
The unified enterprise modelling language – Overview

and further Work

Victor Anaya, Giuseppe Berio, Mounira Harzallah, Patrick Heymans,

Raimundas Matulevicius, Andreas Opdahl, Hervé Panetto, Maria José

Verdecho

To cite this version:

Victor Anaya, Giuseppe Berio, Mounira Harzallah, Patrick Heymans, Raimundas Matulevi-
cius, et al.. The unified enterprise modelling language – Overview and further Work. IFAC.
17th IFAC World Congress, Jul 2008, Seoul, South Korea. Elsevier, pp.11895-11906, 2008,
<10.3182/20080706-5-KR-1001.2158>. <hal-00312007>

HAL Id: hal-00312007

https://hal.archives-ouvertes.fr/hal-00312007

Submitted on 24 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00312007

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

The Unified Enterprise Modelling Language –

Overview and Further Work

Victor Anaya*, Giuseppe Berio**, Mounira Harzallah***,

Patrick Heymans****, Raimundas Matulevicius****, Andreas L. Opdahl*****,

Hervé Panetto******, Maria Jose Verdecho*

Universidad Politecnica de Valencia, Spain;

(e-mail: {vanaya, mverdecho}@cigip.es).

** University of Torino, Italy;

(e-mail: berio@di.unito.it)

*** University of Nantes, France;

(e-mail: mounira.harzallah@univ-nantes.fr)

**** University of Namur, Belgium;

(e-mail: {phe, rma}@info.fundp.ac.be)

***** University of Bergen, Norway;

(e-mail: Andreas.Opdahl@uib.no)

****** University of Nancy, France;

(e-mail: Herve.Panetto@cran.uhp-nancy.fr)

Abstract: The Unified Enterprise Modelling Language (UEML) aims to support integrated use of enterprise and IS

models expressed in a variety of languages. The achieve this aim, UEML provides a hub through which different

languages can be connected, thereby paving the way for connecting the models expressed in those languages. UEML

offers a structured approach to describing enterprise and IS modelling constructs, a common ontology to interrelate

construct descriptions at the semantic level, a correspondence analysis approach to estimate semantic construct

similarity, a quality framework to aid selection of languages, a meta-meta model to organise the UEML and a set of

tools to aid its use. This paper presents an overview of UEML and points to paths for further work.

1. INTRODUCTION

Emerging information and communication technologies are

increasingly model-driven. Unfortunately, they are often

driven by models that cannot easily be interrelated because

they are expressed using languages that are not interoperable.

In consequence, the models can become inconsistent. Instead

of producing more adaptable and integrated ICT solutions,

model-driven technologies therefore run the risk of

reinforcing existing interoperability problems as different

information systems evolve driven by models expressed in

incommensurable languages. The situation has created a need

for theories, technologies and tools that allow information

systems be adapted and evolve each driven by the most

suitable languages, while allowing the systems and their

models to be used in an integrated manner.

The Unified Enterprise Modelling Language (UEML) refers

to an on-going attempt to develop theories, technologies and

tools for integrated use of enterprise and IS models expressed

using different languages. By this we mean keeping the

existing models as they are and, in addition, establishing

correspondences between them in an explicit and usable way.

Useful services are consistency checking, automatic update

reflection, model-to-model translation and others across

modelling language boundaries. UEML would thereby act as

a hub connecting different languages along with the different

models expressed in those languages. UEML comprises:

 a structured approach to describe enterprise and IS

modelling constructs,

 an evolving common ontology to describe the

semantics of modelling constructs,

 a correspondence analysis approach that uses the

common ontology to determine semantic

correspondences between constructs,

 a quality framework to define and evaluate the

quality of enterprise modelling languages to aid

language selection for specific purposes,

 a modular meta-meta model to organise the overall

UEML approach and

 a set of tools to aid its evolution and use.

The purpose of this paper is to present an overview of UEML

and discuss paths for further work. The paper is organised as

follows: Section 2 presents UEML's background and its

vision. Section 3 explains how languages and constructs are

described in UEML, and Section 4 shows how descriptions of

constructs are tied together by a common ontology. Section 5

discusses how correspondences between languages and

constructs can be established and used to support model-to-

model translation across languages. Section 6 shows how

enterprise modelling languages are classified and selected in

UEML according to specific goals. Section 7 presents the

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

meta-meta models that holds the UEML approach together,

and Section 8 reviews the various prototype tools supporting

its evolution and use. Section 9 discusses UEML in itspresent

state, before Section 10 concludes the paper.

2. BACKGROUND

The idea of a Unified Enterprise Modelling Language first

emerged during the ICEIMT’97 conference (Goossenaerts,

Gruninger, Nell, Petit & Vernadat 1997), with the aim of

providing an underlying formal theory for enterprise

modelling languages. A major motivation was the “Tower of

Babel” situation that was assumed to hinder proliferation of

enterprise modelling in industry (Vernadat 2002). The first

development version of a unified enterprise modelling was

done by the UEML Thematic Network (UEML TN) (2002-

2003), funded by the EU’s FP5 (Jochem 2002, Panetto,

Berio, Benali, Boudjlida & Petit 2004, Mertins, Knothe &

Zelm 2004, Berio, Anaya & Ortiz 2004). UEML

development has since continued within the Interop-NoE

Network of Excellence (2003-2007), funded by EU’s FP6,

producing two more development versions, UEML 2.0 and

2.1.

