
Application of Partial-Order Methods to Reactive

Systems with Event Memorization

Frédéric Herbreteau, Franck Cassez, Olivier Roux

To cite this version:

Frédéric Herbreteau, Franck Cassez, Olivier Roux. Application of Partial-Order Methods to
Reactive Systems with Event Memorization. Journal of Real-Time Systems, Kluwer, 2001, 20
(3), pp.287-316. <inria-00363027>

HAL Id: inria-00363027

https://hal.inria.fr/inria-00363027

Submitted on 20 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53018599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00363027

Application of Partial-Order Methods to Reactive

Programs with Event Memorization

Frédéric Herbreteau, Franck Cassez, Olivier Roux∗

IRCyN/CNRS UMR 6597

1 rue de la Noë, BP 92101
44321 Nantes cedex 03, France

January 25, 2002

Abstract

We are concerned in this paper with the verification of reactive systems with
event memorization. The reactive systems are specified with an asynchronous reactive
language Electre the main feature of which is the capability of memorizing occurrences
of events in order to process them later. This memory capability is quite interesting
for specifying reactive systems but leads to a verification model with a dramatically
large number of states (due to the stored occurrences of events). In this paper, we
show that partial-order methods can be applied successfuly for verification purposes
on our model of reactive programs with event memorization.

The main points of our work are two-fold: (1) we show that the independance

relation which is a key point for applying partial-order methods can be extracted
automatically from an Electre program; (2) the partial-order technique turns out to
be very efficient and may lead to a drastic reduction in the number of states of the
model as demonstrated by a real-life industrial case study.

Keywords: transition systems, reactive languages, composition, partial-order meth-
ods.

Contents

1 Introduction 2

∗e-mail: {Frederic.Herbreteau | Franck.Cassez | Olivier.Roux}@ircyn.ec-nantes.fr

1

2 Electre: an Asynchronous Reactive Language with Event Memorization 3
2.1 Asynchronous Features . 3
2.2 Partial Semantics of Electre Programs . 4

2.2.1 Syntax . 4
2.2.2 Semantics . 6

2.3 Semantics including memorization . 9

3 Independence Relation and Partial-Order Methods 10
3.1 Dependence and Independence between the Actions of an Automaton . . . 11
3.2 Partial-Order Methods . 12

3.2.1 Persistent-Sets Method . 13
3.2.2 Sleep-Sets Method . 16

4 Application of Partial-Order Methods to Electre 18
4.1 Principle of the Reduction . 18
4.2 Computation of the Dependence Relation for Electre Programs 19
4.3 Building of the Reduced FIFFO-List . 21

4.3.1 Choice of a Partial-Order Method 21
4.3.2 Algorithms for the Construction of the Reduced FIFFO-List 23

4.4 Complexity Issue and Results . 24
4.4.1 Complexity Issue . 25
4.4.2 Results . 27

5 Conclusion 28

1 Introduction

The purpose of this paper is to produce a reduced model for the verification of reactive
systems [BB91, MP93, Pnu86b, PH85] with event memorization, by the means of partial-
order methods [Ove81, Val91b, GW91, Pel93, HP94, God96a].

Framework. The problem originated in the definition of a semantic model of an asyn-
chronous reactive language: Electre [PRH92, CR95]. Indeed, this language provides the user
with the ability of specifying that an event can be stored in order to be processed later (if
it must not be processed when it occurs). However, the transition system which gives the
semantics of an Electre program has a number of states that grows exponentially with the
number of the so-called memorizable events. For verification purposes, this state explosion
problem prevents the user from using standard model-checking techniques [McM93, GL94].

Partial-Order Methods. Nevertheless, in recent years, partial-order methods [Ove81,
Val91b, GW91, Pel93, HP94, God96a] have proved to be useful and efficient in reducing the
explored state-space in a verification phase. These techniques rely upon the equivalence

2

between interleavings of actions of a transition system. The structure of the model for the
memorizing device is such that each one of its state can also be seen as the interleaving
leading from the initial state towards this state. In this paper, we show how partial-order
methods can be successfully applied to the verification of Electre programs (since it is
specially well adapted to efficiently and reasonably take event memorization into account)
leading to the production of reduced models for the memorizing device.

