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Abstract

This paper investigates predictive coding methods to compress images represented in
the Radon domain as a set of projections. Both the correlation within and between
discrete Radon projections at similar angles can be exploited to achieve lossless
compression. The discrete Radon projections investigated here are those used to
define the Mojette Transform first presented by Guédon et al in 1995 [1]. This
work is further to the preliminary investigation presented by Autrusseau et al in
[2]. The 1D Mojette projections are re-arranged as two dimensions images, thus
allowing the use of 2D image compression techniques onto the projections. Besides
the compression capabilities, the Mojette transforms brings an interesting property:
a tunable redundancy. As the Mojette transform is able to both compress and add
redundancy, the proposed method can be viewed as a joint lossless source-channel
coding technique for images. We present here the evolution of the compression ratio
depending on the chosen redundancy.

1 Introduction

This work is motivated by the limitations of image processing tools in large
multimedia databases. Numerous paintings belonging to French museums are
stored in an image database within the “Centre of Research and Restora-
tion of French Museums” (C2RMF) 1 . It is required that these high payload
(up to 1000 Megapixel) images be losslessly compressed, stored securely, (i.e.,
with some redundancy) and encrypted for transmission purposes. The French
TSAR project (Secure Transfer of High Resolution Art Images 2 ) aims to de-
velop a method to securely transfer images from the image database of artwork
contained in the Louvre Museum. All this can also be said of medical image

1 http://www.c2rmf.fr
2 http://www.lirmm.fr/tsar/
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databases. It has been shown that the Mojette transform can be used for dis-
tributed storage [3] and encryption [4], if competitive lossless compression can
also be achieved on the Mojette projection data, the majority of the above
objectives can be achieved using only the Mojette transform. Although joint
source channel coding has been extensively studied in the literature [5], most
of the interest has been focused on lossy coding [6] with only limited research
being conducted on lossless joint source channel coding for images [7]. Applica-
tions in geophysics and telemetry as well as the previously mentioned museum
and medical image databases all require lossless compression [8]. We don’t fo-
cus here on the properties of the Mojette transform compared to state of the
art joint source channel coding coding, but our goal is rather to improve a
previous study [2] in terms of lossless compression rate. We nevertheless want
to point out the important link between the Mojette transform and maximum
distance separable (MDS) codes used for joint source channel coding (e.g.
Reed-Solomon or BCH codes). The performances of the proposed algorithm
regarding both compression and redundancy will be shown in section 4.1.

The Mojette transform is an entirely discrete mapping, (from a discrete image
to discrete projections), which requires only the addition operation and is
exactly invertible. It retains the major properties of the Radon transform
such as the Fourier slice theorem and the related convolution property but
also introduces new properties such as redundancy. It was first proposed by
Guédon et al in 1995 [1] in the context of psychovisual image coding. It has
since been applied in many aspects of image processing such as image analysis,
image watermarking, image encryption, and tomographic image reconstruction
from projections. The unique properties of the transform have also made it a
useful multiple description tool with applications in robust data transmission
and distributed data storage. A summary of the evolution and applications of
the Mojette transform to date can be found in [9].

Since the Mojette transform already has other advantages, the objective of
this work is not to develop a superior image compression standard. Rather,
we seek to extend the work by Autrusseau et al in [2] on the compression
of Mojette projection data to become comparable with results from exist-
ing techniques. The preliminary study introduced the idea of a compression
scheme which exploits correlation within a projection (intra-projection cod-
ing) as well as compression scheme which exploits correlation between pro-
jections (inter-projection coding). Since the Mojette projections are princi-
pally used in a data transmission and storage context, developing compres-
sion techniques which are effective is important. Both types of coding must be
investigated as, if redundant projections are required in the transform, only
intra-projection coding may be possible. This paper investigates several meth-
ods to compress projections by adapting multi-spectrum image compression
techniques to multi-projection data.
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The paper is organised as follows: The Mojette transform, projection proper-
ties and inverse are presented in the next section. A summary of the prelimi-
nary study by Autrusseau et al [2] follows in section 3. Section 4 demonstrates
how inter-band image compression techniques can be applied. This is followed
by some concluding remarks and future research directions in section 5.

