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ALGEBRAIC STRING BRACKET AS A POISSON BRACKET

HOSSEIN ABBASPOUR, THOMAS TRADLER, AND MAHMOUD ZEINALIAN

Abstract. In this paper we construct a Lie algebra representation of the al-
gebraic string bracket on negative cyclic cohomology of an associative algebra
with appropriate duality. This is a generalized algebraic version of the main
theorem of [AZ] which extends Goldman’s results using string topology oper-
ations.The main result can be applied to the de Rham complex of a smooth
manifold as well as the Dolbeault resolution of the endomorphisms of a holo-
morphic bundle on a Calabi-Yau manifold.

Contents

1. Introduction 1
2. The Lie algebra HC•

−(A) 3
3. Maurer-Cartan solutions 6
4. The induced Lie map 7
5. Comparison with generalized holonomy 9
6. A∞ generalization 11
References 13

1. Introduction

Goldman original work [Go] on the Lie algebra of free homotopy classes of ori-
ented closed curves on an oriented surface was extensively generalized through the
introduction of String Topology by Chas and Sullivan [CS]. In particular, they
generalized this Lie bracket to one on the equivariant homology of the free loop
space of a compact and oriented manifold M . From the beginning, it was clear
that this bracket had a deep relation to the holonomy map on a vector bundle;
see [Go, CFP, CCR, CR]. This relation was the subject of a paper, [AZ], by the
first and third author. It was shown there that using Chen’s iterated integral one
obtains a map of Lie algebras from the equivariant homology of the free loop space
to the space of functions on a space of generalized flat connections.

Algebraic analogues of string topology Lie algebra have also been considered in
recent years. Jones [J] had shown that for a simply connected topological space
X the equivariant homology of the free loop space is isomorphic to the negative
cyclic cohomology of the algebra of cochains on X . Using this, and Connes long
exact sequence relating negative cyclic cohomology and Hochschild cohomology,
together with the BV algebra on Hochschild cohomology, Menichi [Men] deduced a

Key words and phrases. Free loop space, Cyclic homology, Maurer Cartan, Symplectic
reduction.

1



2 HOSSEIN ABBASPOUR, THOMAS TRADLER, AND MAHMOUD ZEINALIAN

Lie bracket on the negative cyclic cohomology in a way similar to the one in string
topology [CS, Section 6].

The starting point for this work was to obtain a generalization of the the results
in [AZ] and place it in a more algebraic setting where the equivariant homology of
the loop space is replaced by negative cyclic cohomology. A suitable setting for this
is to consider a unital differential graded algebra A over a field k = R or C, with
a reasonable trace Tr : A → k. Using the results of [T], the above assumptions
imply an isomorphism of the Hochschild cohomologies of A with values in A and
its dual A∗, HH•(A,A) ∼= HH•(A,A∗), such that the cup product on HH•(A,A)
and the dual of Connes B-operator on HH•(A,A∗) make these spaces into a BV
algebra. This BV algebra, together with a Connes long exact sequence between
the Hochschild cohomology HH•(A,A∗) and negative cyclic cohomology HC•

−(A),
imply a Lie algebra structure on HC•

−(A) by a theorem of Menichi’s [Men, Propo-
sition 7.1], which is based on a similar marking/erasing result of Chas and Sullivan
[CS, Theorem 6.1].

Now, using work of Gan and Ginzburg in [GG], we may look at the moduli space
of Maurer-Cartan solutions,

(1) MC = {a ∈ Aodd | da+ a · a = 0}/ ∼

Since we only consider odd elements, the trace induces a symplectic structure ω
onMC, and thus one can define a Poisson bracket on the function ring O(MC) of
MC. More details of this construction will be given in Section 3.

We may connect the two sides of the above discussion via a canonical map
{a ∈ Aodd | da+a ·a = 0} → HC−

• (A), a 7→
∑

n≥0 1⊗a⊗n, and dualizing this gives

a map ρ : HC•
−(A) → O(MC). We may now compare the two Lie algebras from

above. Our main result then states, that the brackets are indeed preserved.

Theorem 1. ρ : HC2•
− (A)→ O(MC) is a map of Lie algebras.

In a special case considered in [AZ] this map becomes the generalized holonomy
map from the equivariant homology of the free loop space of M to the space of
functions on the moduli space of generalized flat connections on a vector bundle
E →M . In fact one has a commutative diagram,

(2) HC2•
− (A)

ρ // O(MC)

HS1

2• (LM)

Ψ

99rrrrrrrrrr
σ

ffMMMMMMMMMM

where Ψ is the generalized holonomy dicussed in [AZ] and σ comes from Chen’s
iterated integral map, as described in Section 5. In particular, for dimM = 2, this
recovers Goldman’s results on the space of flat connections on a surface.

Another motivation of this work is to study string topology in a holomorphic
setting via the moduli stack of the holomorphic structure on a fixed complex bundle
E → M , where M is a complex manifold. Algebraically, this will correspond to
the choice of the algebra A = Ω0,∗(M,End(E)), with the Dolbeault differential ∂.
This discussion, once done at the chain level, relates to the algebraic structure of
the B-model.