The following scenarios illustrate the UEML vision:

 Exchanging information contained in enterprise and

IS models across modelling languages. UEML

intends to achieve this by establishing and

managing correspondences between modelling

constructs of the different languages, thus

simplifying the task of establishing and managing

model-level correspondences.

 Creating new problem- and/or domain-specific

methods by combining elements from existing

modelling techniques. UEML aims to make it easier

to combine modelling languages and associated

techniques, an ambition resembling that of method

engineering. In particular, UEML aims to support

local tailoring/adaptation of languages and

constructs to fit local practices and needs. Another

kind of local tailoring is introduction of new

domain-specific languages.

 Systematic, quality-driven, reuse of existing

enterprise and IS modelling languages. Combining

techniques and tools across modelling languages

has the side benefit of making languages available

for the domains where they are most suited, without

limitations posed by modelling tools and other

technologies.

 Defining a core language for enterprise and IS

modelling. As UEML becomes more stable, it may

be possible to extract a core set of modelling

construct to use as the starting point for a new

enterprise/IS modelling language, a UEML core

language composed of those constructs that have

proven most useful for practical, integrated model

use. However, the core language scenario, should

be understood as a longer term objective, beyond

the scope of this paper.

 Facilitating a web of languages and of models.

Whereas much research and development effort has

gone into techniques and tools for integrated

management of structured data (e.g., relational

database theory) and of semi-structered data (e.g.,

XML and other web technologies), there is a lack of

theory and tehcnology for integrating information

resources in the form of diagrammatic models.

UEML could also contribute to growing a web of

languages and of models in a way that resembles

the touted semantic web of semi-structured data

(Berners-Lee, Hendler, Lassila 2001).

3. LANGUAGE AND CONSTRUCT DESCRIPTION

UEML facilitates integrated model use by making semantic

correspondences between the modelling constructs of

different languages clear. Making the languages

interoperable is seen as a first step towards also making the

models expressed in those languages interoperable. A central

part of UEML is therefore a standard, integrative and

evolvable approach to describing enterprise and IS modelling

constructs. By standard we mean that the approach provides

a structured path to describing modelling languages, diagram

types and constructs. By integrative we mean that as soon as

the languages, diagram types and constructs have been

described according to the approach, they have become

prepared for assessment of semantic correspondences,

possibly across languages. And by evolvable we mean that

UEML will be able to grow and adapt by incorporation and

modification of additional modelling languages and

constructs without becoming overly complex and thus

unmanageable.

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

The descriptions of individual modelling constructs are

particularly important, because it is this level that connects

different modelling languages. Hence construct descriptions

are more complex than descriptions of languages and

diagram types. Specifically, in UEML, two distinct

descriptions need to be made for each construct:

 Presentation (or concrete syntax), which deals with

the presentation of the modelling construct as part

of model diagrams or in serialised form, e.g., in an

XML file.

 Representation (or semantics), which accounts for

which enterprise phenomena the construct is

intended to represent (in particular covering

reference, a central aspect of semantics).

Whereas a construct can have many presentations, it can have

only one representation. This paper will focus on the

representation part, which has so far been most developed

(Opdahl 2006).

In UEML, semantics is described by a representation

mapping of each modelling construct into a common

ontology, based on earlier work by Opdahl & Henderson-

Sellers (2004, 2005). The UEML approach uses separation of

reference to break individual modelling constructs into their

ontologically relevant atomic parts along the following six

axes:

1. Which class(es) of things is the construct intended to

represent? Most modelling constructs somehow

represent one or more classes of things. Even when

the primary purpose of a construct is to represent

certain properties, states or transformations, the

construct implicitly also represents a property of,

state of or transformation in, one or more classes of

things. (A transformation may be either an atomic

even or a complex process.)

2. Which properties is the construct intended to

represent? Most modelling constructs somehow

represent one or more types of properties, which

may either be intrinsic properties (belonging to only

one thing) or relationships (properties that are

mutual to several things). Some intrincis properties

are laws that restrict other propertis. Even if the

primary purpose of a construct is to represent

classes, states or transformations, it represents

classes, states or transformations that involve one or

more types of property.

3. Which states is the construct intended to represent?

Some modelling constructs are intended to represent

a more or less restricted state in one or more classes

of things. The state law that restricts the state can be

described in terms of the properties of those classes.

Whereas most modelling constructs represent one or

more properties and, at least, one or more classes,

not all constructs are intended to represent a state.

4. Which transformations is the construct intended to

represent? Some constructs are intended to

represent a simple or complex transformation of one

or more classes of things from one state to another.

The transformation law that effects the

transformation can be described in terms of the

states of those classes. Again, not all constructs are

intended to represent a transformation. Although

some constructs are apparently not intended to

represent behaviour at all, other constructs represent

particular states or transformations or chains of

alternating states and transformations, i.e.,

processes.

