
Validation of bitstream syntax and synthesis of parsers

in the MPEG Reconfigurable Video Coding framework

Mickaël Raulet, Jonathan Piat, Christophe Lucarz, Marco Mattavelli

To cite this version:

Mickaël Raulet, Jonathan Piat, Christophe Lucarz, Marco Mattavelli. Validation of bitstream
syntax and synthesis of parsers in the MPEG Reconfigurable Video Coding framework. Signal
Processing Systems, 2008. SiPS 2008. IEEE Workshop on, Oct 2008, Washinghton, United
States. pp.293 - 298, 2008, <10.1109/SIPS.2008.4671778>. <hal-00340390>

HAL Id: hal-00340390

https://hal.archives-ouvertes.fr/hal-00340390

Submitted on 20 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53019242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00340390


VALIDATION OF BITSTREAM SYNTAX AND SYNTHESIS OF PARSERS IN THE MPEG
RECONFIGURABLE VIDEO CODING FRAMEWORK

Mickaël Raulet, Jonathan Piat

Institut d’Electronique et de
Télécommunications de Rennes (IETR)

UMR CNRS 6164 (France)
Email: mraulet@insa-rennes.fr

Christophe Lucarz, Marco Mattavelli

Microelectronic Systems Laboratory (GR-LSM)
Ecole Polytechnique Fédérale

de Lausanne (Switzerland)
{christophe.lucarz,marco.mattavelli}@epfl.ch

ABSTRACT

Video coding technology has evolved in the past years into a
variety of different and complex algorithms. So far the spec-
ification of such standard algorithms has been done case by
case providing monolithic textual and reference SW specifi-
cations, but without any attention on commonalities and the
possibility of incremental improvements or modifications of
such monolithic standards. The MPEG Reconfigurable Video
Coding (RVC) framework is a new ISO standard, currently
under development aiming at providing video codec specifi-
cations at the level of library functions instead of monolithic
algorithms. The possibility of selecting a subset of standard
coding algorithm to specify a decoder that satisfies applica-
tion specific constraints is very attractive. However, such pos-
sibility of reconfigure codecs requires systematic procedures
and tools capable of describing the new bitstream syntaxes
of such new codecs. Moreover, it is also necessary to gener-
ate the associated parsers that are capable of parsing the new
bistreams because these components cannot be available “a
priori” in the RVC library. This paper further explains the
problem and describes the technologies used for describing
new bitstream syntaxes in RVC. In addition, the paper de-
scribes some methodologies and the tools for the validation
of bitstream syntaxes descriptions as well as an example of
systematic procedures for the direct synthesis of parsers in
the same data flow formalism in which the RVC library com-
ponent are implemented.

1. INTRODUCTION

Video coding has changed a lot since its infancy in the early
nineties. The first original MPEG video coding standard was
released in 1993, and since then MPEG-2, MPEG-4 and AVC
(Advanced Video Coding) have been produced, and SVC
(Scalable Video Coding) has been recently standardized.
Each successive codec released by MPEG has been substan-
tially more complex than the last, typically yielding twice
the compression performance of its predecessor. Because of
this growing complexity, the textual specification of recent

standards (since MPEG-4) has lost its normative role, being
replaced by the reference software implementation as the
true normative specification. However, while this normative
specification (typically in generic C or C++) is very precise,
it presents a number of limitations. Large portions of com-
pression technology (i.e. coding tools) are common across all
MPEG standards, yet there is no direct way to recognize or
exploit this commonality. Additionally, the sequential C/C++
descriptions do not expose the potential parallelism that is
intrinsic to the algorithms constituting the codecs. They have
also become excessively large (in terms of code size), making
it extremely labour intensive, for example, to transform the
sequential reference software into a VHDL implementation
or to map it onto a multicore platform. In other words, the
complex sequential C/C++ specifications no longer constitute
a good starting point for the implementation processes of
standard video codecs on current and future platforms. The
challenge taken by the Reconfigurable Video Coding (RVC)
framework currently under development by MPEG is to pro-
vide a high level specification model for direct and efficient
software and hardware synthesis.

