
A Computation Core for Communication Refinement of

Digital Signal Processing Algorithms

Sylvain Huet, Emmanuel Casseau, Olivier Pasquier

To cite this version:

Sylvain Huet, Emmanuel Casseau, Olivier Pasquier. A Computation Core for Communica-
tion Refinement of Digital Signal Processing Algorithms. DSD ’06: Proceedings of the 9th
EUROMICRO Conference on Digital System Design, Aug 2006, Cavtat, Croatia. pp.240–250,
2006. <hal-00332396>

HAL Id: hal-00332396

https://hal.archives-ouvertes.fr/hal-00332396

Submitted on 20 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53019396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00332396

A Computation Core for Communication Refinement of Digital Signal

Processing Algorithms

Sylvain Huet

Université de Bretagne Sud

LESTER Lab CNRS FRE 2734

56321 Lorient Cedex, France

sylvain.huet@univ-ubs.fr

Emmanuel Casseau

Université de Bretagne Sud

LESTER Lab CNRS FRE 2734

56321 Lorient Cedex, France

emmanuel.casseau@univ-ubs.fr

Olivier Pasquier

Polytech’Nantes

IREENA

BP50609, 44306 Nantes Cedex 3, France

olivier.pasquier@polytech.univ-nantes.fr

Abstract

The most popular Moore’s law formulation, which

states the number of transistors on integrated circuits

doubles every 18 months, is said to hold for at least an-

other two decades. According to this prediction, if we

want to take advantage of technological evolutions, de-

signer’s productivity has to increase in the same pro-

portions. To take up this challenge, system level design

solutions have been set up, but many efforts have still

to be done on system modelling and synthesis. In this

paper we propose a computation core synthesis method-

ology that can be integrated on the communication re-

finement steps of electronic system level design tools.

In the proposed approach, computation cores used for

digital signal processing application specifications rely-

ing on coarse grain communications and synchroniza-

tions (e.g. matrix) can be refined into computation cores

which can handle fine grain communications and syn-

chronizations (e.g. scalar). Its originality is its ability

to synthesize computation cores which can handle fine

grain data consumptions and productions which respect

the intrinsic partial orders of the algorithms while pre-

serving their original functionalities. Such cores can be

used to model fine grain input output overlapping or it-

eration pipelining. Our flow is based on the analysis of

a fine grain signal flow graph used to extract fine grain

synchronizations and algorithmic expressions.

1 Introduction

1.1 Problem formulation

The classical approach for designing complex Digi-

tal Signal Processing (DSP) applications is based on a

top-down refinement flow where an initial abstract spec-

ification of the application is progressively and hierar-

chically decomposed into interacting subsystems.

There are many paths leading from the specification of

a system to its implementation. To mark it out, some re-

searchers have established graphical taxonomies which

can help the designers to analyse their designs or to de-

fine the path which best suits their needs. The Y chart

model due to Gajski [5] classifies the abstractions of a

system on structural, behavioural and geometrical axes.

Nevertheless, it lacks of a representation of time and

data abstractions. This is the reason why Ecker et al. in-

troduce the Design Cube [3], where a design flow can be

categorized according to the three following axes: tim-

ing, values, view. Seven years later, Jantsch et al. intro-

duced the Rugby Model [6]: they extend the notions of

timing, values, view and add a fourth dimension, com-

munication, to be able to classify modern hardware soft-

ware design flows. The idea of the Design Cube has

also been updated by Thabet et al. [9] with the aim

at defining a communication refinement flow which in-

cludes data type refinements. This dimension is espe-

cially important in the context of hardware refinement.

1

Actually, DSP application specifications often rely on

abstract data types (e.g. matrix) whereas their hardware

implementations work on scalar arithmetic operators in

a parallel way. It results parallel scalar communica-

tions between the actors of the systems. From the im-

plementation point of view, hardware communications

can be managed according to these two levels of abstrac-

tion leading to the two following design paradigms. (1)

For each abstract data type communication, two mem-

ories of a size of the abstract data type can instantiated

and will alternatively be used as a buffer memory and a

working memory: the receiver reads data in the work-

ing memory whereas the sender writes data in the buffer

memory; when the receiver has finished to consume data

located in the working memory and the buffer memory

is full, the roles are reversed. This scheme can be used

to implement communications with abstract data types

synchronizations but it can lead to an higher memory

cost and data latency than the following technique. (2)

The communication patterns of the receivers and senders

are adapted at the scalar grain with the view to minimize

the memory costs and the latency. Filo et al. [4], Coussy

et al. [2] work on that problematic in the context of

High Level Synthesis (HLS). However, it would be in-

teresting to introduce the analysis of the fine grain com-

munication patterns before the synthesis process. This

can be achieved by having simulation models which can

be synchronized at fine grain. In this paper we pro-

pose a computation core synthesis methodology which

allows to generate such models: it allows to model fine

grain Input Output (IO) overlapping, while preserving

the original algorithm functionality. We call this com-

putation core a Fine Grain Synchronized Computation

Core (FGSCC).