Outline of the Paper. We first introduce, in section 2, the specification language Elec-

tre, and the semantic model on which properties verification can be carried out. Then,
section 3 gives a quick overview of the key concepts of partial-order methods that will be
used in section 4. This section is the core of the paper: we give the method and algorithms
for applying partial-order methods to Electre programs. Section 4 also figures out com-
plexity issues and results that illustrate the performance of the method (more especially,
an industrial case application is exhibited). Eventually, in section 5, we conclude and give
some directions for future work.

2 Electre: an Asynchronous Reactive Language with

Event Memorization

In this section, we sketchily introduce the Electre language and its semantic model. For a
detailed presentation the reader is referred to [CR95, SFRC99]. This language has been
used for the modelization and the verification of several problems. In particular, [BBRR97]
and [BR99] presents some recent results concerning temporal verification associated to it.

The main point of this section is the event memorization since it is the most original
feature of the language and, moreover, we will focus on it in section 4.

2.1 Asynchronous Features

The Electre language is based on an asynchronous assumption which is better described by
the definition of its fundamental components:

modules which are lasting actions, of finite but non null duration (they can be preempted
and later resumed),

events which gather the occurrences of signals and can be stored; two occurrences are
considered to occur at distinct instants in a continuous time space.

With these basic features are associated:

properties of modules or events; modules can be non preemptible, preemptible, resumed
from the last reached point or restarted from the initial point; events can be fleeting
events or stored ones,

3

operators to combine modules and events: sequence, loop, parallel structures can be
built with modules; starting or preempting a module by an event. Various sorts of
preempting structures can be used: exclusive or parallel.

Module-based structures (a parallel composition of several sequences of modules for in-
stance) and event-based structures (e.g., a preemption structure with an exclusive compo-
sition of parallel preemption structures) can be built and mixed according to the syntactic
rules.

In Electre, the algorithmic content of a module is abstracted away and is supposed to be
some executable code written in any sequential language. Thus, an Electre program only
refers to module or event identifiers and describes the temporal behavior of the system
as operations on its modules: starting and preempting with respect to the occurrences of
events (which can be hardware or software originated) and the special events endM for all
its modules M .

The asynchronous features of the Electre language are in the language basic compo-
nents: modules and events allow the developer to specify the asynchronous nature of its
application. Beside this, the internal treatment of the language (compilation, execution,
. . .) is quite similar to synchronous languages [LBBG86, HCRP91, Bd91].

2.2 Partial Semantics of Electre Programs

In this subsection, we sketchily introduce the semantics of the Electre language without
taking into account the memorization aspects. The model of an Electre program is a
transition system that we call the control system C.

2.2.1 Syntax

The Electre abstract syntax is based on two sets: module identifiers Mid on the one hand,
and event identifiers Eid on the other one. We also partition the set of events into two
disjoint sets: E = E@ ∪ EM where E@ is the set of fleeting events and EM the set of
memorizable events. There are two types of components : module structures MS and
events structures ES which are inductively defined as follows1:

• nil : NIL,

• m ∈ Mid =⇒ m ∈ MS,

• e ∈ Eid =⇒ e, @e ∈ ES (one-time storage event and fleeting event),

• P ∈ MS =⇒

– loopP end loop ∈ MS (repetition),

– P ‖P ∈ MS (parallel module structure),

1We consider a special entity nil of type NIL which stands for “nothing”.

4

– P ;P ∈ MS (sequential module structure),

• E ∈ ES =⇒

– E ‖E ∈ ES (parallel event structure),

– E orE ∈ ES (exclusive event structure),

5

• P ∈ MS, E ∈ ES =⇒

– P awaitE ∈ MS (preemption),

– E launchP ∈ ES (launching).

An Electre program is an element of {MS, NIL}: we consider hereafter that Electre programs
are represented by their parse trees with nodes decorated with the type of the components
(MS or ES or NIL).

2.2.2 Semantics

According to the semantics of the language [CR95], for any Electre program P , and any
event e, we can determine the program P ′ which is obtained after taking into account the
occurrence of event e (an example of such a calculus is given in Figure 3).

