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ABSTRACT 

Accurate isocentre positioning of the treatment machine is essential for the radiation therapy process, especially in 
stereotactic radio surgery and in image guided radiation therapy. 

We present in this paper a new method to evaluate a software which is used to perform an automatic analysis of the 
Winston-Lutz1, 2 test used in order to determine position and size of the isocentre. The method consists of developing 
digital phantoms that simulate mechanical distortions of the treatment machine as well as misalignments of the 
positioning laser targeting the isocentre. These Digital Test Objects (DTOs) offer a detailed and profound evaluation of 
the software and allow determining necessary adjustments which lead to high precision and therefore contributes to a 
better treatment targeting.   

Keywords: PHT, SIM, METR, CT. 

1. INTRODUCTION 

The main objective of the Winston-Lutz1 (WL) test is to control the position and the size of the isocentre of a medical 
linear accelerator (LINAC) i.e. the intersection of the gantry, the collimator and the couch axis. This control allows 
accurate alignment of the room laser system which is essential for the success of the radiotherapy and avoids systematic 
errors of irradiation localization which have serious consequences on the treatment process. An example of these 
sequences would be the excessive irradiation of the healthy tissues surrounding the tumor while the tumor itself is under 
irradiated. Furthermore, the emerging image guided radiation therapy gives this test a new actuality. Here the size of the 
isocentre affects directly the image quality of the cone beam CT mode3, 4, and the position of the isocentre determines the 
precision of the patient repositioning. The test proposed by Winston & Lutz is also able to quantifying the sensor 
movement during the rotation process2, 5. 

The use of digital phantoms in order to control the quality of RT medical images treatment platform has being previously 
proposed by Denis et al6, and was used in order to test Virtual Simulation Softwares7. This technique has a lot of 
advantages, especially the perfect knowledge of the software data input. But also the possibility of an automation of the 
quality control procedure by comparison of the processing of this input data with an output digital phantom designed to 
be a reference for this processing can be mentioned. This paper presents a complete application of this recent concept 
and therefore a method of developing digital phantoms included calibrated misalignments of the isocenter that allows 
evaluating the performances of software tools that are dedicated for an automatic quality control of the Winston & Lutz 
test (WL test).  

These evaluations allow, in one hand, studying the influence of all adjustment parameters of the software which leads to 
the determination of an optimal set of this parameters, and in the other hand, using these optimal values we can 
determine the precision of the software and the method proposed by Winston & Lutz.1 
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2. MATERIALS AND METHODS 

2.1 The real test 

The Winston-Lutz test consists of aligning a 5 mm diameter tungsten ball on the room lasers (i.e. the supposed location 
of machine isocentre) and to acquire different two-dimensional (2D) projection images on it for different gantry, table 
and collimator rotation angles. The tungsten ball is hold by an acrylic (PMMA) tube which is fixed on the treatment 
couch. In IGRT technique, the 2D images are produced by the RX treatment source (2D-MV mode) and a flat panel 
mounted in opposition and by an additional RX tube and a second flat panel (2D-kV mode). In IGRT application, the 
Winston-Lutz test controls the position and the size of the kV and MV isocenters but also the movement of the 2 flat 
panels during the rotation of the gantry. Though, for the movement of the flat panel the reference position in the images 
is the flat panel center. But for the isocenter location and size the reference point in the images is the middle of a 5 x 5 
cm² beam. Three units are involved in the control, collimator, gantry and couch; therefore the control process consists of 
rotating one unit while keeping the two other units stationary. Two-dimensional images corresponding to different angles 
of rotation are then acquired. Theoretically and if the collimator and table axis were exactly aligned and the physical test 
object is placed correctly, we obtain images were the pixel representing the centre of the tungsten ball is always placed in 
the centre of the beam image representing the irradiation field. Figure 1 shows the treatment machine on the left, 
Winston and Lutz test homemade phantom and on the right, an example of 2D image of the phantom. 

 

Fig. 1. (a) Treatment machine with an On-Board Imager (OBI) consisting of two arms; one holding an X-ray source and one 
holding a flat panel sensor. A megavoltage detector (MVD) is also showed. (b) The phantom proposed by Winston and 
Lutz consisting of a 5mm tungsten ball held in a PMMA mounting. (c) A two-dimensional image of this phantom, 
where the shadow of the tungsten ball and the beam can be visualized. 

2.2 QFD-WL software module 

The QFD-WL8, 9 module is embedded in a platform QFD-IQC commercialized for an automatic analysis of the image 
produced for the image quality control in medical imaging and radiation therapy.  