5. Which instantiation levels is the construct intended

to represent? A modelling construct represents

classes, properties, states and transformations at

either the instance or type level or both.

Figure 3: The common UEML ontology, into which all the construct descriptions are mapped.

Figure 1: The main classes in the UEML representation meta-meta model.

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

6. Which modality (or mode) is the construct intended

to represent? We usually think of enterprise models

as assertions of facts about a domain, e.g., assertions

that something is the case or is not the case in the

enterprise. But some model elements may instead

state that someone wants something to be the case,

or that someone is not permitted to do something, or

that someone knows something is the case¸ or that

something will be the case some time in the future.

We call such statements modal (as opposed to

regular) assertions, i.e., we use the term "modal"

pretty much in the modal logic sense.

Hence, whereas the two first axes deal with structure, the

next two deal with behaviour. Together, these four axes

describe the semantics of a modelling construct by

describing a state of affairs, or a scene, played by several

classes, properties and, perhaps, states and transformations

together. The final two axes supplement the scene with

information about the construct's intended use, i.e., its

instantiation level and modality/mode.

The UML class diagram in Figure 1 shows the key concepts

used to describe modelling languages and constructs in

UEML. The upper part of the diagrams depicts modelling

languages, along with their diagram types and modelling

constructs. The lower part shows how each individual

construct is described by a scene of interrelated classes,

properties, states and transformations that the construct is

intended to represent. (Construct presentation is not shown

in Figure 1.)

4. THE COMMON ONTOLOGY

To tie modelling-construct descriptions together, UEML uses

a common ontology into which the represented classes,

properties, states and transformations of each construct are

mapped. The common ontology thereby comes to interrelate

the construct descriptions at the semantic level.

The UEML ontology is organised into four taxonomies: The

classes in the ontology are organised in a conventional

generalisation hierarchy. Properties, on the other hand, have

their places in a precedence hierarchy, in which a property

precedes another if every thing that possesses the second

property must also possess the first. (For example,

associated-with precedes having-content, because everything

that is having-content is also associated-with that content.)

There are also generalisation hierarchies of states and of

transformations. Classes, properties, states and

transformations – including the state and transformation laws

– all have attributes. For example, they all have unique names

and there are cardinality constraints and role names on the

associations between classes and properties.

The four taxonomies are interrelated. Classes are related to

the properties that characterise them. Properties are related to

the states they define. States are in turn entered and exited by

transformations. Certain types of properties are laws that

restrict other properties. State laws restrict states, whereas

transformation laws effect transformations. The resulting

organisation of the UEML ontology as four distinct, but

interrelated taxonomies makes it possible to evolve the

ontology over time without increasing complexity more than

necessary. New classes, properties, states and transformations

will always have a clearly identifiable location where they

can be added to the appropriate taxonomy.

The UML class diagram in Figure 2 shows the key concepts

of the common ontology, also based on the earlier work of

Opdahl & Henderson-Sellers (2004, 2005). For every

construct incorporated into UEML, each represented class,

property, state and transformation is mapped into an ontology

concept in the ontology. Figure 2 therefore structurally

resembles the lower part of Figure 1.

The UEML ontology was first populated with a set of initial

classes, properties, states and transformations derived directly

from Bunge’s ontological model (Bunge 1977, 1979) and the

Bunge-Wand-Weber representation model of information

systems, the so-called BWW model (Wand & Weber 1988,

1993, 1995). Since then, it has evolved and grown as new

constructs have been added. Currently, UEML incorporates a

selection of academic and industrial modelling languages,

such as ARIS, BMM, BPMN, coloured Petri nets, GRL,

IDEF3, ISO/DIS 19440, KAOS, UEML 1.0 and selected

diagram types from UML 2.0. In consequence, the most

general concepts in the common ontology are ontologically

committed, in the sense that they have grown out of Bunge's

ontology and the BWW model, whereas the more specific

ones have emerged through language and construct analyses.

5. LANGUAGE AND CONSTRUCT

CORRESPONDENCES

Correspondences between any pair of constructs can be

examined by comparing their mappings into the common

ontology. All the modelling constructs in UEML thereby

become interrelated at the most detailed level possible via

the common ontology. If two modelling constructs are

identical, they will map into the exact same ontology

concepts. If two modelling constructs do not overlap at all,

they will map into completely distinct concepts, i.e., ones that

are not even closely related in their respective taxonomies.

The third case is likely to be most common, where two

modelling constructs map into some identical ontology

concepts, some ontology concepts that are closely related and

some ontology concepts that are not.

To support integrated use of models, UEML must offer ways

to exploit the representation mappings to identify and manage

correspondences among language constructs and among

model elements. Construct correspondence refers to whether

constructs refer to distinct (in several ways) or identical

states of affairs in the problem domain. Three kinds of

correspondences have been identified. Each of them can be

precisely formulated in terms of the ontology classes,

properties, states and transformations into which the

constructs in the correspondence have been mapped.

 Equality occurs when two or more constructs

represent the exact same state of affairs, as

explained in Section 2. If two constructs are equal,

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

one can replace the other, e.g., during model-to-

model translation.