2 A discrete Radon transform : The Mojette transform

2.1 Mojette projections

The Radon transform 3 maps a continuous 2D function to a set of 1D contin-
uous projections at all angles θ ∈ [0, π). A projection at angle, θ, is obtained
as the linear integration of the function over all parallel lines with gradient
tan θ. One of the most important properties of the Radon transform is that
it is invertible. This implies that the internal structure of an object can be
determined non-destructively from its projections (tomography). The Radon
transform is utilised in areas ranging from medical tomography (CT, MRI, ul-
trasound) to astronomy and seismology. In recent years it has also been applied
to many aspects of image analysis, image representation and image processing.
Since the projection data and reconstructed image are both discrete, the im-
plementation of the Radon transform and its inverse must be discretised. Many
methods involve filtering and interpolating the discrete data; A numerically
intensive procedure. There have also been several discrete Radon transforms
proposed which naturally deal with discrete data, e.g., [11,12]. This paper is
concerned with one particular discrete Radon transform known as the Mojette
transform.

The Mojette transform is an exact, discrete form of the Radon transform de-
fined for specific “rational” projection angles. Like the classical Radon trans-
form, the Mojette transform represents the image as a set of projections,
however in contrast, the Mojette transform has an exact inverse from a fi-
nite number of discrete projections (as few as 1 depending on the angle set).
The rational projection angles, θi, are defined by a set of vectors (pi, qi) as
θi = tan−1(qi/pi), as depicted in Fig. 1a for (pi, qi) = (2, 1). These vectors
must respect the condition that pi and qi are coprime (i.e., gcd(pi, qi) = 1)
and since tan is π-periodic qi is restricted to be positive except for the case
(pi, qi) = (1, 0). The transform domain of an image is a set of projections
where each element (called a “bin” as in tomography) corresponds to the sum
of the pixels centred on the line of projection as depicted in Fig. 1a. This is a

3 [10] provides an English translation of Radon’s original 1917 paper
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linear transform defined for each projection angle by the operator:

Mpi,qi
{f (k, l)} = projpi,qi

(b) =
+∞∑

k=−∞
f (k, l) ∆ (b + kqi − lpi) ,

(1)

where (k, l) defines the position of an image pixel and ∆(b) is the Kronecker
delta function which is 1 when b = 0 and zero otherwise. Invertible projections
can be obtained not only with addition but using any linear operation; Other
practically useful operations include modulo 256 addition and bitwise XOR.
The Mojette transform, MIf(k, l), corresponds to the set of I projections as

MIf (k, l) =
{
projpi,qi

, i ∈ [1...I]
}
.
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Fig. 1. (a) A depiction of (pi, qi), the corresponding angle, θi, and the method of
projection, i.e., summing pixel values centered on the line to give a bin value. (b)
An invertible Mojette transform of a 3 × 3 example image using direction vectors
{(1, 0), (1, 1), (−1, 1)}. Note the spacing between adjacent line sums varies with
projection angle

As depicted for the example images in Fig. 1a and 1b, each bin value equals
the sum of the pixels crossed by the appropriate line

b = lpi − kqi, (2)

The principle difference from the classical Radon transform is the sampling
rate on each projection, which is no longer constant but depends on the

chosen angle as 1/
√

p2
i + q2

i . This can be seen for the different projections
in Fig. 1b which demonstrates the Mojette transform for the directions set
S = {(1, 0) (−1, 1) and (1, 1)}. The number of bins, Bi, for each projection
depends on the chosen direction vector (pi, qi), and for a P ×Q image is found
as

Bi = (Q − 1)|pi| + (P − 1)qi + 1. (3)

The algorithmic complexity of the Mojette transform for a P ×Q image with
I projections is O(PQI).
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2.2 Conditions for reconstructability

Since the set of projection directions is selected arbitrarily, the original data
cannot necessarily be recovered from the set of projections chosen. A crite-
rion is required to determine if a set of projections is sufficient to uniquely
reconstruct the data.

The first result on the conditions for the existence of a unique reconstruction
from a given set of I projections came from Katz [13] in a very similar context.
He showed that if the following criterion is satisfied, any rectangular P × Q
dataset can be uniquely reconstructed:

P ≤
I∑

i=1

|pi| or Q ≤
I∑

i=1

qi, (4)

This result has been extended in an independent manner by Normand and
Guédon [14] to apply to data with compact support of any shape.