1.2 Paper organisation

Section two presents some useful prerequisites to

the comprehension of the next sections. Section three

presents the FGSCC and the design flow used to synthe-

size it. Section four illustrates the synchronization and

fine grain computation aspects. Section five concludes

and gives an overview of our current work.

2 Definitions

This section gives some definitions and basic notions

that are used throughout the paper.

Definition 2.1 (Fine grain data). A fine grain data is a

data which is operand or result of an operator used for

the hardware implementation of an algorithm. In the

context of this paper, a fine grain data is a scalar.

Definition 2.2 (Coarse grain data). A coarse grain data

is a conceptual clustering of fine grain data. Matrix,

vectors, are common coarse grain data used to specify

DSP applications.

Definition 2.3 (Algorithm). An algorithm is a finite set

of well-defined instructions for accomplishing some task

which, given an initial state, will terminate in a corre-

sponding recognizable end-state. From the DSP appli-

cation modelling point of view an algorithm is an indi-

visible process that is fired when all its inputs are avail-

able and that will then produce all its outputs. For ex-

ample, the algorithm presented on figure 1 is fired when

A and B are available and then produces C.

Algorithm PRODMAT with

constant N = 10;

input: A[1:N][1:N] of integer;

input: B[1:N][1:N] of integer;

output : C[1:N][1:N] of integer;

begin

//matrix product code

end

Figure 1. matrix product algorithm

Definition 2.4 (Interface). An interface is the place

where an algorithm communicates with its environment.

It is composed of oriented communication ports. In the

context of DSP algorithm, we classify the interfaces into

two classes, the input interfaces used to receive infor-

mation, the output interfaces used to send information

to their environment. The algorithm presented on figure

1 has one input interface composed of the ports A and B

and one output interface composed of the port C.

Definition 2.5 (Fine grain interface). A fine grain inter-

face is an interface where all the ports exchanged fine

grain data.

Definition 2.6 (Coarse grain interface). A coarse grain

interface is an interface where at least one port ex-

change coarse grain data.

Definition 2.7 (Algorithmic iteration). An algorithmic

iteration is composed of the set of the input values and

the set of the resulting output values obtained by the al-

gorithm firing. An algorithmic iteration is identified by

an iteration number which is incremented by one each

firing, consider the algorithm f .

Let Ii =
{

ii1, i
i
2, . . . , i

i
m

}

be the set of the values of the

2

inputs of the algorithm f at the iteration i.

Let Oi =
{

oi
1, o

i
2, . . . , o

i
n

}

be the set of the values of the

outputs of the algorithm f at the iteration i, obtained by

the relation Oi = f(Ii).
The algorithmic iteration number i of f is the couple

(Ii, Oi)

Definition 2.8 (Fine grain input output overlapping).

Fine grain input output overlapping refers to the inter-

leaving of consumptions and productions of fine grain

data. For example, if we consider figure 1, C[1][1] can

be produced as soon as the first row of A and the first

column of B are available. In such a case, we can say

that we have an overlapping of the consumption of the

first row of A and the first column of B with the produc-

tion of C[1][1].

3 Computation Core Synthesis

The first subsection presents the formal model of ex-

ecution of our FGSCC. Subsection two shows how we

implement it. At last, subsection three presents the de-

sign flow we put into practice to generate a FGSCC.

3.1 The formal model of execution

The first step of the synthesis of our FGSCC consists

in transforming the original coarse grain interfaces of the

algorithm in fine grain interfaces. The second step con-

sists in refining the original indivisible algorithm into

multiple algorithms that allow to compute fine grain out-

puts according to the fine grain inputs and to extract the

fine grain synchronizations.

3.1.1 coarse grain to fine grain algorithm interface

refinement

As illustrated on figure 2, coarse grain to fine grain in-

terface transformation is a trivial refinement. It consists

in defining bijections to split coarse grain interfaces into

fine grain interfaces.

