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A Novel Channel Estimation based on Spread Pilots
for Terrestrial Digital Video Broadcasting
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INSA Rennes, 20, avenue des Buttes de Coesmes, 35000 Rennes,France
E-mail: oudomsack.pasquero@ens.insa-rennes.fr,{first name. last name}@insa-rennes.fr

Abstract— In this paper, we propose a novel channel estimation
technique based on spread pilots for digital video broadcasting.
This technique consists in adding a linear precoding function
before the OFDM modulation and dedicating one of the pre-
coding sequence to transmit the pilot symbols for the channel
estimation. The merits of this technique are its simplicity, its
flexibility, and the gains in terms of spectral efficiency anduseful
bit rate obtained compared to the classical pilot based estimation
schemes used in DVB standards. The performance evaluated over
realistic channel models, shows the efficiency of this technique
which turns out to be a promising channel estimation technique
for the future terrestrial video broadcasting systems.
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tion, Spread Pilot

I. INTRODUCTION

Since its inception in 1997, Digital Video Broadcasting
Terrestrial (DVB-T) standard [1] has fully responded to the
objectives of its designers, delivering wireless digital TV
services in almost every continent. However, the emergence
of new consumer usages is leading the DVB community to
think about a second generation of DVB-T. In that context,
a European project called Broadcasting for the 21st Century
(B21C) has recently been launched [2]. It constitutes a contri-
bution task force to the reflections engaged within DVB-T2.
The study proposed in this paper has been carried out within
the framework of B21C.

Orthogonal Frequency Division Multiplexing (OFDM) has
been perceived as one of the most effective transmission
schemes for the frequency-selective fading channels. Indeed,
by implementing Inverse Fast Fourier Transform (IFFT) at the
transmitter and Fast Fourier Transform (FFT) at the receiver,
OFDM splits the single channel into multiple, parallel inter-
symbol interference (ISI) free subchannels. Therefore, each
subchannel, also called subcarrier, can be easily equalized by
only one coefficient.

To equalize the OFDM signal, the receiver needs to estimate
the channel frequency response for each subcarrier. In the
DVB-T standard, one subcarrier over twelve is used as pilot,
and interpolating filtering techniques are applied to obtain the
channel response for any subcarrier. However, these pilots
dramatically reduce the spectral efficiency of the system. The
originality of this work is to propose a new channel estimation
approach based on a linear precoded (LP) multicarrier wave-
form. The basic idea consists in using a two-dimensional (2D)
linear precoding matrix before the OFDM modulation, and to

dedicate one of the precoding sequence, also called spreading
sequence, to transmit a so-called spread pilot informationfor
channel estimation [3]. This technique is shown to provide a
good flexibility owing to the 2D LP function, better spectral
efficiencies and useful bit rates compared to those of DVB-T.
In addition, note that the precoding component can also be
exploited to reduce the peak-to-average ratio (PAPR) of the
multicarrier system [4], or to perform frequency synchronisa-
tion.

This paper is organized as follows. After a reminder of
the 2D LP OFDM concept, we describe in section II the
principle of the channel estimation using the spread pilots.
The theoretical performance of the estimator is discussed in
section III. Then, simulation results in term of bit error rate
(BER) and comparison with the DVB-T system are given in
section IV. Concluding remarks are given in section V.

II. SYSTEM DESCRIPTION

A. 2D LP OFDM

Precoding an OFDM signal consists in spreading each
complex symbolxi before the OFDM modulation, overL =
2n chips, withn ∈ N, using Walsh-Hadamard (WH) sequences
ci = [ci1 . . . cij . . . ciL]

T . We assume the data symbols have
zero mean and unit variance, and the spreading sequences are
normalized,i.e. |cij |2 = 1

L
. A superposition of the data chips

and the pilot chips, as illustrated in Fig.1 and Fig.2, generates
the chip stream:

s =

L∑

i=1

i6=p

cixi + cp

√
Bxp (1)

wherexp corresponds to the pilot symbol, andB represents a
factor related to an eventual power boost applied on it.

The chips obtained are mapped over a subset ofL = Lt.Lf

subcarriers, withLt andLf the time and frequency spreading
factors respectively. The firstLt chips are allocated in the time
direction. The next blocks ofLt chips are allocated identically
on adjacent subcarriers as illustrated in Fig. 2. Therefore, the
2D chip mapping follows a zigzag in time. Note that the chip
mapping can also follow a zigzag in frequency, a snake in
time or a snake in frequency [5].