2.3 Reconstruction from Mojette projections

The inverse Mojette transform is a fast and simple algorithm [14]. Searching
for and updating 1-1 pixel-bin correspondence enables a simple iterative pro-
cedure to recover the image. The bin value is back-projected into the pixel and
subtracted from the corresponding bins in all other projections. The number
of pixels belonging to the corresponding bins is also decremented. The algo-
rithmic complexity of the inverse Mojette transform for a P × Q image with
I projections is O(PQI) [14]. Figure 2 shows one possibility of the first three
steps of the inverse Mojette transform of the example projections given in Fig.
1.
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Fig. 2. Three first possible steps of the inverse Mojette transform of the projections
obtained in Fig. 1.

This “accounting” inverse was improved by Normand et al in [15] where the
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need to search for 1-1 pixel-bin correspondence was removed. It was proven
that when ordered by angle, θi = tan−1(qi/pi), each projection reconstructs
the subsequent qi rows of the image for the case where

∑
qi = Q (or subse-

quent |pi| columns where
∑

|pi| = P ). This knowledge enables the periodic
sequence of reconstructible pixels to be predetermined, removing the need for
the accounting images in the reconstruction.

This result improves reconstruction time by a factor of 5 but is also useful
for removing unwanted redundancy. Since the rows (or columns) of the image
that are reconstructed by a given projection are known, any projection bins
not containing pixels from these rows (or columns) can be removed. Thus
for pure compression applications, the Mojette transform can be completely
non-redundant mapping P × Q pixels to PQ bins.

3 A review of the preliminary study

Autrusseau et al [2] noted that the Mojette projection data is highly corre-
lated within a projection and also that a strong correlation exists between
projections at similar angles. This can be seen in Fig 3a–i to 3a–iii for the
projection set {(1, 171), (1, 172), (1, 173)} with respective projection angles of
89.665◦, 89.667◦, and 89.669◦. This implies that a form of differential coding
should be an efficient compression technique.

The technique presented in the paper defines a simple compression technique
based on two Differential Pulse Code Modulation (DPCM) schemes of order 1.
One scheme is applied within a projection, defined as “intra-projection” cod-
ing, and the other is applied between projections, defined as “inter-projection”
coding.

Let bi
n denote the value of the nth bin of the ith projection, i.e., projpi,qi

(n).

Assume this is the current bin value to be coded and let b̂i
n be the prediction

of bi
n with the encoded prediction error defined as ei

n = bi
n − b̂i

n.

According to (2), horizontally adjacent pixels in the image are separated by
qi in the projection bins. Therefore the projection data is periodic with qi and
an appropriate prediction for intra-projection coding is:

b̂i
n = bi

n−qi
. (5)

Figure 3b–i depicts the result of this coding applied to the section of proj1,171

given in Fig. 3a–ii. A prediction for inter-projection coding is simply defined
as

b̂i
n = b̃i+1

n , (6)
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Fig. 3. (a) A zoom of three projections of ‘Lena’ with projection vectors (1, qi) where
qi is i–171, ii–172, and iii–173 showing the periodicity within a projection and the
correlation between the projections. (b) i–intra-projection coding applied to the
section of proj1,171 given in (a–i). ii– inter-projection coding using proj 1,172 (a–ii)
as a reference projection. iii– both intra- and inter-projection coding of proj1,171

where b̃i+1
n is the bin in projpi+1,qi+1

that “best” corresponds to bi
n. This is

more difficult to realise in practice since the projections are of different length
and the most appropriate bin to utilise for prediction is not obvious. This is
explored more fully in section 4, here linear interpolation is used. Figure 3b–ii
depicts the result of this coding applied to the section of proj1,171 given in Fig.
3a–ii using proj1,172 as the reference projection. Both schemes used together
produce a DPCM of order 3 as follows:

b̂i
n = bi

n−qi
+ b̃i+1

n − b̃i+1
n−qi+1

. (7)

Figure 3b–iii shows the result of this coding applied to the section of proj1,171

given in Fig. 3a–ii once again using proj1,172 as the reference projection.

It is important to note that given I projections, the total number of bins
according to (3) is I + (Q − 1)

∑
|pi| + (P − 1)

∑
qi and Katz criterion, (4),

must be satisfied for inversion. This implies projection sets that minimise
redundancy are those of the form {(1, q1, 1), (1, q2), ..., (1, qI)} such that

∑
qi

is equal to or only slightly greater than Q (or {(p1, 1), (p2, 1), ..., (pI , 1)} such
that

∑
|pi| ≥ P ). In a compression context, this restriction is more dominant

than selecting projection directions according to texture orientation. A method
to take advantage of this is a subject for future research.