3.1.2 coarse grain synchronized algorithm to fine

grain synchronized algorithm

The previous step is not sufficient to to generate a

FGSCC. Indeed it can be used to model fine grain com-

munications, but the computations remain coarse grain

synchronized. To be able to synchronize them with

fine grain data, it is necessary to have the algorithmic

expressions of the fine grain outputs according to the

fine grain inputs. Moreover, in this paper we focus on

in N.N (A[N][N])

in 1 (A[1][1])

in 2.N.N (B[N][N])

in N.N+1 (B[1][1])
(B[N][N]) out N.N

(B[1][1]) out 1

Matrix Product

Matrix B

Matrix C

Matrix A

Matrix Product

Figure 2. coarse grain to fine grain algo

rithm interface transformation

DSP algorithms. These ones can have an inter-iterations

memory effect, that is to say the algorithm can use

past information to compute the present, this is the

consequence of the z−1 operators. We introduce the

possibility to model this memory effect with fine grain

variables which we call ageing variables. The reader

can consult subsection 4.1 to have a practical example

of an ageing variable use. Our model of execution is

formalised below. Consider the algorithm f .

Let Ii =
{

ii1, i
i
2, . . . , i

i
m

}

be the set of the values of the

fine grain inputs of the algorithm f at the iteration i.

Let Oi =
{

oi
1, o

i
2, . . . , o

i
n

}

be the set of the values of

the fine grain outputs of the algorithm f at the iteration

i.

Let Ai =
{

ai
1, a

i
2, . . . , a

i
k

}

be the set of the values of

the values of the ageing variables of the algorithm f at

the iteration i.

Let Fa = {fa,1, fa,2, . . . , fa,k} be the set

of the functions which compute respectively
{

ai+1

1 , ai+1

2 , . . . , ai+1

k

}

according to Ii and Ai.

Let Fo = {fo,1, fo,2, . . . , fo,n} be the set of the

functions which compute respectively
{

oi
1, o

i
2, . . . , o

i
n

}

according to Ii and Ai.

The finest synchronization grain is obtained for the

functions of Fa and Fo which have the smallest start

space. For example, let consider C[1][1] of figure 1.

It is possible to find an algorithmic expression which

computes C[1][1] according to the whole matrices

A and B. Nevertheless C[1][1] can be computed in

function of the first row of A and the first column of

B, these constitute the smallest start space to compute

C[1][1] and thus offer the finest synchronization grain

on C[1][1].

From a practical point of view, we obtain such func-

tions through the analysis of a fine grain Signal Flow

Graph (SFG) representation of the algorithms.

3

3.2 The computer model of execution

To build a computer model of the previous formal

model of execution, we define (1) an iteration

object which is used to model the iterations (2) an

iteration_vector object which is used to manip-

ulate the FGSCC.

3.2.1 The iteration object

The figure 3 presents the iteration object. The two

following paragraphs present its attributes and methods.

Class iteration< type >

Private Attributes

matrix< bool > * m_dep

matrix< bool > * v_in_pre

matrix< type > * v_in_val

matrix< bool > * v_out_pre

matrix< type > * v_out_val

matrix< bool > * v_out_con

Public Member Functions

bool in_exists (int ref)

bool out_exists (int ref)

bool put (type val, int ref)

type get (int ref)

bool is_consumed (int ref)

bool is_consumed ()

bool is_in_ageing (int ref)

bool is_out_ageing (int ref)

bool refresh ()

Figure 3. iteration object

m_dep
i

=

o
i

1 . . . o
i

n
a

i+1

1 . . . a
i+1

k

i
i

1 bool . . . bool bool . . . bool

. .

i
i

m
bool . . . bool bool . . . bool

a
i

1 bool . . . bool bool . . . bool

. .

a
i

k
bool . . . bool bool . . . bool

Figure 4. dependencies matrix

Attributes - The dependencies matrix, (figure 4)

The dependencies matrix, m_dep, is composed of

booleans which represent (1) the dependencies of the

outputs of the current algorithmic iteration according to

v_in_val
i

=

i
i

1 fgdt

.

i
i

m
fgdt

a
i

1 fgdt

.

a
i

k
fgdt

, v_out_vali
=

o
i

1 fgdt

.

o
i

n
fgdt

a
i+1

1 fgdt

.

a
i+1

k
fgdt

Figure 5. input and output values vector

v_in_pre
i

=

i
i

1 bool

.

i
i

m
bool

a
i

1 bool

.

a
i

k
bool

, v_out_prei
=

o
i

1 bool

.

o
i

n
bool

a
i+1

1 bool

.

a
i+1

k
bool

Figure 6. input and output presences vec

tor

the inputs and the ageing variables of the current algo-

rithmic iteration (2) the dependencies of the of ageing

variables of the next algorithmic iteration according

to the inputs and the ageing variables of the current

algorithmic iteration. True represents a dependency,

false a non dependency.