The formal semantics of the complete Electre language is given in [CR95]. Here we
give in Figure 1 the semantics for the subset of the language we will need in this paper.
Judgements are of the form (these are conditional rewriting rules written in a SOS style):

E ` Pi : τ → P ′

i : τ ′ i ∈ [1, n]

E ` op(P1, . . . , Pn) : θ → op′(P ′

1, . . . , P
′
n
) : θ′

The rule reads as : if the Pi’s of type τ rewrite in P ′

i
of type τ ′ in the environment E , then

a program built from the Pi’s with the operator op(P1, . . . , Pn) rewrites in op′(P ′

1, . . . , P
′

n
).

E is the environment and θ and θ′ are types in {MS, ES, NIL}. E is either an event’s name
or a “completion of module” name i.e. endm, m ∈ Mid. The asynchronous assumption
implies that E has always one element, as perception of simultaneity is not considered. By
convention p ‖ nil = nil ‖ p = p and, nil awaitE, is written awaitE.

We then define a reaction of the system in the state s to the event e by the transition
relation:

s
e
−−−→ s′ iff {e} ` s : {MS, NIL} → s′ : {MS, NIL}

Thus, we obtain a finite transition system; each one of its states is featured by the pro-
gram that has to be executed at the current time. And, since the Electre language is an
asynchronous reactive language, a transition is labeled with a single event’s name. The set
of reactions from the intial program yields to the control transition system associated to
each Electre program.

As a running example, we take the program of Figure 2. The semantics of the operators
are intuitively given by:

• the loop–end loop structure stands for a never-ending loop of the inner code,

• the await operator is both applied to an event structure (within braces in the example)
and to a module structure as in P awaitE: this structure consists in waiting for an
event of E which preempts the executions of the modules in P .

6

1. or operator:

(a)
E ` E1 : ES → E ′

1 : ES E2 : ES → E ′

2 : ES

E ` E1 orE2 : ES → E ′

1 orE ′

2 : ES

(b)
E ` E1 : ES → X ′

1 : θ′1 E2 : ES → E ′

2 : ES θ′1 ∈ {MS, NIL}

E ` E1 orE2 : ES → X ′

1 : θ′1

(c) Symmetrical rule.

2. || operator for events:

(a)
E ` E1 : ES → E ′

1 : ES E2 : ES → E ′

2 : ES

E ` E1 ||E2 : ES → E ′

1 ||E
′

2 : ES

(b)
E ` E1 : ES → P ′

1 : MS E2 : ES → E ′

2 : ES

E ` E1 ||E2 : ES → P ′

1 || awaitE ′

2 : MS

(c) Symmetrical rule.

(d)
E ` E1 : ES → nil : NIL E2 : ES → E ′

2 : ES

E ` E1 ||E2 : ES → E ′

2 : ES

(e) Symmetrical rule.

3. || operator for modules:

(a)
E ` P1 : MS → P ′

1 : MS P2 : MS → P ′

2 : MS

E ` P1 ||P2 : MS → P ′

1 ||P
′

2 : MS

(b)
E ` P1 : MS → nil : NIL P2 : MS → P ′

2 : MS

E ` P1 ||P2 : MS → P ′

2 : MS

(c) Symmetrical rule.

4. await operator:

(a)
E ` P : MS → X ′ : θ′ E : ES → E ′ : ES θ′ ∈ {MS, NIL}

E ` P awaitE : MS → X ′ awaitE ′ : MS

(b)
E ` P : MS → P ′ : MS E : ES → X ′ : θ′ θ′ ∈ {MS, NIL}

E ` P awaitE : MS → X ′ : θ′

Figure 1: A subset of the rules for the Electre semantics.

7

PROGRAM Foo ;

loop

await

{ e1 launch A || e2 launch B };

end loop ;

END Foo ;

Figure 2: An Electre program.

• an event structure can be built with a parallel operator (‖) meaning that its com-
ponents are being concurrently waited for; as soon as one of them has occurred, the
parallel event structure imposes that the other part is being waited for; the exclusive
operator or can also be used to define event structure: the meaning of which is that
the first occurrence of the events appearing in the structure starts the event structure
and the others are no more being waited for,

• the components of an event structure are made of events, modules and the “launch”
operator; the fragment e1 launch A means that the occurrence of e1 launches module
A.

Some reactions corresponding to the first steps of the execution of program Foo’s loop

structure inner code are depicted in Figure 3 (the next steps which are not figured here
would be to wait for endA and endB, the events that correspond to the end of these
modules).