The results of applying (5) and (7) followed by entropy coding to 11 test im-
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ages has been presented in Fig. 4. Compression results have been given as the
final entropy in bits per pixel (bpp) and have been compared with the original
entropy of the image and the compression results from applying JPEG2000.
JPEG2000 has been selected for comparison even though it does not generally
give optimal compression. It is robust to image type, (i.e., natural, artificial,
smooth, textured), and is commonly used due to its multi-resolutional ca-
pabilities. Likewise, the Mojette also has other capabilities in data storage
and encryption so achieving compression at least comparable to JPEG2000 is
desirable.

(a) (b)

Fig. 4. (a) The compression results for Intra- and Inter-projection compression for
two projections as outlined in [2] compared with JPEG2000 for the 11 test images
depicted in (b) numbered left to right, top to bottom. The first row contains 512×512
natural images: ‘Lena’, ‘Boats’, ‘Peppers’. The second row contains C2RMF images:
‘Hand’ 1200×1854, ‘Drape’ 2376×3542, ‘Flowers’ 1405×1125, ‘Kitchen’ 3822×3333.
The last row contains 256 × 256 medical images: ‘Knee’,‘Angio’, ‘MRI’, ‘Chest’

Figure 4 shows that some degree of compression is generally achieved (apart
from the high contrast ‘Knee’ image) however the results are not comparable
to those from JPEG2000. The next section seeks to identify more powerful
prediction schemes which are appropriate for both intra- and inter-projection
coding to improve compression results.

4 Projection compression using multi-band image techniques

4.1 Intra-Projection compression of projection images

Phillipé and Guédon [16] showed that the 2D image auto-correlation is retained
in the Mojette projections. If the projection data is arranged in columns of
length qi or rows of length pi (whichever is greater is preferable), this auto-
correlation becomes apparent as the projection appears as a “folded” im-
age. This has been depicted in Fig. 5 for three projections of ‘Lena’. The
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Fig. 5. (a) Three 1D projections of ‘Lena’ with projection vectors (1, qi) where qi

is i–171, ii–172, and iii–173 (b) The same projection data displayed as images with
columns heights of qi and a width of 514

remapping of projection bins is performed by projecting pixel value, I(k, l),
to projpi,qi

(nk, nl) according to:

if |pi| ≥ qi





nk =
⌊

k
|pi|

⌋

nl = l − (k−nk)
pi

qi

,

otherwise





nl =
⌊

l
|qi|

⌋

nk = k − (l−nl)
qi

pi

,

(8)

(where ⌊x⌋ gives the greatest integer less than or equal x), such that the
corresponding bin in the 1D projection, projpi,qi

(b), is found as:

b = nlpi − nkqi (9)

This implies that 2D image compression schemes can be applied when per-
forming intra-projection coding. The prediction complexity can be increased
from a simple DPCM of order 1 to DPCM order to 3 and further to well
known ADPCM techniques with context coding such as LOCO (of order 3)
[17] and CALIC (of order 7) [18] and Glicbawls [19] which uses the entire set
of causal data. As an example, the compression results in bits per pixel (bpp)
for each of these respective methods to encode 2 projections of three different
images using the direction vectors {(P/2, 1), (P/2+1, 1)} is given in Fig. 6 and
compared with the result of applying JPEG2000 to the image. (Similar results
are achieved using the direction vectors {(1, Q/2), (1, Q/2 + 1)}). This shows
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that compression results better than JPEG2000 can be achieved in some cases
with the use of more sophisticated image coding techniques without the need
for inter-projection coding. This is an important result for distributed storage.
However, the more complex techniques require more memory and computation
time. A good trade-off (by design) is CALIC.
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Fig. 6. The entropy results for Intra-projection compression of two projection ‘im-
ages’ using prediction schemes: DPCM-1, DPCM-3, LOCO, CALIC, and Glicbawls.
This is compared with applying JPEG2000 and CALIC directly to the image

The implications of these results is that redundancy can be inserted for dis-
tributed storage or transmission very efficiently. For the example above, an
extra projection with a direction vector (−P/2 − 1, 1) can be also included.
The resulting compression will still be less than 6.0 bpp (as shown in Fig. 7
for ‘Flowers’) but with the added advantage that any 2 of the 3 projections
is sufficient to recover the image according to (4). If each projection is stored
on a unique server or transmitted over a unique channel, this is a very se-
cure distribution scheme. Of course the number of projections required for
reconstruction and the degree of redundancy can be tuned as required.