Finally, we remark, that the above discussion generalizes in a straight forward
way to the case of a cyclic A∞ algebra A. This will be the topic of the last Section 6.
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In fact, by the same reasoning as above, we obtain the Lie bracket on the negative
cyclic cohomology HC•

−(A). Also, by symmetrization we may associate an L∞

algebra to A, which induces a Maurer-Cartan space similar to (1). We find, that
the canonical map ρ is still well-defined, such that Theorem 1 also remains valid in
this generalized setting.

Notation: For a map F of complexes, F• (resp. F •) denotes the induced map
in homology (resp. cohomology).

Acknowledgments: The authors would like to thank Victor Ginzburg and Luc
Menichi for useful discussions and correspondence on this topic. The authors were
partially supported by the Max-Planck Institute in Bonn and the second author
warmly thanks the Laboratoire Jean Leray at the University of Nantes for their
invitation throught the Matpyl program.

2. The Lie algebra HC•
−(A)

In this section, we recall the Lie algebra structure of the negative cyclic coho-
mology HC•

−(A), for a dga (A, d, ·) with a trace Tr : A → k. The Lie bracket
comes from the long exact sequence that relates negative cyclic (co-)homology to
Hochschild (co-)homology. For simplicity, we will work in the normalized setting.

Definition 2. Let (A =
⊕

i∈Z
Ai, d : Ai → Ai+1, ·) be a differential graded as-

sociative algebra over a field k, and let M =
⊕

i∈Z
M i be a differential graded

A-bimodule. The (normalized) Hochschild chain complex defined as,

(3) C̄•(A,M) :=
∏

n≥0

M ⊗ Ā⊗n,

where Ā = A/k, and s denotes shifting down by one. The boundary δ : C̄•(A,M)→
C̄•+1(A,M) is defined by,

δ(a0 ⊗ a1 ⊗ · · · ⊗ an) :=

n
∑

i=0

(−1)ǫia0 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ an

+

n−1
∑

i=0

(−1)ǫia0 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ an − (−1)ǫ
′
n(an · a0)⊗ a1 ⊗ · · · ⊗ an−1,

where a0 ∈ M , a1, · · · , an ∈ A, ǫ0 = |a0|, ǫi = (|a0| + · · · + |ai−1| + i − 1), and
ǫ′n = (|an|+ 1) · (|a0|+ · · ·+ |an−1|+ n− 1). Note that the differential is well
defined; see [L]. Similarly, the (normalized) Hochschild cochain complex is defined
by,

(4) C̄n(A,M) :=
{

f : sĀ⊗n →M
∣

∣

∣
f(a1 ⊗ · · · ⊗ ai ⊗ · · · ⊗ an) = 0, if ai = 1

}

,

where the differential δ∗ : C̄•(A,M)→ C̄•−1(A,M) is given by,

(δ∗f)(a1 ⊗ · · · ⊗ an) :=

n
∑

i=1

(−1)|f |+ǫif(a1 ⊗ · · · ⊗ dai ⊗ · · · ⊗ an)

+ d(f(a1 ⊗ · · · ⊗ an)) +

n−1
∑

i=1

(−1)|f |+ǫif(a1 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ an)

+ (−1)|f |(|a1|+1)a1 · f(a1 ⊗ · · · ⊗ an) + (−1)|f |+ǫnf(a1 ⊗ · · · ⊗ an−1) · an.
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The respective (co-)homology theories are denoted by

HH•(A,M) = H(C̄•(A,M), δ), HH•(A,M) = H(C̄•(A,M), δ∗).

Denoting by A∗ = Hom(A, k) the graded dual of A, we see that the dual of
C̄•(A,A) is given by C̄•(A,A∗). Recall furthermore, that there is a cup product ∪
on C̄•(A,A) defined by

(f ∪ g)(a1 ⊗ · · · ⊗ am+n) := f(a1 ⊗ · · · ⊗ am) · g(am+1 ⊗ · · · ⊗ am+n).

Next, we define the (normalized) negative cyclic chains CC
−

• (A) of A to be the
vector space C̄•(A,A)[[u]], where u is of degree +2, and with differential δ + uB,
where B : C̄•(A,A)→ C̄•−1(A,A) is Connes operator,

(5) B(a0 ⊗ a1 ⊗ · · · ⊗ an) :=

n
∑

i=0

(−1)ǫi1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1,

where ǫi = (|ai|+ · · ·+ |an|+ n− i+ 1)(|a0|+ · · ·+ |ai−1|+ i− 1).

Thus, every element of CC
−

n (A) is an infinte sum
∑∞
i=0 aiu

i ∈ C̄•(A,A)[[u]], where
ai ∈ C̄n−2i(A,A), δ acts on ai ∈ C̄•(A,A), and uB acts as

(6) · · ·
uB
←− C̄•(A,A) · u2 uB

←− C̄•(A,A) · u
uB
←− C̄•(A,A).

Dually, define the (normalized) negative cyclic cochains CC
•

−(A) of A by tak-

ing CC
•

−(A) = C̄•(A,A∗) ⊗ k[v, v−1]/vk[v], where v is an element of degree −2.

Explicitly, the degree n part CC
n

−(A) is represented by finite sums
∑k

i=0 aiv
−i

where ai ∈ C̄
n−2i(A,A∗). The differential is given by δ∗ + vB∗, where δ∗ acts on

C̄•(A,A∗), and vB∗ acts as follows.