The control transition system associated with an Electre program describes the effects
of the processing of the events’ occurrences in all the possible states. This transition system
does not describe memorization and batch processing of events.

await{ e1 launchA || e2 launchB }

A || [await e2 launchB] [await e1 launchA] || B

A || B

...
...

e1 e2

e2 e1

Figure 3: First transitions of the loop structure body of program Foo.

8

2.3 Semantics including memorization

As we have already mentioned, there are two kinds of events: the fleeting ones (E@), which
have an effect on the execution only when they are being waited for, since their occurrences
are never stored; and the memorizable ones (EM), which may have a postponed effect, since
they are stored (at most once) if they occur when they are not being waited for. Thus, we
have a partition of the set of events: E = E@ ∪ EM (and E@ ∩ EM = ∅).

Fleeting Events. The fact that the occurrence of an event is to be stored is an infor-
mation given by the state of the control transition system. A fleeting event can always be
taken into account immediately:

• it may bring about a change in the control system (launching a module execution,
interrupting some module executions, . . .),

• or it may be lost (since it was not being waited for), which indeed means the occur-
rence is taken into account (but its effect on the system is null).

Consequently, all the states of the control transition system are source states for transitions
labeled by fleeting event: in every state, a fleeting event can be taken into account.

Memorizable Events. Memorized occurrences of events must be processed as soon as
possible and with priority to the oldest memorized occurrence in case of conflict. The
priority will be dealt with in the sequel. A memorized occurrence of an event can be taken
into account in each state where a spontaneous occurrence of the same event can be taken
into account. Moreover, the effect of taking into account a memorized occurrence of an
event is the same as taking into account a spontaneous occurrence of the same event.

Event Memorization. The complete semantics of the language (dealing with the event
memorization) imposes to add a structure for storing occurrences. Since only one occur-
rence of event is stored, we could include this memorization in the control state of the
transition system: the drawback of this technique is that it may bring about a state ex-
plosion in the number of control states. This is why we choose to store the occurrences of
events in a separate list. We use a so-called FIFFO2-transition system which is a transi-
tion system with a kind of FIFO-list manipulated in a special way, which we will describe
hereafter. In this FIFFO-transition system, we build a transition relation defined by:

1. all the transitions of C are transitions of F ,

2. with every transition s
e
−−−→ s′ of C is associated a transition s

	e
−−−−→ s′ in the FIFFO-

transition system F ; this transition corresponds to taking into account a memorized
occurrence of e (note that the source and target state of such a transition are the

2First In First Fireable Out.

9

same as for the transition labeled e: this means that the effect of taking into account
the stored occurrence of e is exactly the same as taking into account the occurrence
of e),

3. for every state s of the control transition system, for each memorizable event which
isn’t the label of a transition of which s is the source, we add in the FIFFO-transition

system F a transition s
⊕e
−−−−→ s (leading to the same state, but simultaneously

recording the occurrence).

Synchronization of the FIFFO-Transition System and the FIFFO-List. To re-
duce the explored state-space, we can isolate the FIFFO component which is the cause of
the state explosion. Thus, we synchronize the reduced list (see section 3) with the control
system.

First, we define the automaton for the FIFFO-list: this is straightforward and an
example of an automaton for a list with two events e1 and e2 is given in Figure 5, page 18.
Transitions labeled +ei (resp. −ei) correspond to storing (resp. removing) event ei in
the FIFFO-list. One can point out that from state e1e2 a transition with label −e2 exists
although e1 is the oldest item of the list; this is the result of the FIFFO-list management
where an event is taken into account as soon as possible: if e1 cannot be processed and e2

can, then e2 is dequeued. Note also the τ transition which allows the FIFFO-list to remain
idle.

The synchronization of the automaton of the FIFFO-list and the FIFFO-transition
system is defined by the following rules:

• if transitions labeled 	ei1 ,	ei2 , . . . ,	eik
are enabled in the FIFFO-transition system,

and one of these events is the oldest occurrence in the FIFFO-list, namely eil
, then

transitions labeled 	eil
and −eil

are synchronized in the two transition systems,

• finally, if no 	e/− e can be synchronized,

– transitions labeled e in the FIFFO-transition system are synchronized with τ in
the FIFFO-list,

– transitions labeled ⊕e in the FIFFO-transition system are synchronized with
transitions labeled +e in the FIFFO-list.