The essential elements of the RVC framework are the fol-
lowing:

• A library of video coding tools, also called Functional
Units (FUs) covering all MPEG standards (the “MPEG
Toolbox”). This library is specified and provided using
CAL as specification language for each library compo-
nent (i.e. video coding tool) [?, ?] CAL [?] is a lan-
guage used to define the behavior of dataflow compo-
nents called actors, which is a modular component that
encapsulates its own state such that an actor can nei-
ther read nor modify the state of any other actor. The
only interaction between actors is via messages (known
in CAL as tokens) which are passed from an output of
one actor to an input of another. The behavior of an ac-
tor is defined in terms of a set of actions, transactional
program fragments, at most one of which may be ac-
tive at any point in time. The operations an action can
perform are to consume (read) input tokens, modify in-



Abstract Decoder Model (CAL)

Parser
Network 
of coding 

tools

Coded Data Bitstream Schema
(BSDL)

Decoder Schema
(DDL)

Decoded Data

Parser 
Generation

Instantiation

Decoding Solution

Parser
Network 
of coding 

tools

Implementation

Video
Tool 

Library

Proprietary 
Tool Box

Te
ch

no
lo

gy
 in

de
pe

nd
an

t
N

or
m

at
iv

e
Te

ch
no

lo
gy

 d
ep

en
da

nt
 

N
on

 N
or

m
at

iv
e

Fig. 1. The Reconfigurable Video Coding framework

ternal state, produce output tokens, and interact with
the underlying platform on which the actor is running.

• A language that provides the description of video codec
representations called Decoder Description Language
(DDL). This is an XML dialect that describes an in-
terconnected network and parameterization of standard
library components, which together represent a com-
plete decoder. DDL can also be used recursively; that
is, an actor may be defined as a composition of other
actors, with the interconnections specified by DDL.
In this case, the DDL itself declares input and output
ports. DDL provides a facility for declaring parame-
ters, and passing parameters to actors in the network.
This is useful for declaring values that are constant
for a particular instantiation of an actor, but may vary
between different instantiations. An “abstract model”
is constituted by the instantiation of a codec config-
uration using the Decoder Description Language and
the MPEG Toolbox. Figure 1 depicts the process of
instantiating an “abstract decoder model” in RVC.

• Tools capable of verifying and validating the behavior
of the “abstract model” and tools capable of generat-
ing automatically software and hardware descriptions
of the abstract model.

An important problem faced by RVC is how to describe
and specify a new bitstream syntax and how to generated the
associated parser. In fact all components of any codec recon-
figuration can be found in the RVC toolbox except the parser.
Without systematic procedures and support tools for the val-

idation of new bitstream syntaxes and the possibly automatic
generation of parsers, RVC framework would lack the appro-
priate elements for a successful usage and deployment.

The paper is organized as follows. Section 2 describes the
essential elements of BSDL a MPEG-21 standard language
used to specify a new bitstream syntax. Section 3 describes
a procedure for the validation of BSDL schemas. Section 4
reports how is possible to automatically generate a parser in
a form compatible with the RVC ADM from a BSDL schema
by using a XSLT transformation. Section 5 concludes the pa-
per.

2. BSDL A LANGUAGE TO DEFINE BITSTREAM
SYNTAX

MPEG-B part 5 is an ISO/IEC international standard that
specifies BSDL [?] (Bitstream Syntax Description Lan-
guage), a language based on XML Schema aiming at de-
scribing the structure of a bitstream with an XML docu-
ment named BS Description. For instance, in the case of a
MPEG-4 AVC video codec [?], a BS Schema describes the
structure common to all possible conformant MPEG-4 AVC
video bitstreams, whereas a BS description describes a single
MPEG-4 AVC encoded bitstream as a XML document. Fig-
ure 2(a) shows the BSDL Schema associated with the BSDL
Description in Figure 2(b). BSDL uses XML to describe the
structure of video coded data. An encoded video bitstream
can be described as a sequence of binary symbols of arbi-
trary length – some symbols contain a single bit, while others
contain many bytes. For these binary symbols, the BSDL
Description indicates values in a human – and machine –
readable format – for example, using hexadecimal values (as
for startCode in Figure 2(a)), integers, or strings. It also or-
ganizes the symbols into a hierarchical structure that reflects
the data semantic interpretation.

In other words, the BSDL Description level of granularity
can be fully customized to the application requirements [?].
BSDL was originally conceived and designed to enable adap-
tation of scalable multimedia content in a format-independent
manner [?]. In the RVC framework, BSDL is used to fully
describe the entire bitstream – each elementary bit has its cor-
responding value in a Variable Length Decoding (VLD) ta-
ble. As a result, the corresponding BS schema must specify
all components of the syntax at a finer granularity level than
the ones developed and used for adaptation of scalable con-
tent. In this context BSDL does not replace the original data,
but instead provides additional information (or metadata) to
support an application for parsing and processing the binary
content. Finally, BSDL does not mandate the names of the
elements in the BSDL Description; the application assigns
names that provide meaningful semantics for the description
at hand. Figure 2(a) is an example BSDL Description for
video in MPEG-4 AVC format.

