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Olivier Déforges, Marie Babel, Laurent Bédat, Véronique Coat. Scalable Lossless and Lossy Im-
age Coding based on the RWHaT+P Pyramid and the Inter-Coefficient Classification Method.
IEEE International Conference on Multimedia and Expo - ICME, Jun 2008, Germany. pp.185-
188, 2008. <hal-00320852>

HAL Id: hal-00320852

https://hal.archives-ouvertes.fr/hal-00320852

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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ABSTRACT

Next generations of still image codecs should not only have to be
efficient in terms of compression ratio, but also propose other func-
tionalities such as scalability, lossy and lossless abilities, region of
interest coding, etc. In previous works, we have proposed the LAR
compression method covering these requirements. In particular,
the RWHaT + P pyramid has recently been presented as a powerful
reversible scalable coding technique. This paper introduces new
significant improvements by the use of an inter-coefficient classi-
fication method. Results are discussed and compared to the state
of the art.

1. INTRODUCTION

Despite many drawbacks and limitations, JPEG is still the most
commonly-used compression format in the world. JPEG2000
overcomes this old technique, particularly at low bit rates, but at
the expense of a significant complexity overhead. Therefore, the
JPEG normalization group has recently proposed a call for pro-
posals on JPEG-AIC (Advanced Image Coding) in order to look
for new solutions for still image coding techniques [1]. Its re-
quirements reflect the earlier ideas of Amir Said [2] for a good
image coder: compression efficiency, scalability, good quality at
low bit rates, flexibility and adaptability, rate and quality control,
algorithm unicity (with/without losses), reduced complexity, error
robustness (for instance in a wireless transmission context) and re-
gion of interest decoding at decoder level. A. Said and the JPEG
committee should add additional functionalities such as image pro-
cessing at region level, both at the coder or the decoder. The LAR
(Locally Adaptive Resolution) tries to address all these features.
In [3], we proposed an original scheme able to perform efficient
lossy compression, enabling an unusual hierarchical region repre-
sentation (without any shape description). Then, in [4], we pre-
sented an extension of a more efficient scalable multi-resolution
solution in terms of both lossy and lossless compression. New
improvements have been shown by the introduction of the Re-
versible Walsh Hadamard Transform (RWHaT) in [5]. This paper
addresses further advances though the concept of inter-coefficient
classification, focusing on the lossless compression context.

Section 2 gives an overview of the LAR coding method and the
Reversible Walsh Hadamard Transform. These two concepts lead
to the introduction of the RWHaT pyramid which can be improved
when adding a prediction step. Both of these features are presented
in section 3. Significant further improvements in terms of lossless
compression efficiency are introduced in section 4. Finally, section
5 concludes the paper.

2. THE LAR AND RWHAT METHODS

2.1. LAR overview

The basic concept of the LAR method is that local resolution
should be adapted to suit local activity. Also assuming that an im-
age consists of global information and local texture, we firstly pro-
posed a two-layer, content-based codec, both relying on a quadtree
partition [3]. The first layer, called the FLAT LAR, encodes the
global information at block level representation. The additional
second layer enables texture compression within blocks using vari-
able block size DCT/Hadamard transforms. Therefore, the method
provides natural SNR scalability. The block sizes are estimated
through a local morphological gradient. The direct consequence is
that the smallest blocks are located round the edges whereas large
blocks map homogeneous areas. This being so, the main feature
of the FLAT coder consists of preserving contours while smooth-
ing homogeneous parts of the image. This characteristic is also
exploited to get a free hierarchical region representation: from the
low bit-rate image compressed by the FLAT LAR, both coder and
decoder can perform a segmentation process by iteratively merging
blocks into regions. A direct application is then Region Of Interest
(ROI) enhancement, by first selecting regions and enabling second
layer coding only for the relevant blocks.

2.2. The RWhaT Transform

In order to enable spatial scalability and lossless compression, we
studied different pyramidal representations. Lossless compression
means that the construction and decomposition steps lead to a re-
versible process, resulting in the exact recovery of each element of
the original source data. Moreover, the quadtree partition requires
dyadic decomposition. Some integer wavelet kernels fit these re-
quirements. For instance, Lux [6] proposed a modified version of
the 1D Walsh Hadamard Transform (WHT), which has been pop-
ularized by Said [2] and known as the “S” transform or “Haar inte-
ger wavelet transform”[7]. The S transform is currently known as
one of the best integer wavelet bases for reversible compression at
the present time[8]. We introduced the Interleaved S+P technique
[4] as an improved version of S+P by increasing space prediction.
Another solution for a dyadic reversible decomposition has been
proposed with the RWHaT transform for 2 × 2 blocks [5]. The
conventional 2D WHT2×2 basis is defined as follows:

WHT2×2 Matrix: = 1√
2

[
1 1
1 −1

]
. (1)



Let U2×2 be the input block with:

U2×2 =

[
u0 u1

u2 u3

]
. (2)

The block transformed Z2×2 by the 2D WHT is defined by:

Z2×2 = WHT2×2(U2×2) =W2×2 U2×2 W2×2 =

[
z0 z1

z2 z3

]
= 1

2

[
u0 + u1 + u2 + u3 u0 + u1 − u2 − u3

u0 − u1 + u2 − u3 u0 − u1 − u2 + u3

]
.

(3)
Clearly, if the sum of ui values is odd, then normalization by 2
produces an integer value. On the other hand, if the sum is even,
the normalization induces a real value, leading to an ambiguous
rounding operation. The solution consists of controlling the round-
ing step so that the inverse transform can distinguish between odd
or even sum cases: for an even sum case, the rounding operations
are applied such that the sum of the transformed coefficient is also
even. A reversible transform then becomes possible, first by per-
forming the inverse rounding operation to recover actual real trans-
formed values, and secondly by carrying out the inverse 2D WHT
transform [5].

3. RWHAT + P PYRAMID

Notations: I(i, j) denotes the pixel in an image I with the coor-
dinates (i, j), I(bN (i, j)) the block bN (i, j) in I including the set
of pixels {I(N.i,N.j), . . . I(N.i+N − 1, N.j +N − 1)}.

3.1. The RWHaT pyramid

Let {Yl}Lmax
l=0 be the multiresolution representation of an image I

of size Nx ×Ny , where Lmax is the top of the pyramid and l = 0
the full resolution image. As for the conventional WHT2×2 case,
we iteratively construct the pyramid gathering four blocks to form
a mean block at the upper level:

∣∣∣∣ l = 0, Y0(i, j) = I(i, j);

l > 0, Yl(i, j) =
⌊

1
4

∑1
k=0

∑1
m=0 Yl−1(2x+ k, 2y +m)

⌋
(4)

with 0 ≤ i ≤ N l
x, 0 ≤ j ≤ N l

y , where N l
x = Nx/l and

N l
y = Ny/l.

The top-down decomposition of the pyramid consists of en-
coding the WHT transformed block Zl(b

2(i, j)) of each input
block Yl(b

2(i, j)). From (3) and (4), it is clear that the DC com-
ponent of each block is unambiguously reconstructed from the up-
per level plus an additional bit called εz0l

. This bit is separately
encoded from the other coefficients. Zl+1 denotes the WHT trans-
formed block of Yl(i, j) and Żl(i, j) the corresponding block with
εz0l

as DC value. The reconstruction from the previous level and
current WHT transform is given by:

Ỹl(b
2(i, j)) = EXPAND[Yl+1(i, j)) + ˜̇Yl(b

2(i, j)]

with ˜̇Yl(b
2(i, j)) = WHT−1

2×2

(
Żl

(
b2 (i, j)

))
.

(5)

The EXPAND function only duplicates a node value from the
tree into its four sons. At this step, we get a common pyrami-
dal representation and encoding process based onWHT2×2 trans-

form, but with the exception of a possible lossless decomposition
(Ỹ = Y in this case). The top level has been encoded for the two
methods by a simple DPCM.

The common pyramid representation involving a dyadic de-
composition is generally associated with a multilevel quadtree
partition QP [2Lmax ...2l]. Level l of the pyramid also specifies
the finest resolution. More generally, we consider here a global
quadtree partition of the image QP [Nmax...Nmin] according to al-
lowed block sizes. The parameter Nl ∈ [Nmax . . . Nmin] gives
the upper limit of block sizes to be decomposed at level l of the
pyramid. For instance, a global partition QP [64...2] leads to the
encoding of the representation from sizes 64 to 2, while N0 = 8
means that blocks of sizes 8, 4 and 2 will be decomposed at level
0.
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Fig. 1. Simple pyramidal coder: C1

Finally, the decomposition parameter Lmin specifies the last
level to be encoded: for all levels lower than Lmin, the value
of all nodes in the pyramid are expanded only. The two pyra-
mid scans presuppose a conditional decomposition. Assuming that
Al(b

2(i, j)) is the activity (gradient value) of block Yl(b
2(i, j)),

the conditional decomposition during the first pass is defined by:∣∣∣∣ If Al(b
2(i, j)) < Thgrad then encode Yl(b

2(i, j)),
else EXPAND [Yl−1(b2(i, j))]

(6)
with typical Thgrad = 30. Figure 1 shows the global coding
based on this model calledC1 coder, and restricted to the first pass.
Blocks that are not decomposed during the first pass are processed
during the second one.