- The values vector, (figure 5)

The input values vector, v_in_val, contains the

values of the inputs and the ageing variables of the

current algorithmic iteration. The output values vector,

v_out_val, contains the values of the outputs of the

current algorithmic iteration. The data types of theses

values are fine grain data type, referred as fgdt on the

figure.

- The presences vector, (figure 6)

The input presences vector, v_in_pre, is composed

of booleans which represent the presences of the inputs

and the ageing variables for the current algorithmic iter-

ation. If true the corresponding input or ageing variable

is present in the current algorithmic iteration. That is to

say the corresponding value in v_in_pre is valid. The

output presences vector, v_out_pre, is composed of

booleans which indicate if the corresponding output

value in v_out_val is valid.

- The output consumption vector, (figure 7)

4

v_out_con
i

=

o
i

1 bool

.

o
i

n
bool

a
i+1

1 bool

.

a
i+1

k
bool

Figure 7. output consumption vector

The output consumption vector v_out_con is com-

posed of booleans which indicates which values of

v_out_val has been consumed.

Methods - bool in_exists (int ref)

This method is used to know if the element at row ref

in v_in_val is already present. If yes return true, else

return false.

- bool out_exists (int ref)

This method is used to know if the element at row ref

in v_out_val is valid, i.e. is computed. If yes return

true, else return false.

- bool put (type val, int ref)

This method is used to put the value val at row ref in

v_in_val. Then the boolean at row ref in v_in_pre

is set to true. Return true if the value is put, i.e. if row

ref of v_in_pre equals false, else return true.

- type get (int ref)

This method is used to get the value at row ref of

v_out_val. When called, the boolean at row ref of

v_out_con is set to true.

- bool is_consumed (int ref)

This method is used to know if the value of

v_out_val at row ref has been consumed.

- bool is_consumed ()

The method is used to know if all the values of the iter-

ation have been consumed.

- bool is_in_ageing (int ref)

The method is used to know if the value at row ref in

v_in_val is an ageing variable. If yes return true, else

return false.

- bool is_out_ageing (int ref)

The method is used to know if the value at row ref in

v_out_val is an ageing variable. If yes return true,

else return false.

- bool refresh ()

This method computes the the output and ageing vari-

able. Its algorithm can be summarized as follow: for

each column of the m_dep, if the corresponding out-

put or ageing variable is not computed and v_in_pre

equals the column of m_dep, compute it, put the result

in v_out_val and set the corresponding boolean to

true in v_out_pre.

3.2.2 The iteration_vector object

The iteration vector object is the interface of the

FGSCC. The figure 8 presents the iteration object.

The two following paragraphs present its attributes and

methods.

Class iteration_vector< type >

Private Attributes

iteration< type > * iteration_list

Public Member Functions

bool put (type val, int ref)

bool exists (int ref)

type get (int ref)

Figure 8. iteration_vector object

Attributes - iteration_list

It is an ordered list which contains the instances of alive

iterations. An alive iteration is an iteration which has

not consumed and produced all its fine grain inputs and

outputs.

Methods - bool put (type val, int ref)

This method is used to put the input value val at position

ref in the FGSCC. Its algorithm can be summarized as

follow:

1. get the older iteration which has no input value at

position ref

2. if a such iteration does not exist create a new itera-

tion and add it at the end of the list

3. put the value val at position ref in the iteration

4. refresh the iteration

5. if ageing variables has been computed put them in

the next iteration. To perform that task the present

algorithm is applied in a recursive way.

- bool exists (int ref)

This method is used to check if at least one iteration con-

tains a value at position ref.