In the RVC framework, BSDL is preferred over Flavor [?]



because:

• it is stable and already defined by an international stan-
dard;

• the XML-based syntax integrates well with the XML
syntax used to describe the configuration of the RVC
decoder; constituted by the instantiation of FUs from
the toolbox and by their connettivity

• the RVC bitstream parser may be easily derived by
transforming the BSDL schema using standard tools
(e.g. XSLT).

<NALUnit>
<startCode>00000001</startCode>
<forbidden0bit>0</forbidden0bit>
<nalReference>3</nalReference>
<nalUnitType>20</nalUnitType>
<payload>5 100</payload>

</NALUnit>
<NALUnit>
<startCode>00000001</startCode>
<!-- and so on... -->
</NALUnit>

(a) BS description fragment of an MPEG-4 AVC bitstream

<element name="NALUnit"
bs2:ifNext="00000001">

<xsd:sequence>
<xsd:element name="startCode" type="avc:hex4" fixed="00000001"/>
<xsd:element name="nalUnit" type="avc:NALUnitType"/>
<xsd:element ref="payload"/>

</xsd:sequence>
<!-- Type of NALUnitType -->
<xsd:complexType name="NALUnitType">

<xsd:sequence>
<xsd:element name="forbidden_zero_bit" type="bs1:b1" fixed="0"/>
<xsd:element name="nal_ref_idc" type="bs1:b2"/>
<xsd:element name="nal_unit_type" type="bs1:b5"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="payload" type="bs1:byteRange"/>

<!-- and so on... -->

(b) BS schema fragment of MPEG-4 AVC codec

Fig. 2. BSDL description and schema

The RVC framework aims at supporting the development
of new MPEG standard and new decoding solutions. The flex-
ibility offered by the standard video coding library to explore
rapidly the design space is primordial. Defining coding tools
and their interconnections becomes a relatively easy task if
compared to the SW rewrting efforts need to modify (usually
very large) monolithic specifications. However, testing new
decoding solutions, new algorithms for new coding tools, or
new tools configurations, the bitstream syntax may change
from a solution to another. The consequence is that a new
parser need to be rewritten for each new bitstream syntax. The
parser FU is the most complex actor in the MPEG-4 SP de-
coder [?] described in [?] and its behavior need to be validated
versus all possible conformat bistreams. This is equivalent to
validate it using the BSDL schema for the syntax at hand.

Moreover, it is certainly not a good idea to have to write it
by hand when a systematic solution for deriving such parsing
procedure from the BSDL schema itself could be developed.
Such procedure based on transforming the BSDL schema by
a XSLT transformation is describes in the second part of the
paper. So being able to validate a parsing procedure (written
by hand or automatically generated) using some instances of
a given syntax is an important step for the RVC framework.

3. VALIDATION OF A BSDL SCHEMA BISTREAM
SYNTAX DESCRIPTION

3.1. Procedure of validation

The generic character of BSDL, and hence its merit, lies in
the media format-independent nature of the different soft-
ware modules that are responsible for the creation of the BS
Descriptions (BSDs) and for the generation of the adapted
bitstreams. The BSD generator and bitstream generator are
named BintoBSD Parser and BSDtoBin Parser, respectively.
Figure 3 summarizes the overall method for validating a BS
schema. Explanatory notes for this figure are provided below:

1. a bitstream syntax schema (BS Schema) contains a de-
scription of the low-level syntax in RVC of a particular
media format;

2. a BSD is created by a format-independent BintoBSD
Parser, taking as input a particular bitstream and a cor-
responding BS Schema;

3. a BSD is transformed to meet the constraints of a usage
environment;

4. a format-independent BSDtoBin Parser creates the
original bitstream, using the transformed BSD and the
BS Schema

There are two possibilities to compare the efficiency of
the schema:

1. the original bitstream is compared to the one produced
by the identity operation “bintoBSD-BSDtobin”; this
bitstream should give the same decoded sequence as
the original one.

2. the BSD description generated after the first “binto-
BSD” operation could be compared to the identity op-
eration “BSDtobin-bintoBSD”. You should exactly ob-
tain the same BS Descriptions.