The use of quadtree decomposition enables the approach to
act as an “objective context modeling”, separating the error pre-
diction laws characterized by high entropy for the first pass, and
low entropy for the second pass.

3.2. Prediction in the RWHaT pyramid

A prediction step can precede the transform operation to increase
compression. Interpolation can also give a suitable means of pro-
viding a full resolution image from a decoded level l > 0. Even
if functions have different objectives, we proposed in [5] a uni-
fied estimation solution. The main advantage is that, under par-
ticular conditions, the image can be progressively reconstructed
from a previously interpolated level which also acts as predic-
tion step. Y̆l(b

2(i, j)) and Ỹl(b
2(i, j)) denote the estimated and

reconstructed blocks of Yl(b
2(i, j)) respectively. The estimation
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Fig. 2. Pyramidal coder with prediction step: C2 and C3

process consists of rebuilding unknown values around their block
mean in a 2D context, according to a linear function. Two versions
have been considered: one exploiting only inter-level information
(C2), the other one using both inter and intra-level information
(C3). Figure 2 shows new coding schemes including the estima-
tion stage. The C2 coder uses only inter-level relationships and
can be useful for progressive reconstruction. The C3 coder also
makes use of reconstructed values at the current level and, obvi-
ously, leads to better compression.

Both SNR and spatial scalabilities are displayed in figure 3 for
a lossless compression process. Six levels of decomposition are
considered here, implying eleven successive streams ( 1 + 2× 5).
At low bit rates, visual distortions are essentially due to a blurring
effect and are less disturbing than blocks or ringing artefacts. At
the end of the first pass, reconstructed images present perfect ac-
curacy upon strong contours while homogeneous areas appear as
smooth regions.

4. INTER-COEFFICIENTS CLASSIFICATION

The a priori estimation of entropy laws for error coefficients is a
crucial step for the efficiency of a lossless coder. In CALIC [9],
which is still one of the best available reversible compression tech-
niques, Wu has introduced the concept of “context modeling” to
characterize coefficients from the activity observed in their neigh-
borhood. This method has been widely used in lossless compres-
sion context.

Let z̆i (0 ≤ i ≤ 3) be the transformed coefficients of the esti-
mated block values. δzi = zi − z̆i denotes the associated errors.
As previously mentioned, the exact reconstruction of the DC value
only requires one bit, and is considered separately. Consequently,
only z̆1, z̆2 and z̆3 have to be encoded. The context modeling
approach suggests the estimation of local energy ∆i from the es-
timated value and previous locally-decoded data. To avoid context
dilution problems, ∆i is generally quantized into L levels. The
a priori estimation of δzi then consists of trying to maximize the
conditional probability function p(δzi |∆i). This means that the
various quantization levels have to be adapted to each image. In a
lossless context and with full resolution processing, the number of
encoded values is sufficient for an in-line estimation. However, in
a multiresolution scheme, the top levels induce only a few values

and they are not sufficient to enable such an approach. Another
difficulty occurs when considering a lossy coding context, with
quantized values. The problem maximizes the conditional proba-
bility p(δẑi |∆i) (with ẑi the quantized value of zi) and no more
p(δzi |∆i). δẑi is, of course, dependent on the quantization factor
qz , and if we consider a linear quantization, we can write

p(δẑi |qz) = p(qzδẑi ≤ δzi < (qz + 1)δẑi). (7)

p(δẑi |qz) is an increasing function of qz . As qz and ∆i are inde-
pendent, p(δẑi |(∆i, qz)) has to be maximized. When ∆i is quan-
tized on L levels, and qz on Qn levels, they define L Qn contexts,
making the estimation process much more complex.

To avoid the context quantization problem, we have introduced
the concept of inter-coefficient classification. First, the energy
function is defined according to the method features by consid-
ering:

1. the dynamics of the estimated value z̆i,

2. the difference δz0 between the actual mean value of the
block, z0, and the estimated value, z̆0.