· · ·
vB∗

−→ C̄•(A,A∗) · v−2 vB∗

−→ C̄•(A,A∗) · v−1 vB∗

−→ C̄•(A,A∗).

Note, that if C•(A,A) is finite dimensional in each degree, then the graded dual

of CC
n

−(A) is isomorphic to the chain complex CC
−

n (A) = Hom(CC
n

−(A), k), see
also [HL, Lemma 3.7]. It is easy to see that B2 = δB +Bδ = 0, and we define the
associated (co-)homology theories by,

HC−
• (A) = H(CC

−

• (A), δ + uB), HC•
−(A) = H(CC

•

−(A), δ∗ + vB∗).

Lemma 3. If H•(A,A) is bounded from below, then both C̄•(A,A)[u] and C̄•(A,A)[[u]]
with differential δ + uB calculate negative cyclic homology HC−

• (A).

This lemma follows from a spectral sequence argument for the inclusion C̄•(A,A)[u] →֒
C̄•(A,A)[[u]], similarly to [HL, Lemma 3.6]. Note, that our sign convention is op-
posite to the one from [HL], but in agreement with [GJP], since our differential
δ : C̄•(A,A)→ C̄•+1(A,A) is of degree +1.

From now on, we additionally assume, that we also have a suitable trace map.

Definition 4. Let Tr : A→ k be a trace map, satisfying Tr(da) = 0 and Tr(ab) =
−(−1)|a|·|b|Tr(ba), for all a, b ∈ A. Assume furthermore that the map ω : A→ A∗,
ω(a)(b) := Tr(ab) is a bimodule map, which induces an isomorphism on homology
H(A)→ H(A∗). By abuse of language, we will also view ω as a map ω : A⊗A→
k, ω(a, b) = Tr(ab). In this case, A is also called a symmetric algebra.

Notice that ω : A → A∗ induces a morphism of the Hochschild complexes ω♯ :
C̄•(A,A)→ C̄•(A,A∗) via composition ω♯(f) := ω ◦ f , which is an isomorphism on
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homology ω•
♯ : H•(A,A)→ H•(A,A∗). We may thus transfer the cup product ∪ on

H•(A,A) to a product ⊔ onHH•(A,A∗), by setting f⊔g := ω•
♯ ((ω

•
♯ )

−1f∪(ω•
♯ )

−1g).

Define furthermore the operator ∆ : HH•(A,A∗) → HH•(A,A∗) as the dual
of B on homology. Then we assume, that (HH•(A,A∗),⊔,∆) is a BV-algebra,
i.e. ⊔ is a graded associative, commutative product, ∆2 = 0, and the bracket
{a, b} := (−1)|a|∆(a⊔b)−(−1)|a|∆(a)⊔b−a⊔∆(b) is a derivation in each variable.

Recall from Menichi [Men] that this BV-algebra induces a Lie algebra on the
negative cyclic cohomology HC•

−(A) using the long exact sequences of Hochschild

and negative cyclic cohomology. The inclusion CC
−

• (A)
×u
→ CC

−

• (A) given by
multiplication by u has cokernel C̄•(A,A). We thus obtain a short exact sequence

(7) 0→ CC
−

• (A)
×u
−→ CC

−

• (A)→ C̄•(A,A)→ 0,

which induces Connes long exact sequence of homology groups.

(8) · · · → HHn(A,A)
B•→ HC−

n−1(A)→ HC−
n+1(A)

I•→ HHn+1(A,A)
B•→ · · · .

Here, the projection to the u0 term I : CC
−

• (A) → C̄•(A,A) induces the map I•,

and the connecting map B•, is induced by the composition C̄•(A,A)
B
→ C̄•(A,A)

inc
→

CC
−

• (A). Note, that unlike inc ◦ B : C̄•(A,A) → CC
−

• (A), the inclusion inc :

C̄•(A,A)→ CC
−

• (A) is not a chain map.
Dually, we have the short exact sequence

0→ C̄•(A,A)→ CC
•

−(A)→ CC
•

−(A)→ 0,

inducing Connes long exact sequence of cohomology groups

(9) · · · → HHn(A,A∗)
I•

→ HCn−(A)→ HCn−2
− (A)

B•

→ HHn−1(A,A∗)
I•

→ · · · .

Notice that the composition

(10) B• = B• ◦ I•

is exactly the ∆ operator of our BV-algebra on HH•(A,A∗), so that we may obtain
an induced Lie algebra from [Men, Lemma 7.2], much like the marking/erasing
situation in [CS].

Proposition 5 (L. Menichi [Men]). The bracket {a, b} := I•(B•(a)⊔B•(b)) induces

a Lie algebra structure on HC•
−(A).

We end this section with some examples of the above definitions.

Examples 6. Let M be a smooth, compact and oriented Riemannian manifold.

• A first example is obtained by taking A = Ω•(M) the De Rham forms on
M , d = dDR the exterior derivative on A, and Tr(a) :=

∫

M
a.