A BS Schema contains a minimal amount of information
such that BSDtoBin can convert each element value in a BSD
to a bit-level representation. Such functionality can already
be provided by an XML Schema using BSDL-1 datatypes, as
BSDL-2 is specific for BintoBSD and not relevant for BSD-
toBin. Thus, BSDtoBin may still be used for generating a
bitstream to support BSDL-2.



Video
Coding

Bistream

No
differences

No
differences

<schema>
 ...
</schema>

BSDL schema

Multimedia data
Metadata

Binary
to BSDL

Binary
to BSDL

Compare
Metadata

Decode
Bitstreams

<xml>
 ...
</xml>

<xml>

</xml>
BSDL to
binary 

Fig. 3. BS Schema validation

3.2. User-defined data types

This subsection specifies an optional implementation mecha-
nism for user-defined data types, that a conformant BSDtoBin
or BintoBSD parser does not have to implement. But if an
ECMAScript implementation of bs1:codec data types is pro-
vided, the parser shall conform to this clause. Data types ref-
erenced by bs1:codec in a BS Schema may be implemented
using ECMAScript and the implementation is embedded in
the BS Schema via the bs1:script component. This allows ar-
bitrary parsing algorithms to be specified by a BS Schema
for use by BintoBSD and BSDtoBin parsers, enabling the
processing of data structures that cannot be specified using
other BSDL syntax elements. The bs1:script component de-
fines the local name of the datatype, which inherits the tar-
get namespace of the schema document. The bs1:codec at-
tribute can then reference this implementation via the URI of
the datatype, which is obtained by adding the appending the
local name as fragment identifier to the namespace.

ECMAScript datatypes may be used to allow a BSDL
Parser to process Variable Length Codes, such as Huff-
man codes or Arithmetic-coded values (Figure 5). An EC-
MAScript implementation may be referenced by bs1:codec
in the following ways:

• The value of bs1:codec is a URL that resolves to a BS
Schema, with a fragment identifier corresponding to the
value of an id attribute on a bs1:script element;

• The value of bs1:codec is a URL that resolves to an EC-
MAScript file, with a fragment identifier corresponding
to the name of a class within that file; or

• The value of bs1:codec is a URL that resolves to an
ECMAScript file, with no fragment identifier.

In each case, a BSDtoBin parser shall search the bs1:script
element, class or file (respectively) for a function (or method)
with the signature BSDtoBin(value). The BSDtoBin parser
shall call this function to parse the element to which bs1:codec
is attached. The BSDtoBin parser shall pass as value the text

content of the element if the content is simple, or the element
and its descendents, otherwise.

A BintoBSD parser shall search the bs1:script element,
class or file (respectively) for a function (or method) with the
signature BintoBSD(). The parser shall call this function to
generate the element to which bs1:codec is attached, the Bin-
toBSD() function should return either a string containing the
lexical value of the element, or a DOM Element representing
the element.

read(bits) This function shall be provided by a BintoBSD
parser and may be called by the BintoBSD() function of
a bs1:script component. When this function is called, a
BintoBSD shall read from the bitstream the number of
bits specified by the integer value of the bits parameter,
and return the unsigned integer value of the bits read.

write(value,bits) This function shall be provided by a BSD-
toBin parser and may be called by the BSDtoBin(value)
function of a bs1:script component.

xpath(exp,type) This function shall be provided by a Binto-
BSD parser and may be called by the BintoBSD() func-
tion of a bs1:script component. When this function is
called, a BintoBSD shall execute the XPath expression
declared by the string value of the exp parameter, and
return the value of the result of the expression. The
expression shall be evaluated in the context of the par-
tially instantiated BSD.

<xsd:complexType name="expGolomb">
<xsd:simpleContent>

<xsd:extension base="xsd:unsignedInt">
<xsd:attribute ref="bs1:codec" default="expGolomb.js"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

(a) Javascript call outside BintoBSD tool

<xsd:complexType name="expGolomb">
<xsd:simpleContent>

<xsd:extension base="xsd:unsignedInt">
<xsd:attribute ref="bs1:codec"

default="urn:mpeg:example:myLibrary#expGolomb"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

(b) Java Class call inside BintoBSD tool

Fig. 4. Implementation of expgolomb function

In the case you use ECMAscript implementation in your
schema, you will have to validate your script in the two ways:
bintoBSD and BSDtobin.