 Containment occurs when the state of affairs

represented by one construct has the state of affairs

represented by another as a part. When one

construct contains several others, the former may

have to be replaced by the others during model-to-

model translation.

 Generalisation occurs when one modelling

construct represents a state of affairs that generalises

the state of affairs represented by another. If one

construct generalises another, the general construct

can replace the special one in a model-to-model

translation (with loss of information), but the

inverse replacement is not always appropriate.

Of course these simple kinds of correspondences are not

independent. Equal constructs will trivially contain and

generalise one another. There are also complex

correspondences, such as when one construct represents a

state of affairs that generalises a part of the state of affairs

represented by another, thus combining containment and

generalisation. There are also overlapping constructs, each of

which contains part, but not all, of the other. However, a

complete typology of correspondences and how they

combine stills needs to be worked out.

Correspondences are also characterised by different degrees

of precision. For example, it is possible to only take into

account how each construct is mapped into ontology

concepts, ignoring how the concepts are related within the

construct description. More precise correspondences can be

identified by taking into account both ontology concepts and

the relations between them, but ignoring the roles that the

concepts may play in the relations. Finally, both the ontology

concepts, the relations between them and the roles they play

can be taken into account. Using different degrees of

precision may be useful in order to to master complex

correspondences and when dealing incomplete representation

mappings and/or ontology.The work is in progress on

deriving measures of correspondence between pairs of

modelling constructs, providing evidence of kinds of

correspondence with various degrees of precision. The

measures are inspired by measures used to compare objects

in the areas of classification theory and knowledge

engineering (Lin 1998, Rodrýguez & Egenhofer 2003,

Blanchard, Kuntz, Harzallah & Briand 2006).

Correspondence measures are also useful for validating the

representation mappings and the common ontology.

Correspondence measures derived automatically from the

common ontology can be compared to expert estimates of the

same correspondences. Deviations indicate either that the

representation mapping is wrong for a construct or that the

common ontology is not optimally organised. The two can

also occur together, when the representation mapping is

wrong because there are concepts missing from the common

ontology. Another ontology problem that can be detected is

missing taxonomical relations between ontology concepts,

e.g., a missing generalisation relation from a sub- to a

superclass. If left undetected, missing relations can lead to

redundancies in the common ontology when the subclass is

added again as a specialisation of the superclass. In this way,

correspondence measures can also aid eliminating

redundancy in the common ontology.

Correspondence measures as representative of

correspondences are useful as high-level guides for model-to-

model translation and similar cross-language services. The

representation mappings and common ontology provide the

details for how to translate between modelling constructs

belonging to different languages, as soon as the pair of

modelling constructs to translate between have been decided.

But it offers less help with selecting which constructs in one

language to translate into which other constructs in the other

one in the first place. The correspondence measures

potentially aid this language-level issue by indicating, for

each construct in a language, which constructs in the other

language are most suitable as targets for, e.g., translation,

leaving the final choice to the model manager. When the

language-level construct-to-construct correspondences have

been established in this way, the representation mapping and

common ontology will support the detailed construct-level

mappings.

6. LANGUAGE QUALITY FRAMEWORK

Together, the representation mappings, common ontology

and correspondence measures contribute towards integrated

use of models expressed in different languages. But there is

also a need to select suitable languages to include in the

UEML first place. For example, to quickly enrich the

common ontology, it may be better to incorporate soon an

almost complete and used language than a very narrow

language used by specific communities. Later, when using

UEML, there is a need to select suitable languages for

particular purposes among the many available. For these

purposes, UEML includes a language quality framework

(Anaya, Berio & Verdecho 2007), which aids language

selection by

 defining the concept of quality of a modelling

language;

 supporting methodical, goal-dependent evaluation

of the quality of enterprise modelling languages.

The current quality framework has adapted and extended

SEQUAL quality framework (Krogstie 1998, 2005), which

provides a model of the quality of models, later extended to

also account for the quality of languages. SEQUAL

identifies 8 quality types for characterising what quality is:

physical quality, empirical quality, syntactic quality,

semantic quality, perceived semantic quality, pragmatic

quality, social and organisational quality. For example,

semantic quality is the correspondence between the model

and the domain. SEQUAL also identifies several types of

appropriateness, each indicating a language aspect that must

be considered when assessing whether a language is

appropriate for a particular purpose (Krogstie 1998, 2005).

For example, comprehensibility appropriateness reflects the

ease with which the language its model can be understood by

a certain audience. In SEQUAL, each quality type is related

to one or more appropriateness types and vice versa. For

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

example, domain appropriateness is used to assess physical

and semantic qualities. Therefore, the different types of

appropriateness provide the context to evaluate the related

quality types.

In addition to SEQUAL, the UEML quality framework has

been inspired by two additional quality frameworks:

Moody’s framework (2003) and ISO/IEC 9126 international

standard for assessing software product quality (ISO/IEC

2001). These additional frameworks have been adapted and

aligned with SEQUAL's appropriateness types through a

generalisation hierarchy (Berio, Opdahl, Anaya & Dassisti

2005b).