Fig. 1. Example of 1D LP OFDM in frequency domain compared to OFDM

Fig. 2. Principle of a 2D chip mapping following a zigzag in time

B. Principle of channel estimation with spread pilots

Let h = [h1 . . . hj . . . hL]
T be the vector of the channel

coefficients associated to theL subcarriers on which the chips
have been mapped. After OFDM demodulation, the received
signal vectorr writes:

r = h ◦ s+ n

= h ◦



cp

√
Bxp +

L∑

i=1

i6=p

cixi



 + n (2)

Fig. 3. 2D LP OFDM transmitter and receiver based on spread pilot channel
estimation technique

where◦ denotes the element-wise vector multiplication and
vectorn = [n1 . . . nj . . . nL]T gathers additive white Gaussian
noise (AWGN) components having zero mean and variance
σ

2

n.
Fig. 3 depicts the transmitter and receiver schemes. At

the reception, the de-spreading function is processed before
equalization. Therefore, one single channel coefficientĥavg is
estimated for each subset of subcarriers and is used to equalize
the(L−1) received data symbols mapped on that subset. This
estimated channel coefficient is obtained by de-spreading the
received signalr using the pilot spreading sequencecH

p , and
dividing by the pilot symbolx′

p =
√

Bxp:

ĥavg =
1

x′
p

cH
p r

=
1

x′
p




L∑

j=1

hj

(
c
2

pjx
′

p

)
+

L∑

i=1

i6=p

L∑

j=1

cpjhj (cijxi) +
L∑

j=1

cpjnj





=
1

L

L∑

j=1

hj +
1

x′

p




L∑

i=1

i6=p

xi

L∑

j=1

cpjhjcij +
L∑

j=1

cpjnj





(3)

Let us define the average channel coefficient hang of the
considered subset of subcarriershavg = 1

L

∑L

j=1
hj and

assumeǫj = hj −havg. The estimated channel coefficient can
now be separated into the average channel coefficienthavg, a
self-interference (SI) term and a noise termn′.

ĥavg = havg +
L∑

i=1

i6=p

xi

x′

p

L∑

j=1

cpjǫjcij

︸ ︷︷ ︸
SI

+
L∑

j=1

cpjnj

x′

p

︸ ︷︷ ︸
n′

(4)

The SI term is due to the variation of the channel coefficients
over the subset of subcarriers which causes the loss of orthog-
onality between the spreading sequences. In the sequel, we
propose to analyse its variance.
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(a) MSE simulation results for F1 channel
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Fig. 4. Channel estimator performance under F1 channel,B = 1, Lt = 1

III. THEORETICAL PERFORMANCE OF THE
ESTIMATOR

In order to analyse the theoretical performance of the
estimateĥavg, let us compute its expectation E{ĥavg} and
its mean square error (MSE).

E
{

ĥavg

}
= havg + E{SI} + E

{
n
′
}

= havg +
L∑

i=1

i6=p

E{xi}

x′

p

L∑

j=1

E{cpjǫjcij} +
L∑

j=1

E{cpjnj}

x′

p

(5)

Since the data symbolsxi and the noise componentsnj have
zero mean, the SI and the noise contributions are null. Hence,
(5) can simply be rewritten:

E
{
ĥavg

}
= havg (6)

Equation (6) proves that̂havg is not biased. Consequently, the
MSE of the estimator is equal to its variance:

MSE = E

{∣∣∣ĥavg − E
{
ĥavg

}∣∣∣
2
}

= E
{
|SI|2

}
+ E

{
|n′|2

}
(7)

First of all, let us analyse the SI variance:

Var {SI} =
1

B




L∑

i=1

i6=p

E
{
|xi|2

} L∑

j=1

E
{
|cpjcij |2

}
E

{
|ǫj|2

}




=
1

B



(L − 1)
1

L2

L∑

j=1

E
{
|ǫj |2

}




=
1

B

(
(L − 1)

L
σ

2

h

)
(8)

where σ
2

h = 1

L

∑L

j=1
E

{
|ǫj |2

}
corresponds to the channel

variance on the studied subset of subcarriers. Now, let us
compute the noise variance:

Var {n′} =
1

B

L∑

j=1

E
{
|cpj |2

}
E

{
|nj |2

}

=
1

B
σ

2

n (9)

Finally, by combining the SI variance (8) and the noise
variance (9), the MSE of the estimator (7) can be expressed
as:

MSE =
1

B

(
(L − 1)

L
σ

2

h + σ
2

n

)
(10)

We deduce that the MSE is proportional to the channel
variance on the specific subset of subcarriers and is attenuated
by the boost factorB. One can actually check that if the
channel is flat over a subset of subcarriers, i.e.σ

2

h = 0, then
the SI is null. Therefore, it is important to optimize the time
and frequency spreading lengths,Lt and Lf , according the
channel characteristics. In addition, the boost factorB has to
be chosen adequatly.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the proposed
channel estimation scheme under F1 and P1 channel models
[1]. These channel models are modelized without any Doppler
effect. They are specified for fixed outdoor rooftop antenna
reception conditions. Table I gives the simulation parameters
and the useful bit rates of the DVB-T system and the proposed
2D LP OFDM system. In the proposed system, only one spread
pilot symbol is used overL ≥ 32, whereas the DVB-T system
uses one pilot subcarrier over twelve. Therefore, a gain in