The following implementation of Expglomb does not
need but only one ECMAscript file containing 2 parts:

• the ECMAscript function called by bintoBSD (Fig-
ure 5(a));



• the reverse ECMAscript function called by BSDtobin
(Figure 5(b)).

function BintoBSD() {
var nBits = 0;
var ret = 0;

while ((ret = read(1)) == 0) nBits++; //read 0’s
if (ret == -1) throw "userType Error";
ret = read(nBits); //read the rest
if (ret == -1) throw "userType Error";
return ((1 << nBits) - 1 + ret) + ""; //toString

};

(a) ECMAscript implementation of expgolomb for bintoBSD tool

function BSDtoBin(value) {
var nBits = 0;
var tmp = value + 1;

while ((tmp >>= 1) > 0) nBits++; //count how many zeros to write
tmp = 1;
var i = 0;
for (i = 0; i < nBits; i++) {

tmp <<= 1;
}
write(0, nBits); //write leading zeros
write(1, 1); //write a one
write(value + 1 - tmp, nBits); //write rest of code
return(2 * nBits + 1);

}

(b) ECMAscript implementation of expgolomb for BSDtobin tool

Fig. 5. ECMAscript implementation of expgolomb function

4. SYNTHESIS OF A PARSER IN CAL FROM A
BSDL SCHEMA DESCRIPTION

Since writing a complete parser by hand beside burdensome,
time consuming and error prone is certainly not a useful solu-
tion for a RVC terminal,that receives a new codec configura-
tions made of standard components and a BSDL description
of the bitstream syntax that need to be decoded. A system-
atic method has been conceived for automatically generate a
parser in CAL from the bitstream schema (in BSDL). This
idea has been first presented in [?]. Figure 7 illustrates the
different steps of the transformation process and an example
of the result of the generation. The advantage of generating
the parser in CAL is that all the decoder model is described
in the same formalism and from such form direct synthesis
of the CAL decoder model to SW or HW implementations
can be performed [?, ?]. The reader can also refer to [?] for
a more detailed background and further details on the parser
generation process.

Figure 8 shows an example of bistream schema from
which a parser has been generated. The results in terms of
generated CAL code that execute the bitstream parsing are
shown in figure 6.

Each time a syntax element is met by the parser, the pro-
cess generates a xxxx.read” action. If this element of syntax
must be presented at the output by the parser, a xxxx.output”

mcbpc.read: action ⇒
guard
readDone()
do
current := read_result_in_progress ;
setRead(M4V_B1_LENGTH);
end

ac_pred_flag.read: action ⇒
guard
readDone()
do
current := read_result_in_progress ;
setRead(M4V_B2_LENGTH);
end

cbpy.read: action ⇒
guard
readDone()
do
current := read_result_in_progress ;
setRead(M4V_B3_LENGTH);
end

dct_dc_size.read: action ⇒
guard
readDone()
end

dct_dc_size.output: action ⇒ size: [current]
do
current := read_result_in_progress ;
setRead(M4V_B4_LENGTH);
end

dct_dc_diff.read: action ⇒
guard
readDone()
end

dct_dc_diff.output: action ⇒ diff: [current]
do
current := read_result_in_progress ;
setRead(M4V_VLC_LENGTH); // rajouté !!
end

DCT_coeff.read: action ⇒
guard
readDone()
end

DCT_coeff.output: action ⇒ coeff: [current]
do
current := read_result_in_progress ;
end

DCT_coeff.finish: action coeff_f: [f]⇒
guard
f = 2
do
setRead(M4V_B3_LENGTH);
end

DCT_coeff.notFinished: action coeff_f: [f]⇒
guard
f = 0 or f = 1
do
setRead(M4V_VLC_LENGTH);
end

// Finite State machine

mcbpc_exists (mcbpc.read) --> ac_pred_flag_exists;
ac_pred_flag_exists (ac_pred_flag.read)--> cbpy_exists;
cbpy_exists (cbpy.read) --> dct_dc_size_exists;
dct_dc_size_exists (dct_dc_size.read)--> dct_dc_size_output;
dct_dc_size_output (dct_dc_size.output)-->dct_dc_diff_exists;
dct_dc_diff_exists (dct_dc_diff.read)--> dct_dc_diff_output;
dct_dc_diff_output (dct_dc_diff.output)-->DCT_coeff_exists;
DCT_coeff_exists (DCT_coeff.read)--> DCT_coeff_output;
DCT_coeff_output (DCT_coeff.output)--> DCT_coeff_result;
DCT_coeff_result (DCT_coeff.notFinished)--> DCT_coeff_exists;
DCT_coeff_result (DCT_coeff.finish)--> next_elements;