The resulting appropriateness types in the UEML quality

framework remain too general to allow concrete evaluations

(Anaya, Berio & Verdecho 2007). Therefore, the framework

also covers requirements and criteria. Requirements are

collected from users (actors or experts), asking them how

enterprise modelling should contribute towards enterprise

integration and interoperability, based on a requirements

base established in the previous UEML Thematic Network

(UEML-TN 2003). Criteria are the operational, or

measurable, counterparts of requirements. Each criterion can

in turn be related to one or more appropriateness types,

making it precise to which quality types that criterion

contributes. The framework provides two complementary

ways of collecting data for evaluating criteria. The language

template is used to gather general and factual information

about a language, such as its notations and meta models,

whereas the language-evaluation questionnaire comprises

both questions derived from current criteria and an

associated glossary.

The framework also introduces language descriptions,

covering, e.g., a language's owner and version; goal, an

aggregation of criteria providing the purpose for evaluating

language quality; metrics-for-goal, selected metrics relevant

to a specific goal (metrics are needed to perform criteria

assessment); metric evaluation, specific evaluation (for

instance, a value) of a single metrics on a specific language;

combined metrics evaluation, combined evaluation of

several metrics evaluations for a given language and a given

goal (an explicit combined metrics evaluation makes explicit

how several single metrics are combined – for instance, with

a weighted formula – to evaluate quality of a language wrt a

given goal; additionally, it is useful because the same

metrics evaluation can, if needed, be used several time).

The UML class diagram in Figure 3 shows the key concepts

used to evaluate the quality of modelling languages in

UEML. The associated quality evaluation method gives a

clear picture of how to evaluate and select one or more

enterprise modelling languages for a specific purpose. The

first task is to define the goal as aggregation of criteria and

then select suitable metrics for each criterion. A list of

languages to be evaluated is set. The language template is

used to collect factual information about each language,

whereas the language-evaluation questionnaire is used to

collect subjective opinions. Hence, whereas only a single

filled-in language template is needed for each language,

multiple filled-in questionnaires are usually needed. Once the

selected criteria are assessed by using selected metrics and

storing these assessments as metrics evaluations, combined

metrics evaluations are calculated and stored. Finally,

languages must be suitably selected based on the results

stored as combined metrics evaluations. Before its use, one

specific enterprise may undertake a customisation of the

quality framework: This simply means to define additional

requirements, appropriateness types, criteria and metrics.

7. META-META MODELS

The UML class diagrams of the language and construct

description approach (Section 3), of the common ontology

(Section 4) and of the quality framework (Section 6) are all

Figure 3: The UEML language quality framework.

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

meta-meta models. They are meta-meta models because

models of modelling languages are meta models and because

Figure 1-3 are models of how to model modelling languages

(or of how to model meta models). The UML diagrams are

intended as illustrations only. For example, Figures 1-2 do

not show attributes and omit several association classes and

abstract classes.

Whereas the representation mappings connect Figures 1 and

2, the meta-meta model of the quality framework in Figure 3

is currently connected to Figure 1 only through the language

description. The Conclusion will point out that the idea is to

create a single combined, yet still modular, meta-meta model

that covers all constituents of the UEML approach, the

overall UEML meta-meta model.

8. TOOLS

UEML is supported by a set of prototype tools realised using

a selection of existing technologies. There are currently five

tools in the set:

 UEMLBase Repository is a Protege-OWL realisation

of the representation and ontology meta-meta

models of Figures 1-2, translated into OWL.

 UEMLBase Editor is an emerging set of Eclipse

GMF-based editors for browsing and updating the

contents of the UEMLBase repository.

 UEMLBase Manager is a Java-plugin for Protege-

OWL that provides merging, reporting and other

housekeeping functions for the repository.

 UEMLBase Verifier is a set of Prolog rules and a

Prolog rule checker that support formal verification

of the concents in the UEMLBase repository, for

example to check cardinality constraints and ensure

that construct descriptions are concrete.

 UEMLBase Correspondence Analyser uses the

repository to compute similarity measures between

UEMLBase constructs, paving the way for

consistency checking, automatic update reflection,

model-to-model translation across languages, as

well as other integrated model uses.

Each tool strives to be consistent with the meta-meta models

presented in Section 7, although they all use more specific

implementation models, such as OWL, Eclipse EMF, Java

classes and Prolog facts. Hence, the meta-meta models is

used to support interoperability within the UEML tool set.

9. DISCUSSION

The paper has presented the main constituents of the UEML

approach and explained how they are related. Languages,

possibly selected with the aid of the quality framework, are

described using separation of reference according to the

structured approach of Section 3. The descriptions of the

states of affairs are then mapped into the common ontology

of Section 4. It thereby becomes possible to establish

correspondences between different constructs in terms of

their mappings into the common ontology as in Section 5.

The selection of modelling languages is guided by the quality

framework of Section 6. In the long term, the most used and

useful concepts in the common ontology can be used to form

a core UEML language for enterprise and IS modelling. In

the long tern, UEML could also contribute towards

developing a web of languages and of models in a way that

resembles the touted semantic web of semi-structured data

(Berners-Lee, Hendler, Lassila 2001).