The automatic software analysis is organized in the QFD-IQC-WL module in 8 steps:  

1. Decoding of the DICOM RT images directly transferred from the treatment machine by the network  

2. Image pre-processing: limiting - scaling with nearest neighbors, bilinear or bi-cubic interpolation (Figure 2) 

3. Determination of the radiation field center location in all images: threshold method (Figure 3) 

4. Determination of the tungsten ball location in all images: convolution method (Figure 4) 

5. Determination of the gantry rotation axis: back-projection method (Figure 5) 

6. Determination of the table rotation axis: minimizing the parameter p (equation 1). Radiation field position 
considered as reference point (Figure 6) 

7. Determination of the collimator rotation axis: minimizing the parameter p (equation 1). Tungsten ball position 
considered as reference point (Figure 6) 

8. Calculation of the isocentre location: minimization of all units’ isocentres. 



 
 

 

 

In the four initial steps (steps 2, 3, 4 and 5) the user can choose different adjustments of the image processing 
(interpolation method, threshold value, size of the convolution kernel…). One goal of DTOs described in this paper is to 
study easily the influence of these different parameters on the software precision. 

2.2.1 Image pre-processing 

This process includes two steps: creating a new image with a size that represents a percentage value of the original image 
size and scaling the resulting image with a scale factor chosen by the user.  

 

Fig. 2. (a) Original image. (b) Limited image and its 4 times scaling with, (c) nearest neighbor interpolation and (d) bi-cubic 
interpolation.  

2.2.2 The radiation field center location 

The radiation field center location is calculated by segmenting the image using a special threshold derived from its pixels 
intensity. 

 

Fig. 3. Determination of the radiation field. (a) Original image. (b) Bi–level image representing the segmentation of the 
radiation field with a threshold equal to -1117. 

2.2.3 The tungsten ball center location 

A convolution of a Gaussian kernel with the radiation field image is used in order to find the centre of the tungsten ball 
image.  

 

Fig. 4. Determination of the tungsten ball location. (a) Original image. (b) The two-dimensional Gaussian kernel used in the 
convolution method. (c) Image representing the position of the tungsten ball. 



 
 

 

 

2.2.4 Gantry rotation axis 

The positions of the tungsten ball with respect to the beam center are calculated; the 3D scene is then reconstructed by 
doing a back projection of these positions; a straight line perpendicular to the sensor plane that passes through the 
tungsten ball position is constructed (Figure 5).  

Points of intersections between these lines are calculated and the position of the gantry rotation axis is then the gravity 
centre of these points. 

 

Fig. 5. Three-dimensional scene reconstruction. Images used are acquired with the collimator and the table at 0° position, 
while moving the gantry angle. Six angles are used in this example (0, 30, 60, 90, 120, 130 and 150°), and the gantry 
rotation centre is displaced of 6mm with respect to the Y axis. 

2.2.5 Table rotation axis 

In this process, images are acquired with the collimator and the gantry at 0° position.  

The position of the radiation field centre being stationary is used as reference point while the tungsten ball centre 
positions describe a semicircle around this point (Figure 6).  

 

Fig. 6. Table/collimators rotation analysis. Six angles are used in this example (90, 120, 150, 180, 210, 240 and 270°), a 
displacement of 6 mm of the table/collimators rotation axis with respect to the X axis is introduced. The stationary 
point is represented with “�”, while “�” represent points describing a semicircle. The result found is 12 mm. This 
value was found on sensor level; knowing that the source sensor distance is 2 meters and the table sensor distance is 
equal to 1 meter, the real deviation value on (table level) is equal to 6mm. 

In order to find the table rotation axis centre, the mean square error parameter p (equation 1) is minimized: 
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i

i dyxdyxp
2

,,  (1) 



 
 

 

 

where (x, y) represents the coordinates of the circle centre, id  is the distance from the centre of rotation to the shadow 

centre imagei and d indicates the mean value of all id . 

2.2.6 Collimator rotation axis 

The process here is similar to the table rotation axis analysis, with the difference that the reference point here is the 
tungsten ball instead of the radiation field centre.  

2.2.7 Mechanical isocentre 

The calculated isocentre of the gantry, table and collimator are projected on the plane formed by the lateral and 
longitudinal axis. These projections represent 3 points on this plane. 

The position of the mechanical isocentre is on the line formed by the gantry rotation axis projection and parallel to 
longitudinal axis. This position is calculated by finding the point on this line has a minimum distance to the 
collimator/table projection points. 

2.3 Digital Test Object (DTO) 

In order to facilitate the quality control development process of the software algorithms and to test their limits, DTOs 
(Digital Test Objects) were generated. These DTOs represent a simulation of the images issued from the physical test 
object used for the test proposed by Winston and Lutz. 