Figure 7 gives the compression achieved with the number of projections re-
quired to recover the ‘Flowers’ image, N . At each N there are three values,
the first is the compression attained without redundancy in the projections,
i.e., N projections. The next two give the compression attained with some
redundancy, where 1 (resp. 2) extra projection(s) are included such that any
N of the N +1 (resp. N +2) projections is sufficient to recover the image, i.e.,
an additional redundancy of 1/N (resp. 2/N).

Since the projections can be represented as images, inter-projection coding
could be considered to be similar to inter-band image coding, e.g., coding
between the RGB components of an image. The next section investigates inter-
projection compression issues and techniques associated with this idea.
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Fig. 7. A plot of compression against the number of projections, N , required to
reconstruct the ‘Flowers’ image: without redundancy, with 1 extra projection (so
any N of the N + 1 projections is sufficient for reconstruction), and with 2 extra
projections (so any N of the N + 2 projections is sufficient for reconstruction).

4.2 Inter-Projection compression

A simple but effective inter-band prediction method is presented in [20] to
extend CALIC to multi-spectral images. The essential idea is to compute the
cross-correlation between the current band, xi, and the next band, xi+1, over
the causal ‘neighbourhood’ data used in CALIC prediction. These regions are
depicted in Fig. 8; Note that xi

n and xi+1
n have the same spatial location but

are in different bands. If these two regions are highly correlated then the intra-
band CALIC prediction of the nth pixel value of the current band, x̂i

n, can be
improved upon by using information from the next band, xi+1. This is true
since the actual value of the nth pixel in the reference band, xi+1

n , is known.

x i

n xi+1

n
xi

n-1... xi+1

n-1...

Current band, i Reference band, i+1

Fig. 8. The causal ‘neighbourhood’ in both the current spectral band and the ref-
erence spectral band used in Inter-band CALIC prediction

A similar idea can be applied between Mojette projections of an image. In
Inter-band CALIC the different bands contain images that are spatially con-
sistent but with different intensities according to the band of the spectrum.
With inter-projection compression however, the same pixel intensities, i.e.,
f(k, l), exist in all projections but with a different phase or period of “mix-
ing” with other intensities. Therefore, the best phase to use when predicting
each bin value must be determined. In other words, which projection, projpj ,qj

,
should be used as the reference projection and which bin in this projection
best corresponds to the current bin required to be predicted in the current
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projection, projpi,qi
?

Let us investigate the position of pixels summed in a “raysum” to give a
bin value, projpi,qi

(b). Adjacent pixels in this set are separated by (pi, qi) as
shown in Fig. 9a. Consider the pixels sampled by two raysums from different
projections as depicted in Fig. 9b. This figure shows that the distance between
the previous and subsequent pixels sampled increases by (pi − pj, qi − qj) each
step. Therefore when coding projpi,qi

the obvious choice of projection to utilise
as a reference for inter-projection compression is projpj ,qj

such that the length
of this difference vector is minimised. This is denoted as projpi+1,qi+1

.

The question of which raysum from this projection should be used for predic-
tion of bi

n = projpi,qi
(n) is not so obvious since it is more content dependant. A

selection criterion is required to determine the best raysum from projpi+1,qi+1

in the shaded region of Fig. 9c that will give the best prediction for the ray-
sum, bi

n, shown. There are two questions: 1. How many candidate raysums are
there in projpi+1,qi+1

? and 2. What are their bin indices?

(a)

pi

qi

(b)

3(pi-pj,qi-qj)

2(pi-pj,qi-qj)

(pi-pj,qi-qj)

(c)

Fig. 9. (a) Relative position of pixel values summed to give a projection bin value.
(b) The difference in sampled pixels between two raysums of different projections
including a common pixel. (c) The shaded region contains raysums from projpj ,qj

that intersect the given raysum from projpi,qi
whose contibuting pixels are shown

as white squares

To address the first question, assume there are a maximum of ri image pixels
sampled in the raysum to give bi

n. The value of ri is found as min(⌈P/pi⌉, ⌈Q/qi⌉)
where ⌈x⌉ gives the smallest integer greater than or equal x. The longest pos-
sible vector between corresponding sampled pixels of the two lines is therefore
(ri − 1)(pi − pi+1, qi − qi+1). This also gives the maximum possible vector be-
tween pixels on the two bounding lines in Fig. 9c. Thus, from (2) there are
M = (r − 1) [(qi − qi+1)pi+1 − (pi − pi+1)qi+1] + 1 candidate raysums in the
shaded region of Fig. 9c. For this example assume M = 5 as shown in Fig.
10a.