From an initial set of around 25 concepts taken more or less

directly out of Bunge's ontology and the BWW model, the

common UEML ontology has grown to comprise 110

concepts. Most of them have resulted from analyses of

individual modelling constructs using separation of reference.

(A few initial higher-level remain to organise and structure

the four taxonomies.) As part of the Interop-NoE work, 130

constructs from the following 10 languages have been

mapped into this ontology ((add references here!!!)): ARIS,

BMM, BPMN, GRL, IDEF3, ISO/DIS 19440, KAOS,

coloured Petri nets, UEML 1.0 and selected diagram types

from UML 2.0. However, they are not all described in equal

detail and none of them are yet fully validated. The

languages, constructs, mappings and ontology have all been

stored in the UEMLBase Repository, supported by the Editor,

Manager, Verifier and Correspondence Analyser tools.

The standardised approach to language and construct

description has turned out to have several advantages, in

particular at the modelling construct level. The structured

descriptions become complete, consistent, cohesive and, thus,

more learnable and understandable. It therefore becomes

easier to compare them to one another. The structured

approach also offers systematic and detailed advice on how

to proceed when analysing individual language constructs. It

encourages highly-detailed construct description, which leads

to languages that are integrated at a fine level of detail. It

supports ontological analysis in terms of particular classes,

properties, states and events, and not just in terms of the

concepts in general.

The UEML approach has positive network externality, in the

sense that incorporating an additional construct or language

becomes:

 more valuable the more constructs and languages

that have already been incorporated, because the

additional language becomes interoperable with a

lrger number of other languages;

 less costly because reusing an enriched common

ontology and existing representation mappings

provide good reference examples and because the

cost of maintaining tools and infrastructure can be

shared by more UEML users.

Similar positiv network externality effects can be expected at

the model level beside the langauge level discussed here.

Early experience with the construct description approach

indicated that it was difficult to use because it was based on a

novel, unconventional way of thinking about the semantics of

modelling constructs. It was sometimes hard to find the

appropriate classes, properties, states and events in the

common ontology to use when describing a construct. Also,

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

it was sometimes hard to determine exactly which part of a

language that constitutes a modelling construct. As part of the

Interop-NoE, tools and tutorials were developed that have

seemingly resolved many of these problems. Also, early

drafts of the common ontology have become available along

with exemplary representation mappings. As a result, the first

draft of several of the most recent language incorporations

could be made by students with little direct supervision.

The framework for selecting and evaluating the quality of

modelling languages according to specific goals also

provides high benefits for users that need to decide which

languages to use for practical puposes. First, it gets the voice

of the customer through the consideration of the requirements

of the users making them to appear in the front end of the

framework. Then, these requirements are related to criteria

that make them operational and applicable to the language

evaluation.

10. CONCLUSION AND FURTHER WORK

UEML is an ambitious, long-term effort that will require

several years of cooperation between academia and industry.

The overall challenge for further work is to extend the theory

and tools developed by the Interop-NoE network to support

practical integrated use of models and languages. Although

several limited paper-and-pencil trials have demonstrated the

feasibility of the approach (Berio, Opdahl, Anaya, Dassisti,

2005b; Matulevicius, Heymans, Opdahl, 2007; Harzallah,

Berio, Opdahl, 2007), detailed methods for integrated model

use still need to be developed and implemented.

For UEML-supported integrated model use to be tested in

large-scale, realistic settings, the common ontology and

representation mappings must be verified, validated and

improved. The current ontology and mappings have been

contributed by several Interop-NoE research teams working

in a distributed manner. The most immediate challenge is to

improve the ontology and mappings in two directions. Firstly,

the Editor and Verifier tools are being extended and

improved. Secondly, the Correspondence Analyser tool is

used to compare correspondences calculated from the

common ontology and the representation mappings with

correspondence estimates provided by human experts. The

comparisons are used to identify weaknesses in the

representation mappings. For example, when two constructs

are considered similar by human experts, but not by the

Correspondence Analyser, the reason might be that one or

more ontology concepts have been duplicated. Accordingly,

when the Analyser, but not the human experts, deem two

constructs similar, the reason may be weaknesses in the

generalisation hierarchies in the ontology. In this way,

verification not only supports improving the representation

mappings but also controls the quality of the common

ontology.

As for the overall UEML approach, an obvious path for

further work is to connect the meta-meta models for language

and construct description and for the common ontology with

the one for the quality framework. Also, the combined meta-

meta model must be extended to account for the presentation

part of language and construct description and for construct

correspondences. In addition to tying together the overall

approach, this work can be expected to reveal further

possibilities, such as deriving quality and appropriateness

metrics for languages, not only at the language level, but also

at the construct level from the detailed UEML ontology and

mappings.

These and other possible future developments have been

organised in a UEML roadmap comprising several research

directions, each detailed by specific actions (Opdahl & Berio

2006): 1. Language breadth – include more languages; 2.

Ontological depth – refine the common ontology; 3.

Ontological clarity – elaborate the common ontology

language; 4. Presentation – extend the support for

presentation issues; 5. Mathematical formality – define

UEML semantics formally; 6. Tool support – develop

prototype tool with GUI and validation support; 7. Model

management – provide support for model management in

addition to language management; 8. Validation – structural

and behavioural language and model validation; 9.