Many factors are involved in the production and formation of the images issued from a portal vision system: physical, 
geometrical…but since this study relay mainly on the position and the size of the patterns within the simulated images, 
only geometrical aspect are taken into consideration and substitutes physical aspects within the generated DTOs. 

Several parameters representing the acquisition geometry, material and image properties, are used in order to generate 
DTOs. These parameters as well as other options are defined by the user through a graphical user interface developed for 
this purpose (Figure 7). 

 

Fig. 7. Graphical user interface for the parameters of the Winston and Lutz DTOs. Acquisition geometry parameters: gantry 
rotation axis, source – rotation axis distance, acquisition diameter, source – collimator distance, ball position (x, y z), 
beam size, starting acquisition angle and step angle. Materials properties: sensor length, collimator thickness, 
collimator absorption coefficient, ball absorption coefficient. 

2.3.1 Three-dimensional scene construction 

Our objective is to create two-dimensional images, where each image represents the projection of the three-dimensional 
scene into the sensor, with respect to certain projection angle. Each pixel within images have an intensity proportional to 
the size of intersection between the materials in the three-dimensional scene (collimators and ball), and the ray formed 
from this pixel and the source point (source ray).  

In order to do so, a three-dimensional scene is being constructed from all the parameters entered by the user (Figure 8). 



 
 

 

 

 

Fig. 8. Three dimensional reconstructed scene of the image acquisition process. 

The first step of this process consists of finding the positions of the points representing respectively the source and the 
sensor centre. Knowing the rotation centre position, the projection angle and the rotation diameter, a line denoted 
(projection line) that passes though the rotation point and parallel to the angle of projection is constructed, so the position 
of the sensor centre is calculated from the intersection between the projection line and a sphere centered on the rotation 
centre with a diameter equals to the rotation diameter. Knowing the sensor centre position and the projection angle, the 
plane coefficient that passes through the sensor centre and perpendicular to the projection angle can be determined. 

Using the same method, the position of the point representing the source centre is determined by changing the radius of 
the sphere used to calculate the intersection. The new sphere radius is equal to the source – rotation axis distance. Figure 
9 shows the positions of the sensor and source points where, “X” is the rotation axis, the angle of projection is 30 
degrees, the source-rotation axis distance is equal to 1 meter and the rotation diameter is equal to 2 meter. 

 

Fig. 9. Positions of the points representing the source and the sensor centre, the projection line with an angle of 30°. 



 
 

 

 

Four collimator leaves are also created as shown in Figure 10 (a). A collimator leaf is represented with three planes as 
shown in Figure 10 (b). These planes will be used in order to find the size of the segment of the intersection between the 
collimator and the rays. 

 

Fig. 10. (a) Two simulated collimator leaves with an aperture of 50mm, a thickness of 80mm and a source collimator 
distance of 500mm. (b) Planes used to find the segment of intersection between the source ray and collimators.  

Knowing the collimator aperture and thickness, the segment of intersection between the source ray and the collimators 
can be calculated.  

2.3.2 Two-dimensional image 

A two-dimensional integer array of 

2

_
_










lengthpixel

lengthsensor
 size is created. This array represents the image issued from 

the flat panel sensor depicted in Figure 11. For each point in the 2D image, its 3D coordinate is calculated according to 
the projection angle. Three-dimensional coordinates of points within an image representing an angle of projection 
between 0 and 90° are equal to: 

 ( ) lengthpixelxwidthxx DsensorD _2 23 ×−+=   
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Where ),,( 333 DDD zyx , ),,( sensorsensorsensor zyx  are the three-dimensional coordinates respectively of the point and the 

sensor centre, heigth  and width  are the height and width of the two-dimensional image, and α  is the projection 

angle. 



 
 

 

 

 

Fig. 11. Process of constructing a two-dimensional image from a three dimensional scene.  

The value of the intensity of each pixel is based on the segment of intersection between the source ray and the materials 
in the three dimensional scene according to the formulae: 
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 where FinalI  is the transmitted intensity (pixel intensity), 0I  is the incident intensity, 0d  is the incident distance , 

dSC is the pixel source distance, µ  is the lineic absorption coefficient  and d  is the intersection thickness 

Three types of DTO are simulated according to the acquisition type (gantry, collimator and table). 

 

Fig. 12. DTOs generated with a source rotation axe distance equal to 1 meter, an acquisition diameter equal to 1.4 meters, 
0.2 meters sensor size, source collimator base distance equal to 0.4 meters, a collimator thickness of 0.08 meters, a field 
length of 0.05 meters and a ball diameter of 0.005 meters. (a) DTO simulating an image with collimator and table held 
in 0° and a gantry angle of 30°, a ball misalignment of 0.003 meters with respect to the Y axe is introduced. (b) DTO  
that simulates an image with gantry and table held in 0° and a collimator angle of 45°, a collimator rotation axe 
misalignment of 0.003 meters with respect to the X axe is introduces. (c) DTO with gantry and collimator held in 0° 
and table angle of 90°, a table rotation axe misalignment of 0.003 meters with respect to the X axe is introduced.  