5

- type get (int ref)

This method is used to get the older value at position ref

in the iteration_list. Its algorithm can be sum-

marized as follow:

1. get the older iteration which has not consumed out-

put value at position ref

2. if a such iteration does not exist return 0

3. else get the value in the found iteration

4. if this iteration is now entirely consumed, remove

it from the iteration_list

3.3 The automated flow

Figure 9 presents the automated flow we use to gen-

erate our FGSCC. The initial algorithmic description is

transformed into a fine grain SFG thanks to the GAUT

[7] SFG generator. It also performs the coarse grain to

fine grain interface transformation. The dependencies

matrix and the functions contained in the sets Fa and

Fo are extracted from the analysis of the SFG. Then an

eXtensible Markup Language (XML) generator trans-

forms these information into an XML format. This rep-

resentation is then transformed according to an eXten-

sible Stylesheet Language (XSL) transformation. The

use of the couple XML, XSL allows to have a flex-

ible code generation mechanism. At the moment we

have an XSL transformation which generates a C code

FGSCC, i.e. which generate the iteration_list

and iteration objects. For more information about

XML and XSL the reader is invited to consult [8].

SFG Generator

Algorithm

SFG Graph

SFG Graph Analysis

Dependencies Matrix, Fine Grain Algorithms

XML Generator

XML Representation

XSL Transformation

Fine Grain Synchronized Computation Core

Figure 9. the automated flow

4 Examples

To illustrate the two key concepts of our FGSCC, (1)

fine grain synchronization, i.e. the dependencie matrix

(cf. figure 4), (2) the fine grain algorithmic functions of

Fa and Fo, i.e. fine grain computations (cf. sub section

3.1) , this section presents two pedagogical examples.

The first one has no interest in the context of coarse

grain to fine grain refinement but illustrates the ageing

variable concept. The second one deals with the ma-

trix product presented in figures 1 and 2. In a last third

sub-section, we present the insertion of a matrix prod-

uct FGSCC in an Electronic System Level (ESL) design

tool named Cofluent Studio [1].

4.1 FIR Filter example

A N taps FIR filter has one input xn, one output yn

and N coefficients hi. It has a N-1 memory effect. Its

algorithmic expression is:

yn =
N−1
∑

i=0

hixn−i

where xn−i is the value of the input i algorithmic itera-

tions before.

Let consider the case of a four taps FIR filter. The ob-

tained dependencies matrix is:

m_dep
i =

yi

n xi+1

n−1
xi+1

n−2
xi+1

n−3

xi

n true true false false

xi

n−1 true false true false

xi

n−2 true false false true

xi

n−3 true false false false

The obtained Fo set is:

yi
n = h0x

i
n + h1x

i
n−1 + h2x

i
n−2 + h3x

i
n−3

The obtained Fa set is:

{

xi+1

n−1
= xi

n

xi+1

n−2
= xi

n−1

xi+1

n−3
= xi

n−2

From the analysis of M i
d we can conclude (1) that

the FIR filter computation core is able to compute the

output yi
n as soon as xi

n, xi
n−1, x

i
n−2, x

i
n−3 are avail-

able (2) that the ageing variables xi
n−1, x

i
n−2, x

i
n−3 are

available as soon as M i−1

d is computed that is to say as

soon as xi−1
n arrives, and so on. The reader can point

6

out the initialization problem: to have a working com-

putation core, the ageing variables have an initial value

in v_in_val0 and their corresponding boolean in the

presences vector v_in_pre0 are set to true.

4.2 Matrix product example

The matrix product example (cf. figures 1 and 2) is

an interesting example since it is a simple example of

potential fine grain IO overlapping. Let consider the al-

gorithm of figure 1 with N = 2. The obtained depen-

dencies matrix is:

m_dep
i =

ci

11 ci

12 ci

21 ci

22

ai

11 true true false false

ai

12 true true false false

ai

21 false false true true

ai

22 false false true true

bi

11 true false true false

bi

12 false true false true

bi

21 true false true false

bi

22 false true false true

The obtained Fa set is empty. The obtained Fo set is:

ci

11
= ai

11
bi

11
+ ai

12
bi

21

ci

12
= ai

11
bi

12
+ ai

12
bi

22

ci

21
= ai

21
bi

11
+ ai

22
bi

21

ci

22
= ai

21
bi

12
+ ai

22
bi

22

The analysis of the dependencies matrix and the set Fo

shows that the computations of ci
11, c

i
12, c

i
21, c

i
22 are now

synchronized on rows of the matrix A and columns of

the matrix B. For example our fine grain computation

core allow to produce c11 as soon as the first row of A

and the first column of B are available.