To determine the indices of these candidate bins is straight forward. The
raysum that samples pixels closest to the l axis (dark grey pixels in Fig. 10a)
intersects with the the raysum giving bi

n (white pixels in Fig. 10a) in first
region of the image, m = 0, as indicated in Fig. 11a. Therefore, the (nk, nl)
position of these bins is identical in the two projection “images”, (as depicted
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Fig. 10. (a) Depiction of the 5 candidate raysums from projpi+1,qi+1
in the shaded

region labelled by phase, m. Any of these could be used when predicting the given
bin value in projpi,qi

. (b) the position of these bins in the respective projection
‘images’

in Fig. 10b), i.e.,

b̃i+1
n = projpi+1,qi+1

(nlpi+1 − nkqi+1), (10)

This is for a set of (pi, qi) direction vectors where |pi| ≥ qi. The same equation
applies to the case where |pi| < qi, however, here it is the raysum the samples
pixels closest to the k axis, (black pixels in Fig. 10a).

In summary, the bin values from projpi+1,qi+1
that are candidates to be used in

the prediction of bi
n include b̃i+1

n from (10) and the preceding M −1 bin values,
i.e., b̃i+1

n−m for m ∈ [0, M − 1]. These bins have been depicted in Fig. 10b for
the example. Given the optimal candidate bin ‘phase’, m, the intra-projection
prediction can be improved by:

b̂i
n = pred(bi

n) + b̃i+1
n−m − pred(b̃i+1

n−m), (11)

where pred() is any of the prediction models introduced in section 4.1.

Selecting phase, m, in the reference projection for the prediction, i.e., using
b̃i+1
n−m, gives the best prediction for the mth section of the image, as labelled

in Fig. 11a for the example given in Fig. 10a and 10b. The prediction is
successively worse for the regions m ± 1, m ± 2, and so on. A sensible choice
for m is therefore the raysum in the centre of the shaded region, M/2, and
this does in general give the best result. However, if the central region of the
image is smoother than towards the image boundaries, the correct prediction
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of texture edge positions is more critical than an overall minimum distance
between corresponding sampled pixels of the two raysums.

This has been demonstrated for several 512 × 512 images using the proj104,1

to predict projection proj103,1. In this case, (as in the previous diagrams),
there are M = 5 candidate raysums to investigate which correspond to the
5 sections of the image as shown in Fig. 11a. In these regions the sampled
pixels of the raysums from bi

n and b̃i+1
n−m are identical (and hence the data

of these sections is removed entirely according to (11)). Figure 11b gives the
inter-projection compression rates achieved using (11) with constant phase,
m, for all predictions. Here pred() is the Gradient Adjusted Prediction (GAP)
introduced in [18]. It is expected that these plots attain a minimum at m = 2,
however, this is not true in practise for any of the plots.
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Fig. 11. (a) the 5 regions of the image which in selecting phase, m, in prediction will
be removed entirely from the current projection after coding. (b) The compression
results for inter-projection compression of proj103,1 from proj104,1 using constant m

and variable m, i.e., ‘var’. (c) The causal neighbours from the current projection
and the reference projection used firstly to determine cross-correlation and also for
prediction

By selecting phase, m, the contribution of the mth section of the data is
removed. Thus, better compression results are achieved when the phase cor-
responds to the most textured region of the image. For example, the second
region of ‘Lena’, labelled m = 1 in Fig. 11a, contains the highly textured hair.
Removing this textured region from the projection by setting m = 1 for inter-
projection coding gives the lowest entropy as seen in Fig. 11b. These results
demonstrate that the accurate location of texture edges is very important in
the predictors performance.

A content dependant method is desired to select the optimum raysum from the
M candidate raysums of projpi+1,qi+1

. A fast method that attains near optimal
performance in inter-projection coding is to determine the vertical region of
the image (or horizontal for a set of (1, qi) direction vectors) with maximum
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‘activity’ and select the phase of b̃i+1
n−m, accordingly.