2.3.3 DICOM conversion 

The two-dimensional images are finally converted to DICOM format. A module that creates DICOM file is being used 
for this purpose7. All DICOM fields that are necessary to accomplish the quality control test using our software are 
added. These fields are the center name, installation name and the patient name. 



 
 

 

 

3. RESULTS 

A set of DTOs were being generated and controlled using our algorithms. These DTOs are created with a source rotation 
axis distance equal to 1 meter, an acquisition diameter equal to 1.4 meters, 0.2 meters sensor size, source collimator base 
distance equal to 0.4 meters, a collimator thickness of 0.08 meter, a field length of 0.05 meter and a ball diameter of 
0.005 meter. The control algorithms contain a lot of adjustable parameters as the zoom factor, the interpolation 
algorithm, the beam detection method (global or local) and the size of the Gaussian kernel. 

Results of controlling a set of DTOs with certain amount of rotation axis misalignments are presented below. 

 

Fig. 13. DTOs generated with a table rotation axis misalignment of 3mm and 5mm with respect to the X (lateral) and Z 
(longitudinal) axis. Gantry and collimator are held in 0°, while 6 angles are used for the table rotation (90, 120, 150, 
180, 210, 240 and 270°). (a) DTO simulating an image with table rotation axis of 30°. (b) Results showing the 
calculated rotation axis misalignment which retrieves the same input values.  

 

 

Fig. 14. DTOs generated with a collimator rotation axis misalignment of 2 mm and 1 mm with respect to the X (lateral) and 
Z (longitudinal) axis. Gantry and collimator are held in 0°, while 6 angles are used for the table rotation (90, 120, 150, 
180, 210, 240 and 270°). (a) DTO simulating an image with collimator rotation axis of 120°. (b) Results showing the 
calculated rotation axis misalignment.  



 
 

 

 

 

Fig. 15. DTOs generated with a gantry rotation axis misalignment of 6mm and -2mm with respect to the longitudinal and 
anterior/posterior axis. Table and collimator are held in 0°, while 5 angles are used for the table rotation (0, 30, 60, 90, 
120 and 150°). (a) DTO simulating an image with gantry rotation axis of 90°. (b) Results showing the calculated 
rotation axis misalignment.  

Finally, the treatment machine isocentre is calculated using the positions of the gantry, table and collimator rotation 
centres. In this case the calculated position of treatment machine isocentre is (-0.006, 0.002, -0.0035). 

4. DISCUSSION 

DTOs were being generated in order to control our algorithms. 

A large panel of DTOs with different various calibrated amounts of rotation axis misalignment was being generated. 
These DTOs are automatically converted to DICOM format and controlled. Results are then compared to the well known 
amount of rotation axis misalignments initially entered.  

Results issued from the application of the QFD-IQC-WL algorithms showed high level of precision. For the 
misalignment of the tungsten ball with respect to the mechanical isocentre, the level of precision of the calculated 
position of the centre is equal to the size of the pixel within the zoomed image.  

However, this technique shows that errors may occur if: (a) the searching area does not contain the image of the tungsten 
ball due to a large misalignment of the ball with respect to the mechanical isocentre or if the searching area is too small. 
(b) The local method for detecting the field is used with images where the gantry and table are held in 0° while the 
collimator is rotating.  

 

Fig. 16. (a) DTOs generated with ball misalignment of 7mm to the longitudinal axis. The position of the image of the 
tungsten ball is outside the searching area. (b) Image with gantry and Table held in 0°, while the collimator is rotated to 
30°. Errors with detection of the field can be seen in the image.  



 
 

 

 

5. CONCLUSION 

A technique of generating DTOs which simulate gantry, table and collimator rotation axis misalignments is presented in 
this paper. 

These DTOs confirm that the test proposed by Winston and Lutz is an accurate tool for determining the position and the 
size of the isocentre, as well as the movements of the sensor. Furthermore, this paper shows that the use of these DTOs is 
an important method to help verifying all software features.  

This technique integrated in the QFD-IQC-WL software allows the user to perform his own auto-tests. This software 
proves to be an important and easy tool to perform an automated analysis of the test proposed by Winston and Lutz. 

The author plans to extend this work by introducing the simulation of the gantry flex map and flat panel movements of 
linear accelerator into the DTOs. 
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