• More generally, if E → M is a finite dimensional complex vector bundle
over M , with a flat connection ∇, then we may take A = Ω•(M,End(E))
with the usual differential d∇. Similarly, the trace is given by a combina-
tion of integration and trace in End(E). The cyclic property of the trace
guarantees that this induces an injective bimodule map ω : A→ A∗ that is
a quasi-isomorphism.
• Both of the above examples are special cases of ellitpic Calabi-Yau space

as defined in [C]. By definition, this means that we have a bundle of finite
dimensional associative C algebras over M , whose algebra of sections is
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denoted by A. Furthermore, there is a differential operator d : A → A,
which is an odd derivative with d2 = 0 making A into an ellitpic complex,
a C linear trace Tr : A→ C, a hermitian metric A⊗A→ C, and a complex
antilinear, C∞(M,R) linear operator ∗ : A→ A, satisfying certain natural
conditions. It can be seen that this example satisfies the above assumptions.
The details and other examples of elliptic Calabi-Yau spaces can be found
in [C] and [DT].

3. Maurer-Cartan solutions

In this section we define the moduli space of Maurer Cartan solutions for a
symmetric algebra A = ⊕i≥0A

i, and then explain its symplectic nature. The main
reference for this section is the paper [GG] by Gan-Ginzburg, together with Section
4 of [AZ]. Let us assume k = R or C.

For a, b ∈ A define the Lie bracket [a, b] := a · b− (−1)|a|·|b|b · a and the bilinear
form ω(a, b) := Tr(ab). The first remark is that (A = Aodd ⊕ Aeven, d, [·, ·], ω) is a
cyclic differential graded Lie algebra as it is defined in Section 4 of [AZ], therefore
all results in [GG] applies here to define the Maurer-Cartan solutions.

Definition 7. We define the Maurer-Cartan moduli stack as

MC := {a ∈ Aodd | da+
1

2
[a, a] = da+ a · a = 0}, and

MC := MC
/

∼,

where the equivalence is generated by the infinitesimal action of A0 on A, where
for a ∈ A0, the vector field ξx on A is defined by,

ξx(a) = [x, a]− dx.

Recall that ω is a symplectic form and the infinitesimal action is Hamiltonian.
Moreover, the map µ : a 7→ φa ∈ (Aeven)∗, where

φ(x) = ω(da+
1

2
[a, a], x),

is the moment map corresponding to the Hamiltonian action above. One should
think of the tangent space T[a]MC at a class [a] as the 3-term complex
(11)

T[a]MC : T−1
[a] MC := Aeven

ξ(a)
−→ T 0

[a]MC := TaA
odd = Aodd

µ′
a−→ T 1

[a]MC := Aeven∗,

graded by -1, 0 and 1. Here ξ(a) is the map x 7→ ξx(a). The kerµ′ is the Zarisky
tangent space to MC and the image of ξ(a) accounts for the tangent space of the
action orbit. Ideally, when 0 is a regular value for µ and the infinitesimal action
of Aeven on MC = µ−1(0) is free, this compex is concentrated in degree zero and
the Zarisky tangent space to MC at [a] is the cohomology group H0(T[a]MC) =

H∗(Aodd, da) where dab = db+ [a, b].
Note that 3-term complex (11) is self-dual where the self-duality at the middle

term is given by the symplectic form

(12) ω(Xa, Ya) := Tr(Xa · Ya) ∈ k.

By assumption from the previous section, ω is non-degenerate. This gives rise to

an isomorphism T[a]MC
≃
→ (T[a]MC)

∗ and equips (T[a]MC) with a symplectic form
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given by (12). In the case of a nonsingular point [a] this is the usual pairing on
H0(T[a]MC) = H(Aodd, da) induced by ω.

The function space O(MC) is defined to be the subspace of O(MC) invariant by
the infinitesimal action. The symplectic form allows us to define the Hamiltonian
vector field Xψ of a function ψ ∈ O(MC) via

ω(Xψ
a , Ya) = dψa(Ya) := lim

t→0

d

dt
ψ(a+ tYa), ∀ Ya ∈ T

1
[a]MC.

We then define the Poisson bracket on O(MC) by,

{ψ, χ} := ω(Xψ, Xχ) = Tr(Xψ ·Xχ).

4. The induced Lie map

In this section, we define a map ρ : HC2•
− (A) → O(MC), and prove it respects

the brackets. We start by defining a map P : MC → C̄•(A,A), and in turn the

map R : MC → CC
−

• (A) which factors through P . Dualizing R will induce the
wanted map ρ.

Definition 8. Recall that MC = {a ∈ Aodd | da + a · a = 0} and C̄•(A,A) =
∏

n≥0A⊗ Ā
⊗n. Then, let P : MC → C̄•(A,A) be given by the expression,

P (a) :=
∑

i≥0

1⊗ a⊗i = (1 ⊗ 1) + (1⊗ a) + (1⊗ a⊗ a) + · · · .

Notice that for a ∈ MC, it is δ(P (a)) =
∑

1 ⊗ a⊗ · · · ⊗ da⊗ · · · ⊗ a+
∑

1 ⊗ a⊗
· · ·⊗ (a ·a)⊗ · · ·⊗ a = 0, due to the relation da+ a ·a = 0 in MC. Thus, we obtain
in fact a Hochschild homology class [P (a)] ∈ HH•(A,A).