TABLE I

SIMULATION PARAMETERS AND USEFULBIT RATES

Bandwidth 8 MHz
FFT size 2048 samples
Guard Interval size 512 samples
Constellations 16QAM and 64QAM
Polynomial code generator (133, 171)o

Rate of convolutional code Rc 3/4 and 5/6

Useful bit rates of DVB-T system 14.93 Mbits/s for 16QAM and Rc=3/4
24.88 Mbits/s for 64QAM and Rc=5/6

Useful bit rates of 2D LP OFDM 16.00 Mbits/s forL = 16
for 16QAM and Rc=3/4 16.53 Mbits/s forL = 32

16.80 Mbits/s forL = 64
Useful bit rates of 2D LP OFDM 26.67 Mbits/s forL = 16
for 64QAM and Rc=5/6 27.55 Mbits/s forL = 32

27.99 Mbits/s forL = 64

terms of spectral efficiency and useful bit rates is obtained
compared to the DVB-T system.

Fig.4 depicts the estimator performance. Fig.4(a) gives the
MSE of the channel estimation for different signal to noise
ratios (SNR), while Fig.4(b) exhibits the weighted channel
variance for different frequency spreading factorsLf . We note
that beyond a given SNR, the MSE reaches a floor which is
easily interpreted as being due to the channel varianceσ

2

h, as
expected from (10). This is confirmed by comparing Fig.4(a)
and Fig.4(b). Hence, in order to minimize the performance
degradation,Lf has to be chosen not too high. In the sequel,
we setLf = 2 so that the subcarrier subsets do not exceed
the coherence bandwidth of the channel.

Fig.5 and Fig.6 give the BER measured at the output
of the Viterbi decoder for the proposed precoded OFDM
system using the spread pilot channel estimation scheme, for
16-QAM and 64-QAM, under F1 and P1 channel models
respectively. The spreading component is applied in both time
and frequency dimensions, for different values ofLt keeping
Lf = 2. Note that the value of the boost factorB has
been optimized through simulation search in order to obtain
the lowest BER for a given SNR. The performance of the
DVB-T system with perfect channel estimation is given as
reference, however taking into account the power loss due to
the amount of energy spent for the transmission of the pilot
subcarriers. It appears that the system performance is all the
better thanLt is high. The reason is the increase of the spectral
efficiency due to the use of only one spread pilot symbol over
L symbols. For example, withL = 64, i.e. Lt = 32, only one
spread pilot symbol overL = 64 is used whereas the DVB-T
system uses one pilot subcarrier over twelve. Consequently,
for high Lt values, the proposed system can even outperform
the classical DVB-T system with perfect channel estimation
when the performance is given versus theEb

No
ratio.

V. CONCLUSION

In this paper, we have proposed a novel and very simple
channel estimation for DVB-T. This technique, referred to as
spread pilot channel estimation, allows to reduce the overhead
part dedicated to channel estimation. Therefore, a gain in terms
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Fig. 5. BER performance under F1 channel models
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Fig. 6. BER performance under P1 channel models

spectral efficiency and useful bit rate is obtained. Moreover,
this technique is very well suited to fixed reception conditions.
Indeed, by choosing the highest possible time spreading factor
allowed by memory constraints, and a reasonnable frequency
spreading factor, the system performance outperforms the
classical pilot-based DVB-T system. More generally, this
estimation approach provides good flexibility since it can be
optimized for different mobility scenarios choosing adequate
time and frequency spreading factors.

Acknowledgement: This work was supported by the Eu-
ropean project CELTIC B21C (“Broadcasting for the 21st
Century”) and the French national project Mobile TV World.

REFERENCES

[1] ETSI EN 300 744, Tech. Rep.
[2] http://www.celtic initiative.org/Projects/B21C.
[3] L. Cariou and J.-F. Hélard, “Efficient mimo channel estimation for linear

precoded ofdma uplink systems,”Electronics Letters, vol. 43, no. 18, pp.
986–988, 31 2007.

[4] S. Nobilet, J.-F. Hélard, and D. Mottier, “Spreading sequences for
uplink and downlink mc-cdma systems: PAPR and MAI minimization,”
European Trans. on Telecommun., vol. 13, pp. 465–471, Oct. 2002.



[5] N. Chapalain, D. Mottier, and D. Castelain, “Performance of uplink ss-
mc-ma systems with frequency hopping and channel estimation based
on spread pilots,”Personal, Indoor and Mobile Radio Communications,
2005. PIMRC 2005. IEEE 16th International Symposium on, vol. 3, pp.
1515–1519 Vol. 3, Sept. 2005.