A slower but more effective selection criteria can be achieved by investigating
the 2D cross-correlation between the causal neighbourhoods of bi

n and b̃i+1
n−m

in the two projections for all phases, m ∈ [0, M − 1]. These causal neigh-
bourhoods have been depicted in Fig. 11c. The phase, m, of the candidate
bin selected, b̃i+1

n−m, is that with the greatest cross-correlation with bi
n. If this

cross-correlation is above some threshold it should be useful to improve the
intra-projection prediction, otherwise only intra-projection coding is consid-
ered. This gives the best overall compression results as shown for the ‘var’
,(i.e., variable), column in Fig. 11b with compression consistently lower than
any constant phase, m.

(a) (b–i) (b–ii) (b–iii)

Fig. 12. (a) The compression results for Inter-(GAP) and Intra-(CALIC) projec-
tion compression of two projections using variable phase, m. Compared with the
inter-projection compression results from the previous section using scheme B. (b)
A visualisation of the decorrelation achieved using inter-projection coding. Three
prediction error projections i–proj170,1, ii–proj171,1, and iii–proj172,1 of ‘lena’. Pro-
jections i and ii have been inter-coded and effectively decorrelated from projection
iii. Note that the grey levels are centered about 0 with a window of 64.

Figure 12b shows, for the example projections, that inter-projection coded
data (12b–i and 12b–ii) has been effectively decorrelated from the basis pro-
jection (12b-iii). Figure 12a shows the compression rates using GAP for inter-
projection prediction and CALIC for Intra-projection coding are comparable
to JPEG2000.

Figures 13a and 13b summarise the results achieved in this paper for intra-
and inter-projection coding respectively. They plot the average compression
ratios of each type of image, i.e., natural,art, and medical, using the compres-
sion techniques from the premiminary study (Fig. 4a), and the multi-spectral
band image coding scheme (Fig. 12a). The average entropy of each scheme is
compared with the entropy of the original image and the compression achieved
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using JPEG2000. Results show that this scheme is particularly suited to the
intended application to the scanned art image database of the C2RMF. For
the art images, the compression achieved using solely intra-projection coding
is similar to JPEG2000 and including inter-projection coding is more effective
than JPEG2000.

(a) Intra-projection coding (b)Inter-projection coding

Fig. 13. A plot of average compression ratio over the 11 test images for both (a) intra-
and (b) inter-projection coding using: the DPCM-1 method from the preliminary
study, and the CALIC image scheme. Results are compared wih the average entropy
of the raw image and the compression achieved by applying JPEG2000 to the image.

5 Conclusions and Future Research

The technique to losslessly compress images via linear prediction of the Mo-
jette projection presented in [2] has been improved upon here. Average com-
pression achieved using intra-projection coding of 2 projections was improved
from 5.38 bpp to 4.48 bpp using a fast lossless image coding technique. Average
inter-projection compression entropy was also improved from 4.77 bpp to 4.00
bpp using a lossless inter-spectral band image compression technique. Figure
13 shows that these improved results are comparable to those achieved using
JPEG2000 applied directly to the image and that these techniques are par-
ticularly suited to the intended purpose of this work on compressing scanned
art images for the TSAR project.

The image coding techniques have been adapted to fully exploit the nature of
the Mojette projection data. This periodic nature is present since the Mojette
projections preserve the 2D auto-correlation of the image and implies that
image compression and inter-spectral band image compression can be applied.
The prediction method selected for intra-projection coding should be selected
depending on the requirements for compression and implementation time. A
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method to select the optimal raysum from all candidate raysums of a reference
projection to use for inter-projection prediction has also been presented.

Compression rates comparable to JPEG2000 are achieved using image coding
techniques, however, the image coding techniques take advantage of the 2D
correlation and hence, by design, have less complexity, require less memory,
and thus have a lower implementation time. Another possible compression
scheme that may be applicable is video inter-frame coding with motion esti-
mation and is a direction for future research. Another area for future investi-
gation is that of coding colour images with predictions using inter-projection
and inter-band correlation simultaneously.

These results imply that the Mojette projections which have applications in
distributed storage and encryption of images in databases can also be ef-
fectively losslessly compressed and many of the requirements of an image
database outlined in section 1 can be achieved using solely the Mojette trans-
form.

The methods explored here concentrated on predictive coding. Techniques
using scalable transforms such as DWT, DCT and FFT may prove useful. If a
block based approach could be made feasible, then it may also be beneficial to
investigate projections directed along and orthogonal to texture orientation.
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editors, Springer-Verlag LNCS4245, pp. 122-33, Szeged, Hungary, Oct. 2006.
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