Next, define the map R := inc ◦ P as the composition R : MC
P
→ C̄•(A,A)

inc
→

CC
−

• (A). Just as above, we have that δ(R(a)) = 0, and since we are in the normal-
ized setting, we see that B(R(a)) = 0, so that (δ + uB)(R(a)) = 0. The induced
negative cyclic homology class is again denoted by [R(a)] ∈ HC−

• (A). It is imme-
diate to see that under the long exact sequence (8), we have that I(R(a)) = P (a).

Using the pairing between between negative cyclic homology and negative cyclic
cohomology, 〈·, ·〉 : HC•

−(A)⊗HC−
• (A)→ k, we define the map ρ by

ρ : HC•
−(A) → O(MC),

ρ([α])([a]) := 〈[α], [R(a)]〉 = 〈α,R(a)〉, for [α] ∈ HC•
−(A), [a] ∈MC.

To simplify notation, we will also write ρ(α) instead of ρ([α]).

Lemma 9. ρ is well-defined.

Proof. We need to show that the value ρ([α])([a]) = 〈α,R(a)〉 is independent of the
choice of the representative [a] ∈ {x ∈ Aodd | dx + x · x = 0}/ ∼. Infinitesimally,
this amounts to showing that LX(b)ρ(α)(a) = 0, where LX(b) is the Lie derivative
along a vector field in the direction X(b)a = db+[a, b] ∈ T[a]MC, for any b ∈ Aeven.
To see this, note that

LX(b)ρ(α)(a) = (iX(b) ◦ d+ d ◦ iX(b))ρ(α)(a)

= iX(b) ◦ d(ρ(α))(a)

= 〈α,
d

dt

∣

∣

∣

t=0
R(a+ tX(b)a)〉
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Now, for any Ya ∈ T[a]MC, we have

(13)
d

dt

∣

∣

∣

t=0
R(a+ tYa) = 1⊗ Ya + 1⊗ Ya ⊗ a+ 1⊗ a⊗ Ya + · · ·

= B(Ya + (Ya ⊗ a) + (Ya ⊗ a⊗ a) + · · · ),

where we used Connes operator B : C̄•(A,A) → CC
−

• (A) from in the long exact
sequence (8) applied to Ya + (Ya ⊗ a) + (Ya ⊗ a ⊗ a) ∈ C̄•(A,A). Thus, setting
Ya = X(b)a = db+ [a, b] in the above expression, we obtain

LX(b)ρ(α)(a) = 〈α,B
(

db + [a, b] + db⊗ a+ [a, b]⊗ a

+db⊗ a⊗ a+ [a, b]⊗ a⊗ a+ · · ·
)

〉

= 〈α,B ◦ δ(b+ (b⊗ a) + (b ⊗ a⊗ a) + · · · )〉

= 〈α, δ ◦ B(b+ (b⊗ a) + (b ⊗ a⊗ a) + · · · )〉

= 〈δ∗α,B(b+ (b⊗ a) + (b⊗ a⊗ a) + · · · )〉

= 0.

�

We are now ready to prove our main theorem.

Theorem 1. ρ : HC2•
− (A)→ O(MC) is a map of Lie algebras.

Proof. We saw in (13) that d
dt

∣

∣

t=0
R(a+tYa) = B(Ya+(Ya⊗a)+(Ya⊗a⊗a)+ · · · ) ∈

CC
−

• (A), where (Ya + (Ya ⊗ a) + (Ya ⊗ a⊗ a) + · · · ) ∈ C̄•(A,A) for Ya ∈ T[a]MC.
Therefore,

(dρ(α))a(Ya) = 〈α,
d

dt

∣

∣

∣

t=0
R(a+ tYa)〉

= 〈α,B(Ya + (Ya ⊗ a) + (Ya ⊗ a⊗ a) + · · · )〉

= 〈B∗α, Ya + (Ya ⊗ a) + (Ya ⊗ a⊗ a) + · · · 〉

= (B∗α)(1 + a+ a⊗ a+ · · · )(Ya),

where α ∈ CC
•

−(A),B∗α ∈ C̄•(A,A∗), and thus (B∗α)(
∑

i≥0 a
⊗i) ∈ A∗. Now,

using the isomorphism ω•
♯ : HH•(A,A)→ HH•(A,A∗) from definition 4, we apply

its inverse to obtain an element [fα] := (ω•
♯ )

−1B•[α] ∈ HH•(A,A). We then claim

that the Hamiltonian vector field X
ρ(α)
a may be expressed as

(14) Xρ(α)
a = fα

(

∑

i≥0

a⊗i
)

∈ T[a]MC.