Fig. 6. Source code of the parser generated



Fig. 7. The XSLT transformation process

<xsd:complexType name="MB">
<xsd:sequence>
<xsd:element name="mcbpc" type ="b3"/>
<xsd:element name="ac_pred_flag" type = "b1"/>
<xsd:element name="cbpy" type = "b2"/>

<xsd:complexType name="block">
<xsd:sequence>

<xsd:element name="dct_dc_size" type="b3" rvc:port="size"/>
<xsd:element name="dct_dc_diff" type="b4" rvc:port="diff" />
<xsd:element name="DCT_coeff" type="vlc" rvc:port="coeff" />

</xsd:sequence>
</xsd:complexType>

Fig. 8. Example of BSDL description

action is created. When the parser meets a variable length
code, it creates a series of actions which are necessary to com-
municate with the VLD FUs: xxxx.read” to read the bit from
the input port, xxxx.output” to send the bit the the VLD ta-
ble, and xxxx.finished” / xxxx.notfinished” to decide if the
variable length code is finished of if the parser must send an
additional bit. To get more information of the implementa-
tion of variable length decoding process in RVC, the reader
can refer to the paper [?].

5. CONCLUSION

This paper describes a possible systematic methodology for
the validation of a BSDL schema describing the syntax of a
binary bitstream. Validation of a BSDL schema is a funda-
mental element of the RVC framework. A validated schema
is the input of a tool that enables the automatic generation
of a CAL parser that can complete the model used to specify
decoders in the RVC framework.

6. REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” ERL
Technical Memo UCB/ERL M03/48, 2003.

[2] J. W. Janneck, The CAL actor lan-
guage: Synthesizing models to FPGA.
http://chess.eecs.berkeley.edu/pubs/181.html.

[3] International Standard ISO/IEC FDIS 23001-5, MPEG
systems technologies - Part 5: Bitstream Syntax De-
scription Language (BSDL).

[4] ISO/IEC14496 Coding of audio-visual objects. 2004.

[5] J. Thomas-Kerr, J. Janneck, M. Mattavelli, I. Burnett,
and C. Ritz, “Reconfigurable Media Coding: Self-
Describing Multimedia Bistreams,” in IEEE Workshop
on Signal processing Systems SiPS 2007, (Shanghai,
China), April 17-19, 2007 2007.

[6] J. Thomas-Kerr and I. Burnett and C. Ritz and S. Dev-
illers and D. De Schijver and R. Van de Walle, “Is That a
Fish in Your Ear? A Universal Metalanguage for Multi-
media,” IEEE Multimedia, vol. 14(2), pp. 72–77, 2007.

[7] A. Eleftheriadis, “Flavor: A Language for Media Rep-
resentation,” ACM Int’l Conf. on Multimedia, pp. 1–9,
1997.

[8] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Jan-
neck, “Reconfigurable Media Coding: A New Specifica-
tion Model for Multimedia Coders,” in IEEE Workshop
on Signal Processing Systems, pp. 481–486, 2007.

[9] J. W. Janneck, I. D. Miller, D. B. Parlour, M. Mattavelli,
C. Lucarz, M. Wipliez, M. Raulet, and G. Roquier,
“Translating Dataflow Programs to Efficient Hardware:
an MPEG-4 Simple Profile Decoder Case Study,” in De-
sign, Automation and Test in Europe (DATE), (Munich,
Germany), 2008.

[10] M. Wipliez, G. Roquier, M. Raulet, J.-F. Nezan, and
O. Déforges, “Code generation for the MPEG reconfig-
urable video coding framework: from CAL actions to C
functions,” in IEEE International Conference on Multi-
media & Expo (ICME), (Hannover, Germany), 2008.

[11] J. Li, D. Ding, C. Lucarz, S. Keller, and M. Mattavelli,
“Efficient Data Flow Variable Length Decoding Imple-
mentation For The Mpeg Reconfigurable Video Coding
Framework,” in IEEE Workshop on Signal Processing
Systems, (Washington DC, US), 2008. (submitted).


	 Introduction
	 BSDL a language to define bitstream syntax
	 Validation of a BSDL schema bistream syntax description
	 Procedure of validation
	 User-defined data types

	 Synthesis of a parser in CAL from a BSDL schema description
	 Conclusion