The energy function ∆i associated with δzi is defined as follows:

∆i = w0 |δz0 |+ w1 |z̆i| , 1 ≤ i ≤ 3. (8)

The weights w0 and w1 have been empirically fixed at 0.5 and 1.
Inter-coefficient classification then consists of dividing the co-

efficients into equiprobable classes. Fixing the maximal number
of classes atNb class, the definition of a class CLASSn is given
by:∣∣∣∣∣∣
CLASSn =

{
δzi |T∆n−1 > ∆i ≥ T∆n

}
, 1 ≤ n ≤ Nb class

with T∆0 =∞, T∆Nb class = 0

and such as ∀n ∈ {0 . . . Nb class} , card(CLASSn)
Nb class

= const.
(9)

Each class constitutes a specific substream sent to the entropy
coding layer. δz3 coefficients present lower dynamics than δz1/2

ones and are then scanned independently.
TheC2 codec involves only inter-layer prediction, and thereby

is slightly less efficient thanC3. Nevertheless, it provides interest-
ing SNR scalability when used with the classification coefficients
method. In particular, as predicted coefficients do not depend on
reconstructed data at the same level, values can be independently
reconstructed. Thus, only coefficients belonging to CLASS0 for
instance can be decoded when providing the class thresholds. This
particular class contains coefficients with a higher dynamic, but it
is also the most significant in terms of prediction error correction.

The first order entropy for the proposed method (C3 mode) is
compared in Table 1 with the state of the art: S+P (scalable) and
CALIC [9] (non scalable) methods. Both the quadtree partition
(Qd) and the inter-coefficient classification (Cl) techniques allow
for major improvements. Combining the two techniques leads to
an even better solution, significantly outperforming state of the art.
This means that the two approaches act differently for data decor-
relation and can be complementary.

5. CONCLUSION

The LAR codec is based on the concept of a two-layer encod-
ing process. The first one is used to compress global informa-
tion, while the second one adds local texture. One scalable and



a) First pass, Lmin = 5 b) First pass, Lmin = 3 c) First pass, Lmin = 1 d) Second pass, Lmin = 0
(1 stream): 0.005 bpp (3 streams): 0.071 bpp (6 streams): 0.99 bpp (11 streams): 4.84 bpp (lossless)

Fig. 3. Scalable lossless coding on “Barbara2” with partition QP [64...2]

Entropy (bpp)
Image Raw S RWHT CALIC S+P RWHaT+P RWHaT+P

Qd
RWHaT+P

Cl
RWHaT+P

Qd&Cl
Barbara2 7.51 5.45 5.47 4.93 5.04 5.06 4.89 4.90 4.84

Hotel 7.57 5.11 5.09 4.57 4.97 4.83 4.60 4.62 4.54
Lena 7.44 4.77 4.75 4.33 4.33 4.30 4.19 4.16 4.14
Gold 7.60 5.08 5.06 4.65 4.73 4.73 4.66 4.64 4.61

Peppers 7.57 4.89 4.87 4.58 4.67 4.54 4.43 4.41 4.38
us 4.84 3.65 3.64 3.60 3.78 3.78 3.26 3.25 3.04

tools 7.52 5.95 5.95 5.53 5.73 5.71 5.50 5.48 5.41
Average 7.15 4.99 4.97 4.60 4.75 4.71 4.50 4.49 4.42

Table 1. Comparison of the proposed approaches with state-of-the-art methods S, CALIC and S+P . First-order entropy (bit/pixels).

reversible solution has been proposed with the RWHaT+P pyra-
mid. The two layers of the LAR codec are then implemented as
two pyramidal decomposition passes, according to a quadtree par-
tition. In terms of scalability, this process provides spatial and
semantic SNR enhancement. In terms of compression, it acts as
an objective coefficient classification estimated from the local ac-
tivity of blocks. We propose here a complementary classification
with a finer level of granularity, by considering activity measure-
ments at both block and pixel levels. The inter-coefficient clas-
sification introduced in this paper avoids the common problems
of context quantization inherent to such approaches, and signif-
icantly increases lossless compression efficiency. At the present
time, this method also outperforms previous LAR performances
for lossy coding. Future work will concentrate on the definition of
a suitable entropy layer coder as the present system involves only
a simple arithmetic one.

Two other major new features have been also presented, lead-
ing to additional decorrelation, and further significant improve-
ments i.e. content-based pyramidal decomposition and inter-
coefficient classification. The global scalable coding scheme sur-
passes both S+P and CALIC. It also provides locally adaptive mul-
tiresolution representations for the rebuilding of good quality im-
ages at low bit rates.
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