Dissemination – make UEML known in industry and

academia and as a standard; 10. Community – establish and

maintain a committed and cohesive community for managing

and evolving UEML and its approach. Additional directions

that deal specifically with the language quality framework

are: 1. Continuing the development of the quality framework

by introducing new criteria and extending the questionnaire

accordingly; 2. Continuing the accommodation of existing

quality frameworks by specialising appropriateness; 3.

Gradually developing supporting tools based on the meta-

meta model, starting from the current simple support for

filling-in the questionnaire to complete functionality to define

and evaluate metrics; 4. Launching use of the quality

framework and especially by performing evaluations of

languages for developing a core language. For example, more

specific quality frameworks can be used to systematically

introduce new appropriateness measures and to specialise

existing ones. The roadmap still needs to be extended to

account better for correspondence analysis.

The UEML approach may even be useful outside enterprise

and IS modelling, e.g., for software modelling. Significantly,

only the language quality framework is specific to enterprise

modelling. The other major UEML parts might be used for a

wider set of modelling domains.

REFERENCES

van der Aalst, W.M.P. (2003) Patterns and XPDL: a critical

evaluation of the XML process definition language. QUT Technical

report, FIT-TR-2003-06, Queensland University of Technology,

Brisbane.

Anaya, V., Berio, G., and Verdecho, M.J. (2007). Evaluating

Quality of Enterprise Modelling Languages: The UEML Solution. I-

ESA 2007, Funchal, Portugal (2007).

Berio G., Anaya V., and Ortiz A. Supporting Enterprise Integration

through a Unified Enterprise Modeling Language. In Proc. of EMOI

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

2004 (Enterprise Modelling and Ontologies for Interoperability)

(Janis Grundspenkis, Marite Kirikova Eds.), joint with CAiSE04,

Riga Technical University, 3: 165-176.

Berio, G., Opdahl, A., Anaya, V. and Dassisti, M. (2005a).

Deliverable DEM1. Publicly available at www.interop-noe.org.

Berio, G., Opdahl, A., Anaya, V., and Dassisti, M. (2005b).

Deliverable DEM2. Publicly available at www.interop-noe.org.

Berio, G., Opdahl, A., Anaya, V., and Dassisti, M. (2006).

Deliverable DEM3. Publicly available at www.interop-noe.org.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic

Web. Scientific American Magazine - May, 2001

Blanchard E., Kuntz P., Harzallah M. and Briand H. (2006). A tree-

based similarity for evaluating concept proximities in an ontology.

In Proceedings of 10th conference of the International. Federation of

Classification Society. Springer, pp.3–11.

Bunge, M. (1977). Treatise on Basic Philosophy: Vol. 3: Ontology

I: The Furniture of the World. Boston:Reidel.

Bunge, M. (1979). Treatise on Basic Philosophy: Vol. 4: Ontology

II: A World of Systems. Boston:Reidel.

Dallons, G., Heymans, P. and Pollet, I. (2005). A Template-based

Analysis of GRL, in Proc. of EMMSAD'05 (CAiSE*05), Tenth

International Workshop on Exploring Modeling Methods in Systems

Analysis and Design, pp. 493-504.

Dossogne A. & Jeanmart C. (2007) Evaluation of ARIS and BPMN

using the UEML approach. Master thesis, University of Namur.

Goossenaerts, J., Gruninger, M., Nell, J.G., Petit, M. and Vernadat,

F. (1997). Formal Semantics of Enterprise Models. In Proc. of

ICEIMT'97, K.Kosanke and J.G Nell. (Eds.), Springer- Verlag.

Heymans, P., Saval, G., Dallons, G. and Pollet, I. (2005). A

Template-Based Analysis of GRL: Book chapter, in Advanced

Topic in Database Research - Volume 5. Idea Group Publishing.

INTEROP (2005). Interop Network of Excellence. www.interop-

noe.org, 2005.

ISO/IEC Standard 9126 (2001). Software product quality,

International Standards Organisation (ISO). International

Electrotechnical Commission (IEC).

Jochem, R. (2002). Common representation through UEML –

requirement and approach. In Proc. of ICEIMT 2002, Kosanke K.,

Jochem R., Nell J., Ortiz Bas A. (Eds.), Polytechnic University of

Valencia, Valencia, Spain, April 24-26, Kluwer. IFIP TC

5/WG5.12.

Krogstie, J. (1998). Using a Semiotic Framework to Evaluate UML

for the Development for Models of High Quality. Siau K., Halpin

T., (eds) Unified Modelling Language: System Analysis, Design and

Development Issues, IDEA Group Publishing, pp. 89-106.

Krogstie, J. (2005). Evaluating UML Using a Generic Quality

Framework. Encyclopedia of Information Science and Technology.

M. Khosrow-Pour Editor, IDEA Group Publishing.

Lin D. (1998). An information-theoretic definition of similarity. In

Proceedings of the 15th international conference on machine

learning. Morgan Kaufmann, pp. 296–304.

Mahiat, J. (2006). A Validation Tool for the UEML Approach.