Remarks. Priority is given to the processing of stored events. Moreover the management
of the FIFFO-list is such that the stored events are taken into account as soon as possible
and in case of conflict between stored occurrences with priority to the oldest. An execution
may contain successive 	e (resp. −e) transitions.

3 Independence Relation and Partial-Order Methods

Using transition systems for modelisation purpose often leads to the so-called “state-space
explosion problem”. However, an important feature of a lot of modelled systems (e.g.

10

parallel programs, communication protocols, ...) is the built-in concurrent nature. It is
expressed by the sometimes irrelevant order between some of the system actions: from
a given state of the transition system, whatever the order between some actions is, the
reached state is always the same one. Of course, for the verification of some kinds of
properties, we can get rid of this order since it is not useful (e.g., liveness, deadlocks
detection, ...). But, the order remains meaningful in many other cases.

Interleavings are not the panacea. Thus one can distinguish a lot of other “cheap-
est” models for concurrency: partial-order models (e.g., [Lam78, Maz86, Pra86, Win86]),
partial-order temporal logics (e.g., [PW84, KP86, KP87, Pen88, Pen90]), ...

On the other hand, for verification purposes, one aims at reducing the number of states
that must be visited and/or the number of transitions that must be explored. Several
techniques have been developped in order to take advantage of the concurrency for state-
space reduction: virtual coarsening of atomic actions ([Pnu86a]), nets unfoldings (e.g.,
[McM92, Esp94]), methods by Overman ([Ove81]), strategies for property-proving with-
out considering all interleavings (e.g., [AFdR80, EF82, SdR89, KP92b, JZ93]), heuristics
selection of interleavings (e.g., [GH85, Wes86, Hol87]), etc...

More precisely, partial-order methods have been developped for verification purposes.
They are intended to reduce the state-space by exploring only one of the interleavings of
independent events (see definition 1). They first appeared in [Val88a, Val88b] and inde-
pendently in [God91, GW92]. These methods have met a great success, and consequently
have been improved and adapted in a lot of frameworks [Val91a, GW91, HGP92, GP93,
Pel93, Val93, GW93, HP94, Pel94, GHP95, God96a, Pag96, GKPP99]... One can con-
sider [God96b] as a reference on partial-order methods, as it provides a description and
comparison of these methods. All of them rely upon the independence relation between
the actions of a given transition system.

3.1 Dependence and Independence between the Actions of an
Automaton

Partial-order methods rely upon permutables transitions in sequences of transitions. Such
transitions are called independent transitions, because they neither enable nor disable each
other, so the order they appear in is irrelevant.

The following definition, adapted from [KP92a], gives the conditions of independence
between two actions of an automaton. Then, the interleavings on independent actions are
considered to be equivalent.

Definition 1 Two actions a1 and a2 of an automaton are independent if the following two
conditions are true (otherwise they are said to be dependent) :

1. if a1 (a2) is enabled in a state s and s
a1−−−−→ s′ (s

a2−−−−→ s′), then a2 (a1) is enabled in
s iff a2 (a1) is enabled in s′ (independent transitions can neither disable nor enable each
other),

11

2. if a1 and a2 are enabled in s, then there is a unique state s′ such that both3 s
a1a2===⇒ s′

and s
a2a1===⇒ s′ (commutativity of enabled independent transitions).

As we focus on interleavings of actions, and more especially, as far as we will be inter-
ested in the equivalence of interleavings of independent actions, we will use a formal-
ism in order to represent them. Such a representation comes from the trace theory of
Mazurkiewicz [Maz86]. A trace sould be seen as a kind of equivalence class on interleav-
ings of independent transitions.

Definition 2 Let w be a sequence of transitions t1t2 . . . titi+1 . . . tn. A trace [w] represents all
the sequences of transitions obtained from w by permuting two independent adjacent transitions:
t1t2 . . . ti+1ti . . . tn.

Finally, the partial-order methods rely upon the following property that states the equiv-
alence of behavior between sequences belonging to the same trace [GW93]:

Property 1 If s
w1===⇒ s1, s

w2===⇒ s2 and [w1] = [w2], then s1 = s2.

This property justifies all the reductions that can be done by the way of partial-order
methods.