4.3 Matrix product integrated in an ESL de
sign tool

Let consider the following refinement of a NxM ma-

trix product C=A.B:

• it has two input ports:

a1_to_pm_refinement,

a2_to_pm_refinement, which carry vec-

tors of size M. On the first one it receives the

rows of the left hand side operand, on the second

one it receives the columns of the right hand side

operand.

• it has two output ports:

pm_refinement_01_to_c,

pm_refinement_02_to_c, which carry

scalars. On the first one it produces the scalars of

the result matrix which have an even row index,

starting by column one, on the second one, it

produces the scalars of the result matrix which

have an odd row index, starting by the first column.

Let ri, i = 0..N − 1 be the lines of the left hand side

operand, let ci, i = 0..N − 1 be the columns of the right

hand side operand, let sij , i = 0..N − 1, j = 0..N − 1
be the scalar results of the matrix product.

In a traditional communication refinement approach, the

refinement of a coarse grain matrix product to the matrix

product specified above consists in refining the commu-

nication interfaces, i.e. matrix are sliced into vectors

and scalars without refining the initial algorithm specifi-

cation. Thus the computations remain coarse grain syn-

chronized. Figure 10 presents a time line we obtained

with Cofluent Studio [1] of a such refinement for N=3,

M=5. We can point out there is no fine grain input out-

put overlapping.

With our approach we can model all the potential fine

grain synchronizations of the matrix product algorithm.

Figure 11 presents a time line obtained in the same con-

ditions than before, that is to say we emit the data in

the following order: r0, c0, r1, c1, r2, c2. We can now

observe the fine grain input output overlapping and thus

can do finest input output order and timing analysis.

Figure 10. time line refined matrix product

7

Figure 11. time line refined matrix product

with FGSCC

5 Conclusions and Work in progress

In this paper we propose a computation core which

can be used to model fin grain IO overlapping and it-

eration pipelining while preserving the initial algorithm

functionality. A design flow has been developed to au-

tomate the generation of such core. We are now work-

ing on the integration of a such refinement in the ESL

design tool Colfuent Studio [1] with the two following

objectives: (1) interconnect fine grain synchronized al-

gorithms to extract fine grain IO constraints which can

be used to constrain an HLS tool [2] (2) model Register

Transfert Level (RTL) components with an higher level

of abstraction for the computations but with Cycle Ac-

curate, Bus Accurate (CABA) interfaces.

6 Acronyms

DSP Digital Signal Processing

RTL Register Transfert Level

HLS High Level Synthesis

IO Input Output

FGSCC Fine Grain Synchronized Computation Core

SFG Signal Flow Graph

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

ESL Electronic System Level

CABA Cycle Accurate, Bus Accurate

References

[1] Cofluent design, cofluent studio, http :

//www.cofluentdesign.com..
[2] P. Coussy, A. Baganne, and E. Martin. Communication

and timing constraints analysis for ip design and integra-

tion. In VLSI-SOC, pages 38–43, 2003.

[3] W. Ecker and M. Hofmeister. The design cube: a new

model for vhdl designflow representation. In EURO-DAC

’92: Proceedings of the conference on European design

automation, pages 752–757, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[4] D. Filo, D. Ku, C. Coelho, and G. D. Micheli. Interface

optimization for concurrent systems under timing con-

straint. In IEEE Transactions on VLSI Systems, 1993.

[5] D. Gajski. The structure of a silicon compiler. In Pro-

ceedings of IEEE ICCD, 1987.

[6] A. Jantsch, S. Kumar, and A. Hemanimumi. The rugby

model: a conceptual frame for the study of modelling,

analysis and synthesis concepts of electronic systems. In

DATE ’99: Proceedings of the conference on Design, au-

tomation and test in Europe, page 54. ACM Press, 1999.

[7] E. Martin, O. Sentieys, H. Dubois, and J. Philippe.

Gaut: An architectural synthesis tool for dedicated signal

processors. In EURO-DAC, 1993.

[8] A. Skonnard. Essential XML Quick Reference: A

Programmer’s Reference to XML, XPath, XSLT, XML

Schema, SOAP, and More. Addison-Wesley, 2001.

[9] F. Thabet, J. L. Goff, P. Coussy, and E. Martin. A method-

ology for timing and structural communication refinement

in dsp systems. In International Conference on Microelec-

tronics (ICM), 2004.

8

