenarios have 

been proposed to explain these unexpected results. Hydrodynamics effects due to Brownian motion of 

particles [6] have been first suggested to explain this enhancement but recently Evans et al. [7] have 

shown that the nanoscale fluid flow resulting from this motion have only a minor contribution in the 

thermal conductivity increase of nanofluids. In parallel to this work, a numerical investigation of 

nanofluids based on molecular dynamic simulations [8]  have enabled to demonstrate that only 

collective effects could explain the heat transfer enhancement in these media. 

In this Letter we examine one of such mechanisms. Our work is based on the following 

observations : (i) Most of anomalous increases in the thermal conductivity has been observed with 

nanofluids made with metallic or polar nanoparticles that support plasmons or phonon-polariton modes 

which have resonance frequencies in the visible or near infrared range. (ii) At weak volume fraction 

( %1~φ  ) the mean distance dda ]1)
6

[( 3/1 −=
φ
π

 between two neighborhoods particles in suspension 

is of the order of their diameter d. Therefore the surface plasmons or phonon-polariton supported by 

these particles collectively interact in the host fluid.  In recent theoretical developments [9,10] some 

authors have predicted strong near-field coupling between two nanoobjects or between a bulk material 

and a nanoobject closely spaced by vacuum suggesting so the possibility of a strong enhancement of 

heat exchanges from this way. Here we estimate the order of magnitude of heat collectively 

transported by near-field interactions in a host fluid. We will limit ourselves to linear chains of 

nanoparticles at rest in a dielectric medium. The thermal conductance associated to the interaction of 

plasmons modes will be calculated using the Landauer-Buttiker theory of transport [11].  

 To start let us consider a chain of N spherical nanoparticles regularly distributed in a host 

material along a linear chain as shown in (Fig.1). To determine the thermal conductance of this chain 

we connect its extremities to two massive materials which are maintained at temperatures T and 
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TT δ+ , the temperature difference Tδ  being small compared to the mean temperature 
2

2 TT δ+
. 

Also we assume that both reservoirs support surface modes which  are able to perfectly couple with the 

chain [9]. Energy exchanged between both reservoirs via the collective excitations of electrons 

(plasmons)  can be calculated using the Landauer-Buttiker theory. Hence, introducing the right and left 

moving plasmons energy flux 
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1
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±± = ωω

π
ϕ h ,                                                                              (1) 

where k stand for the wave vector, )(kmω  the dispersion relation of m th mode, dkdv mgm ω=  the 

group velocity of this mode and 1]1)[exp()( −−= ωβω hBf  the distribution function of plasmons 

(bosons),  the thermal conductance of a nanoparticle chain associated to plasmons is given by 

T
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= .                                                                                                  (2) 

 Finally taking into account the plasmons damping along the chain and transforming the integrals in (1) 

to integrals over frequencies this conductance writes 
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where )(ωmℑ represents the transmission probability through the chain of m th plasmon mode at the 

frequency ω . The discrete sum is taken over all polarization states including one longitudinal, non-

degenerated, and two transversals, two times degenerated, branches.  

Treating the particles chain as a linear distribution of point dipoles involving only the Förster electric 

field [12] (proportional to 3−
ad ) which is dominant in the quasistatic limit ( plasmonad λ<< ), the 

equation of motion of dipolar moments imp , writes [13] 

)( 1,1,
2
1,2

0
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0, +− +−

Γ
+Γ−−= imimmim

R
imIimim pppppp ωγ

ω
ω &&&&&& ,                                                               (4)    

where the subscript labels the particles, 0ω   represents the eigenfrequency of oscillating dipoles,  mγ is 

a polarization dependent constant for which 1=Tγ  for transversal modes and 2−=Lγ  for 
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longitudinal modes. Here IΓ  and RΓ  represent the electronic relaxation frequencies due to interactions 

with phonons and electrons  and due to radiation into the far field respectively. For metal particles with 

a diameter small in front of the plasmon wavelength, the dissipation is mainly non-radiative [14] so 

that RΓ  can be neglected in Eq. (4). The dielectric constant of nanoparticles is described by a Drude 

model (i.e. 
)(

1)(
2

γωω
ω

ωε
i

p

+
−=  , 0/1 >= τγ  being directly related to τ  the average time between 

two subsequent electron collisions) so that the relaxation frequency is very well described [15] by the 

following expression  

γ

ω
ωε

ω
ωε

ωεω ≈

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂

∂
=Γ 2/1

22 ))](Im[())](Re[(

)](Im[2)(I                                                                             (5) 

As for the last term in Eq. (2) it represents the interaction of dipole with its neighbors, 2
1ω being the 

coupling strength. The solution of the linear equation (2) is on the damped oscillating form 

)](exp[0,, aammim kmdtimdp ±+−Ρ= ωα                                                                                            (5) 

where mα  is the linear attenuation of m th plasmon mode along the chain. Inserting the ansatz (5) into 

Eqs. (4) and separating the real and imaginary part of result we find  

)cosh()cos(2 2
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2
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)sinh()sin(20 2
1 amamI dkd αωγω mΓ= .                                                                                            (6-b) 

Solving these equations with respect to the damping factor mα and to the wave number k we obtain 

after a straightforward calculation 
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where we have set 2222
0