This should be compared with [AZ, Lemma 7.2] and [Go, Proposition 3.7]. To
this end, first note, that the relation 0 = (δ∗f)(

∑

i≥0 a
⊗i) = da(f(

∑

i≥0 a
⊗i)), for

f ∈ C̄•(A,A), shows that X
ρ(α)
a given by equation (14), represents a well-defined

class in T[a]MC. We show (14), by applying the non-degeneracy of ω in the following
equation, which is valid for any Ya ∈ T[a]MC,

ω(fα(
∑

a⊗i), Ya) = Tr(fα(
∑

a⊗i) · Ya) = (ω♯fα)(
∑

a⊗i)(Ya)

= (B∗α)(
∑

a⊗i)(Ya) = (dρ(α))a(Ya) = ω(Xρ(α)
a , Ya).
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Now, calculating the Lie bracket gives

ρ({α, β})(a) = 〈{[α], [β]}, [R(a)]〉

= 〈I•(B•[α] ⊔ B•[β]), [R(a)]〉

= 〈I•ω•
♯ ((ω

•
♯ )

−1B•[α] ∪ (ω•
♯ )

−1B•[β]), [R(a)]〉

= 〈ω•
♯ ([fα] ∪ [fβ]), I•[R(a)]〉

= 〈ω•
♯ ([fα] ∪ [fβ]), [P (a)]〉.

To evaluate this expression, note that for fα : Ā⊗m → A and fβ : Ā⊗n → A,
ω•
♯ ([fα] ∪ [fβ ]) is represented by the composition

Ā⊗m+n fα⊗fβ

−→ A⊗A
·
→ A

ω
→ A∗.

The first arrow with fα ⊗ fβ applied to P (a) = 1 + (1 ⊗ a) + (1 ⊗ a ⊗ a) + · · · ∈
∏

i≥0A⊗ Ā
⊗i then gives an expression, where we apply a to all possible inputs in

Ā⊗n+m. To this, we then apply the product in A, and apply ω with input 1 ∈ A,
since P (a) = 1⊗ (· · · ). We thus obtain

ρ({α, β})(a) = Tr
(

fα(1 + a+ a⊗ a+ · · · ) · fβ(1 + a+ a⊗ a+ · · · ) · 1
)

(14)
= Tr(Xρ(α)

a ·Xρ(β)
a ) = ω(Xρ(α)

a , Xρ(β)
a ) = {ρ(α), ρ(β)}(a).

This is the claim of the theorem. �

5. Comparison with generalized holonomy

In this section we compare the map ρ with the generalized holonomy map Ψ
studied in [AZ]. The relationship may be summarized in the diagram (2). This
shows how a special case the result of this paper relates to the main theorem of
[AZ]. The map Tr : A → C is induced by the trace function on g ⊆ GL(n,C) and
integration of forms on M ; see Example 6.

Our model of S1-equivariant de Rham forms of LM is (Ω(LM)[u], d+u∆) where
u is a generator of degree 2 and ∆ : Ω•(LM) → Ω•−1(LM) is the map induced
by the S1 action on LM ; see [GJP]. This model is quasi-isomorphic to the small
Cartan model (Ωinv(LM)[u], d+iXu) for the S1 action, whereX is the fundamental
vector field generated by the natural action of S1. The quasi-isomorphism is given
by the averaging map Ω•(LM) → Ω•

inv(LM). More explicitly, for ω ∈ Ω•(LM),
∆(ω) is given by,

∆(ω) =

∫

fibre

ev∗(ω) ∈ Ω•−1(LM)

(15) S1 × LM
ev //

π

��

LM

LM

Chen’s iterated integral map and the trace map on g (see (6.3) [AZ], and Theorem
A in [GJP]) yields a map, which we denote by,

S : (C̄•(A,A), δ)→ (Ω•(LM), d).
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S induces the map SHH : HH•(A,A) −→ H•(LM) on homology, and, after apply-
ing the pairing between homology and cohomology groups, we get,

H•(LM)
σHH

−→ HH•(A,A∗).

Extending S by u-linearity, we obtain a map, which we denote by abuse of notation
by the same letter,

S : (C̄•(A,A)[u], δ + uB)→ (Ω•(LM)[u], d+ u∆).

Since, by Lemma 3, (C̄•(A,A)[u], δ + uB) and (C̄•(A,A)[[u]], δ + uB) are quasi-
isomorphic in our setting, we obtain the induced map SHC : HC−

• (A) −→ H•
S1(LM)

on homology. Composing SHC with the map R : MC → CC
−

• (A) = C̄•(A,A)[u]
from Section 4, we get,

MC
R
−→ HC−

• (A)
SHC

−→ H•
S1(LM).

Thus by duality, and using Lemma 9, we have,

HS1

• (LM)
σ=σHC

−→ HC•
−(A)

ρ
−→ O(MC).

The composition ρ ◦ σ is the generalized holonomy map Ψ discussed in [AZ].

(16) HC•
−(A)

ρ // O(MC)

HS1

• (LM)

Ψ

99rrrrrrrrrr
σ

ffLLLLLLLLLL

It was proved in [AZ], that Ψ is the morphism of Lie algebras. We will shortly see
how this is a consequence of Theorem 1. We first recall the following theorem.

Theorem 10 (S. Merkulov [Mer]). The Chen integral induces a map of algebras

(H•(LM), •)→ (HH•(A,A),∪).

Thus, by definition, σHH : (H•(LM), •) → (HH•(A,A∗),⊔) is also a map of
algebras. With this, we can now prove the following statement.

Theorem 11. The map induced by the Chen iterated integrals σ : (HS1

• (LM), {·, ·})→
(HC•

−(A), {·, ·}) is a map of Lie algebras. Here, the first bracket is the string bracket

and the second one is defined in the statement of Proposition 5.