Master thesis, University of Namur.

Matulevičius, R & Heymans, P. (2007). Comparison of Goal

Languages: an Experiment

Matulevičius R., Heymans P. LEQ Application Example of use

 Article Proceedings of the International Working

Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ 2007), Springer LNCS, pp. 18-32.

Matulevičius R., Heymans P., Opdahl A. L., Comparing GRL and

KAOS using the UEML Approach. Concalves, R. J., Muller, J. P.,

Mertins, K., Zelm, M. (eds.): Enterprise Interoperability II. New

Challenges and Approaches, Springer-Verlag (2007) pp 77-88.

Matulevičius R., Heymans P., Opdahl A. L., Comparison of Goal-

oriented Languages using the UEML Approach. Panetto H.,

Boudjlida N. (eds) Interoperability for Enterprise Software

Applications, ISTE, 2006, pp 37-48.

Matulevičius R., Heymans P., Opdahl A. L., Ontological Analysis

of KAOS Using Separation of Reference. Siau K. (eds.)

Contemporary Issues in Database Design and Information Systems

Development, 2007, IGI Publishing, pp. 37-54.

Matulevičius R., Heymans P., Opdahl A. L., Ontological Analysis

of KAOS Using Separation of Reference. Proceedings of the 11th

CAiSE’06 International Workshop on Exploring Modeling Methods

in Systems Analysis and Design (EMMSAD’06), Luxembourg, 2006,

pp. 395-406.

Mertins, K., Knothe, T., Zelm, M. (2004). User oriented Enterprise

Modeling for Interoperability with UEML. In Proc. of EMMSAD’04

Evaluating Modeling Methods for Systems Analysis and Design

pp.25-36, joint with CAiSE04, Riga – Latvia, June 7-8.

Moody DL (2003) Measuring the quality of data models: an

empirical evaluation of the use of quality metrics in practice. Proc.

ECIS'2003, Naples, Italy.

Opdahl, A.L. (2006). The UEML Approach to Modelling Construct

Description. Proceedings of the 2nd International Conference on

Interoperability for Enterprise Software and Applications (I-ESA

2006).

Opdahl, A.L. & Berio, G. (2006a). Interoperable Language and

Model Management using the UEML Approach. Proceedings of the

2006 International Workshop on Global Integrated Model

Management, ACM Press, pp. 35-42.

Opdahl, A.L. & Berio, G. (2006b). A Roadmap for the UEML.

Proceedings of the 2nd International Conference on Interoperability

for Enterprise Software and Applications (I-ESA 2006).

Opdahl, A.L. & Henderson-Sellers, B. (2004). A Template for

Defining Enterprise Modelling Constructs. Journal of Database

Management 15(2).

Opdahl, A.L. and Henderson-Sellers, B. (2005). Template-Based

Definition of Information Systems and Enterprise Modelling

Constructs. In Ontologies and Business System Analysis, Peter

Green and Michael Rosemann (eds.). Idea Group Publishing, 2005.

Opdahl, A.L. & Henderson-Sellers, B. (2005a). A Unified

Modelling language without Referential Redundancy. Data &

Knowledge Engineering, 55(3), pp. 277-300. Elsevier Science

Publishers.

Anaya V., Berio G., Harzallah M., Heymans P., Matulevicius R., Opdahl A.L., Panetto H., Verdecho M. (2008). The Unified Enterprise

Modelling Language – Overview and Further Work. Keynote paper. Proceedings of the IFAC World Congress, 118895-11906, July 6-11,

Seoul, Korea, IFAC Papersonline, ISBN 978-1-1234-7890-2/08

Panetto H., Berio G., Benali K., Boudjlida N. and Petit M. (2004). A

Unified Enterprise Modelling Language for enhanced

interoperability of Enterprise Models. In Proc. of the 11th IFAC

INCOM2004 Symposium, , Bahia, Brazil, April 5-7.

Rodrýguez M., Egenhofer M (2003). Determining semantic

similarity among entity classes from different ontologies. IEEE

Transactions on Knowledge and Data Engineering, 15(2), pp. 442–

456.

UEML-TN (2003).

Verdecho M.J. & Matulevičius, R. (2007). Language Evaluation

Questionnaire for Enterprise Modelling Languages. Unpublished.

Vernadat, F. (2002). UEML: Towards a Unified Enterprise

Modelling Language. International Journal of Production Research,

40 (17) :4309-4321, Taylor & Francis Group.

Wand, Y. & Weber, R. (1988). An ontological analysis of some

fundamental information systems concepts. In Proc. "Ninth

International Conference on Information Systems", (DeGross, J.I. &

Olson, M.H. (eds.), Minneapolis/USA, November 30–December 3,

1988, pp. 213–225.

Wand, Y. & Weber, R. (1988). An Ontological Model of an

Information System. IEEE Transactions of Software Engineering,16

(11):1282-1292, IEEE Press.

Wand, Y. & Weber, R. (1993). On the ontological expressiveness of

information systems analysis and design grammars. Journal of

Information Systems, 3:217–237.

Wand, Y. & Weber, R. (1995). On the deep structure of information

systems. Information Systems Journal, 5:203–223.