24
1

2 )(4)( ImU Γ−−−= ωωωωγω . These relations allow to exhibit the 

dispersion relation )(kω  of plasmons and to calculate the transmission probability  
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]2exp[)( Lmm αω −=ℑ  of plasmons through a chain of length ddNL a +−= )1( . In order to focus 

our attention on the intrinsic properties of the chain we assume, in what follow, that  the chain is 

perfectly coupled to both reservoirs. The plasmon resonance frequency 0ω  of the chain embedded in a 

host fluid of permittivitty ε~ , is calculated from the Fröhlich condition εε ~2]Re[ −= .  In this work the 

host fluid we consider is ethylene glycol (EG)  and its dielectric permittivity is well modeled by the 

lossless Debye model 221
~

ωτ
εεεε

+
−

+= ∞
∞

S  , τ~ , Sε  and ∞ε   being  the Debye relaxation time, the 

static dielectric constant at low frequency and the permittivity at high frequencies respectively. As for 

the plasma frequency, it is given by the usual relation 2/1
0

2 )/( ∗= meep ερω where  eρ , e , 0ε  and 

∗m denote the electronic density, the charge of electrons, the permittivity of vacuum and the effective 

mass of electrons.  The coupling strength between adjacent dipoles is obtained from the usual relation 

)~4/( 3
0

22
1 ae dme εεπρω ∗=  . 

In Fig.2 is plotted the dispersion relation of a chain of 10 nm particles consisting of Cu nanoparticles 

10 nm diameter dispersed at 0,6% vol. in EG (i.e. with an average separation distance of 35 nm). This 

configuration corresponds to  the type of nanofluid studied by Eastmann  et al. [1] which have revealed 

,without additive product, an enhancement of the EG thermal conductivity of 14%  at this 

concentration. The physical properties of copper used to calculate the transport properties were 

328105,8 −×= meρ  [16], 1131038,1 −×= sγ [17], emm ×=∗ 42,1  [18] ( em  being the mass of free 

electrons) and parameters used to model the dielectric propertied of EG [19] were 40=Sε , 37=∞ε  

and s91038,0~ −×=τ .  

 The results for the transmission probability of modes are shown in Fig. 3. There is a relatively 

sharp frequency window for the energy transfer through the chain. In particular, the bandwidth for the 

transmission of L-modes is twice as large as that of the T modes. Also the magnitude of the 

transmission probability for the longitudinal modes is about three times more important than that of 

transversal modes. Hence L modes are the main contributors for the heat transfer through a 

nanoparticle chain.  Results show also that the transmission coefficients decrease very rapidly with the 
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nanoparticle concentration. At 2% vol. (i.e. dda 2= ), for instance, the transmission probability is one 

order of magnitude smaller than that we have in contact. In Fig. 4, the thermal conductance of Cu 

chains embedded in EG are reported as a function of the interparticle distance for several particle sizes. 

We see that the thermal conductance increases continuously when the separation distance between 

particles is decreased. However, for levels of concentration corresponding to the operating range  of 

nanofluids  (~1% vol. or dda 3~ ) the thermal conductance is of the order of 112 .10 −− KW . This 

conductance cannot explain the 10% or larger increases of the thermal conductivity of ethylene glycol 

observed in [1].  

 So far we have assumed that all nanoparticles were at rest in the host fluid. To justify this 

assumption and verify that our model captures well the main physical mechanims which govern near-

field heat exchanges in nanofluids, we now compare the timescales of Brownian motion to that of near 

field interactions. The time necessary for a particle of mass m to move on a distance equal to the 

interparticle distance under the action of thermal fluctuations  is )2/(3 Tkd BaB πητ = . On the other 

hand, the electromagnetic energy is transported through the near-field interactions along a chain of 

particles on the same distance at the group velocity plasmonmg d
dk
dv

m
ωωγω /2

1≈=  of plasmons. 

Hence, the time required for these evanescent waves to transport heat on a distance ad  is 

)/( 2
1 dd plasmonaNF ωωτ ≈ . For 10 nm diameter copper particles spaced by 35 nm in ethylene glycol 

( 11.. 159.0 −−= smkgη ) we find sB
710−≈τ while sNF

1310−≈τ  so that the dynamic of particles can 

be neglected in the near-field heat transfer. A direct inspection of two timescales expressions show 

that the “static nanoparticles” assumption is applicable as long as the plasmons wavelength remains in 

the visible or in the near infrared range of electromagnetic spectrum.  

 In conclusion we have studied the contribution of near-field interactions to the transport of 

heat in weakly concentrated nanofluids when the average separation distance between particles is 

small in front of  plasmons wavelengths. We have shown for ethylene glycol-based nanofluids 

containing copper nanoparticles that the surface plasmons play a minor role in the heat transfers 
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enhancement observed in experiments. This result is obviously applicable to others nanofluids 

comprising metal, metal oxide and polar nanoparticles which all support either plasmons or phonons 

polaritons. Our results suggest that the large thermal conductivity increases in nanofluids comes from 

other collective effects such as those due to the self-ordered motions of particles (i.e. collective 

motions consisting of phonons due to the random motion of particles which can be decomposed as 

harmonic-oscillator-like modes) in the host fluid or due to an increase of the phonon density in 

presence of clusters.  
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Figure captions 
 
 
 
 
Fig. 1 : Regularly spaced nanoparticles chain connected to two reservoirs kept at neighborhood 

temperatures. The separation distance ad  between particles is smaller than the wavelength of 

plasmons modes supported by the chain. 

 
 
 
Fig. 2 : Dispersion relation for the longitudinal (L) and transverse (T) collective plasmon modes  for a 

chain of 10 nm diameter copper particles spaced by 35 nm (0,6% vol.) in ethylene glycol. 

 
Fig. 3 : Transmission probability of longitudinal (a) and transversal (b) plasmons through a chain of 

ten copper particles 10 nm diameter in ethylene glycol for several separation distances.  

 
 
Fig. 4 : Near-field thermal conductance in linear chains of 10 copper particles of different size 

dispersed in ethylene glycol versus the separation distance. 
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