Proof. The brackets on HS1

• (LM) and HC•
−(A) are determined by the products

on H•(LM) and HC•(A,A∗), together with the maps in the corrsponding Gysin
long exact sequences. By Theorem 10, it thus remains to show that the long exact
sequences correspond to each other, i.e. that the following diagrams commute,

· · · // HS1

• (LM)

σ

��

m• // H•+1(LM)

σHH

��

e• //

��

HS1

•+1(LM)

σ

��

// HS1

•−1(LM)

σ

��

// · · ·

· · · // HC•
−(A)

B•

// HH•+1(A,A∗)
I• // HC•+1

− (A) // HC•−1
− (A) // · · ·
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Equivalently, we need to show the commutativity of the following dual sequence,

· · · // HC−
• (A)

I• //

SHC

��

HH•(A,A)
B• //

SHC

��

HC−
•−1(A) //

SHH

��

HC−
•−1(A) //

SHC

��

· · ·

· · · // H•
S1(LM)

e• // H•(LM)
m•

// H•−1
S1 (LM) // H•−1

S1 (LM) // · · ·

The top long exact sequence is induced by the short exact sequence (7) while the
bottom one is induced by the short exact sequence

(17) 0→ (Ω•(M)[u], d+ u∆)
×u
→ (Ω•(M)[u], d+ u∆)

j
→ Ω•(M)→ 0,

where j(
∑

aiu
i) = a0, cf. [GS, Ma]. In this picture, m• corresponds to the

connecting map of the long exact sequence (17). By a diagram chasing argument
one finds that m• = (i ◦∆)• where i : Ω•(M) →֒ Ω•(M)[u] corresponds to B• =
(inc ◦B)• using Chen iterated integrals as corollary of Thoerem A in [GJP]. Note
that i is not a chain map, whereas i◦∆ is a chain map, since ∆d = d∆ and ∆2 = 0,
(cf. [GJP]). �

6. A∞ generalization

The previous sections, given for the case of dgas (A, d, ·) with invariant inner
product ω : A⊗A→ k, generalize in a straightforward way to the setting of cyclic
A∞ algebras. In this section, we recall the relevant definitions (cf. [T]), and adopt
the above to this situation.

Definition 12. An A∞ algebra on A consists of a sequence of maps {µn}n≥1,
where µn : A⊗n → A is of degree (2− n), such that

∀n ≥ 1 :
∑

k + l = n + 1

r = 0, · · · , n − l

(−1)ǫ
r
l · µk(a1 ⊗ · · · ⊗ µl(ar+1 ⊗ · · · ⊗ ar+l)⊗ · · · ⊗ an) = 0,

where ǫrl = (l − 1) · (|a1| + · · · + |ar| − r). A unit is an element 1 ∈ k ⊂ A0 such
that µ2(a, 1) = µ2(1, a) = a, and µn(· · · ⊗ 1 ⊗ · · · ) = 0 for n 6= 2. Again, we
write Ā = A/k. We define the Hochschild chain complex of A with values in A
or A∗ to be the vector spaces C̄•(A,A) and C̄•(A,A

∗) from equation (3) with the
differentials modified as follows,

δ : C̄•(A,A)→ C̄•(A,A), δ(a0 ⊗ · · · ⊗ an) =
∑

±a0 ⊗ · · · ⊗ µk(· · · )⊗ · · · ⊗ an

+
∑

±µk(as ⊗ · · · ⊗ a0 ⊗ · · · ⊗ ar)⊗ ar+1 ⊗ · · · ⊗ as−1,

δ : C̄•(A,A
∗)→ C̄•(A,A

∗), δ(a∗0 ⊗ · · · ⊗ an) =
∑

±a∗0 ⊗ · · · ⊗ µk(· · · )⊗ · · · ⊗ an

+
∑

±µ∗
k(as ⊗ · · · ⊗ a

∗
0 ⊗ · · · ⊗ ar)⊗ ar+1 ⊗ · · · ⊗ as−1,

where µ∗
k(as ⊗ · · · ⊗ a

∗
0 ⊗ · · · ⊗ ar) ∈ A

∗ is given by

µ∗
k(as⊗· · ·⊗an⊗a

∗
0⊗a1⊗· · ·⊗ar)(a) := ±a∗0(µk(a1⊗· · ·⊗ar⊗a⊗as⊗· · ·⊗an)).

Here, the signs are given by the usual Koszul rule, where we a factor of (−1)ǫǫ
′

is introduced, whenever elements of degree ǫ and ǫ′ are being commuted. For an



12 HOSSEIN ABBASPOUR, THOMAS TRADLER, AND MAHMOUD ZEINALIAN

explicit discussion of the signs, see e.g. [T]. Similarly, C̄•(A,A) and C̄•(A,A∗) are
defined by the spaces from (4) with the modified differentials

δ∗ : C̄•(A,A)→ C̄•(A,A), δ∗f(a1 ⊗ · · · ⊗ an)

=
∑

±f(a1 ⊗ · · · ⊗ µk(· · · )⊗ · · · ⊗ an) +
∑

±µk(a1 ⊗ · · · ⊗ f(· · · )⊗ · · · ⊗ an),

δ∗ : C̄•(A,A∗)→ C̄•(A,A∗), δ∗f(a1 ⊗ · · · ⊗ an)

=
∑

±f(a1 ⊗ · · · ⊗ µk(· · · )⊗ · · · ⊗ an) +
∑

±µ∗
k(a1 ⊗ · · · ⊗ f(· · · )⊗ · · · ⊗ an).

Since δ2 = 0, (δ∗)2 = 0 in all the above cases, we obtain the associated homologies
and cohomologies H•(A,A), H•(A,A

∗), H•(A,A), and H•(A,A∗).
There is a generalized cup product ∪ on H•(A,A) induced by,

(f ∪ g)(a1 ⊗ · · · ⊗ an) :=
∑

k≥2

±µk(a1 ⊗ · · · ⊗ f(· · · )⊗ · · · ⊗ g(· · · )⊗ · · · ⊗ an).

Furthermore, equation (5) defines an operator B : C̄•(A,A) → C̄•(A,A) with

B2 = δB + Bδ = 0. We define the negative cyclic chains CC
−

• (A) of A to be
the vector space C̄•(A,A)[[u]] with differential δ + uB, and denote the negative

cyclic homology by HC−
• (A). Dualizing CC

−

• (A), we obtain CC
•

−(A) with dual
differential and denote the negative cyclic cohomology by HC•

−(A). For the same
reasons as in Section 2, we obtain the long exact sequences (8) and (9).

Finally, assume we have a trace Tr : A → k, such that the associated map
ω : A ⊗ A → k, ω(a, b) = Tr(µ2(a ⊗ b)) is a quasi-isomorphism, which satisfies for
n ≥ 1,

(18) ω(µn(a1 ⊗ · · · ⊗ an), an+1) = ±ω(µn(an+1 ⊗ a1 ⊗ · · · ⊗ an−1), an),

In this case, ω : A→ A∗ induces a map of the Hochschild cohomologiesH•(A,A)→
H•(A,A∗), ω•

♯ (f) = ω ◦ f , which we assume to be an isomorphism. Thus, we may

transfer the product ∪ onH•(A,A) to a product ⊔ onH•(A,A∗). (HH•(A,A∗),⊔,∆ =
B∗) is a BV-algebra, cf. [T], so that we obtain the Lie bracket {a, b} := I•(B•(a)⊔
B•(b)) on HC•

−(A) just as in Proposition 5.

Using this setup, we may now also generalize Section 3.

Definition 13. Recall that there are maps from the the nth symmetric power of a
vector space to the nth tensor power Sn : A∧n → A⊗n, where Sn(a1 ∧ · · · ∧ an) =
∑

σ∈Σn
(−1)ǫσ(aσ(1) ⊗ · · · ⊗ aσ(n)). Defining νn : A∧n → A as νn := µn ◦ S

n, we
obtain an L∞ algebra on A, cf. [LM, Theorem 3.1]. Furthermore, from (18), it is
immediate to see that we have for n ≥ 1,

ω(νn(a1 ∧ · · · ∧ an), an+1) = ± · ω(νn(an+1 ∧ a1 ∧ · · · ∧ an−1), an).

For this L∞ algebra, recall from [GG, Section 2] that the Maurer-Cartan solu-
tions are defined by,

MC :=
{

a ∈ A1
∣

∣

∣
ν1(a) +

1

2!
ν2(a ∧ a) +

1

3!
ν3(a ∧ a ∧ a) + · · · = 0

}

, and

MC := MC
/

∼,
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where the equivalence is again generated by the infinitesimal action of A0 on A1,
where for a ∈ A0, the vector field ξx on A1 is defined by,

ξx(a) = ν1(x) + ν2(a ∧ x) +
1

2!
ν3(a ∧ a ∧ x) + · · · .

Note, that under the above assumptions the tangent space to MC at [a] is the
self-dual 3-term complex,

(19) T[a]MC : T−1
[a]MC := A0 ξ(a)

−→ T 0
[a]MC := TaA

1 = A1 µ′
a−→ T 1

[a]MC := A0∗,

where

µ′
a(b) = ν1(b) + ν2(a ∧ b) +

1

2!
ν3(a ∧ a ∧ b) + · · · .

The self-duality at the middle term is given by the symplectic form

ω(Xa, Ya) = Tr(µ2(Xa ⊗ Ya)) ∈ k.

This can be used to define the Hamiltonian vector field Xψ associated to a function
ψ ∈ O(MC), and thus the Lie bracket on O(MC) via the usual formula {ψ, χ} =
ω(Xψ, Xχ).

We may now define the map P : MC → C̄•(A,A) by

P (a) :=
∑

i≥0

1⊗ a⊗i = (1⊗ 1Ā⊗0) + (1⊗ a) + (1 ⊗ a⊗ a) + · · · ,

and R = inc ◦ P : MC → CC
−

• (A). As in definition 8, we may again see, that
δ(P (a)) = 0, and (δ + uB)(R(a)) = 0, and we define

ρ : HC2•
− (A) → O(MC),

ρ([α])([a]) := 〈[α], [R(a)]〉 = 〈α,R(a)〉, for [α] ∈ HC•(A), [a] ∈MC.

With this, we have the same theorem as in the previous sections.

Theorem 14. The map ρ is a well-defined map of Lie algebras.
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