3.2 Partial-Order Methods

The aim of partial-order methods is to optimize the amount of states and/or transitions
explored, more especially with verification purposes in mind. Sometimes, people pre-
fer to generate a reduced model and then model-check it (e.g., [Val91b, Pel93]), others
use partial-order methods during an “on-the-fly” verification (e.g., [GW91, Val93, Pel94,
GPS96, WW97]).

Algorithm 1: Classical depth-first exploration of a state-space.

Stack.push(s0); H := ∅
while Stack 6= ∅ do

s := Stack.pop()
if s 6∈ H then

H := H ∪ {s}
for each t ∈ enabled(s) do

s′ := succt(s)
Stack.push(s′)

end for

end if

end while

3We write s
w

===⇒ s′ to mean that the sequence of transitions w leads from s to s′.

12

But, whatever the frame partial-order methods are used in, one needs to differentiate
the enabled transitions of a given state: on the one hand, the dependent ones, and on the
other hand the independent ones. As a matter of fact, there mainly exists two methods4

in order to do that: the persistent-sets method [Ove81, Val91b, GW92, GP93, God96a],
and the sleep-sets method [God91, God96b].

Both methods are introduced using the framework of state-space exploration as it is a
very general one (it is used during “on-the-fly” verification, as well as for reduced state-
space generation). Algorithm 1 pictures a classical depth-first state-space exploration.

3.2.1 Persistent-Sets Method

The way used in order to reduce the number of transitions which have to be visited from a
state s is to select and explore a sufficient subset of them. In this first method, this subset
just contains transitions which are dependent (independent ones will remain enabled in the
reached states). Such a subset is called a persistent-set as it is not affected by transitions
which are outside of it.

Persistent-set. We would say that a set T of enabled transitions in s is persistent
whenever their occurrences cannot be affected by execution, from s, of transitions not in
T . Here is a definition of persistent-sets from [GW93]:

Definition 3 A set T of transitions enabled in a state s is persistent in s if and only if, for
all transitions t 6∈ T such that there exists a sequence:

s = s0

t0→ s1

t1→ s2 · · ·
tn−1

→ sn

tn=t
→ sn+1

leading from s to t and including only transitions ti 6∈ T , t is independent (see definition 1)
with respect to all transitions in T .

Notice that, the set of all the enabled transitions in a state s is always persistent.

Computation. The computation of a persistent-set is performed on the static structure
of the considered transition system: it does not rely on the way the state-space explo-
ration is done. The following algorithm [Pag96] allows one to compute a persistent-set EP
associated with the reached state s.

1. EP is initialized with an enabled transition t in s: EP (s)={t},

2. Add to EP all the transitions which could produce sequences containing a transition
which is dependent with respect to t,

3. Return all the transitions of EP enabled in s.
4One can consider the stubborn-sets method [Val88a, Val88b, Val91b, Val93] as a persistent-sets one.

Indeed Godefroid proved that stubborn-sets are also persistent-sets in [God96b].
There also exists some other methods like faithful decompositions [KP92b] or ample-sets [Pel93] that are
quite similar to the persistent-sets one.

13

Transitions Selection Techniques. The sizes of the persistent-sets given by the pre-
vious algorithm strongly depends on the transitions selection technique informally defined
in the algorithm second issue. We have been interested in three selection techniques: the
Godefroid and Wolper one [GW92], the Overman method [Ove81] and the algorithm of
Valmari [Val91b] (the latter one computes stubborn-sets, but as we have explained above,
their enabled-transitions subsets are also persistent-sets [God96b]). These three algorithms
differ in the way the transitions are selected in the persistent-set EP :

[GW92] For each transition t in EP , all the transitions which are enabled in s and
dependent with respect to t are added to EP . If there exists a transition dependent
with respect to t which is not enabled in s, then all the enabled transitions in s are
added to EP .

[Ove81] For each transition t in EP , for each transition t′ dependent with respect to t, all
the enabled transitions of the transition system where t′ appears are added to EP .

[Val91b] For each enabled transition t in s which is also in EP , all the transitions which
are dependent with respect to t are added to EP . For each transition t not enabled
in s, but which appears in EP , all the transitions which can make t enabled in a
reachable state s′ are added to EP .

The following example (from [Pag96]) makes these techniques more clear:

Example 1
Assume that one wants to explore the state-space of the following system composed of 3
transition systems, and that a and d are dependent, whereas all the others are independent.

1

2

1′

2′

1′′

2′′

n′′

a b
c e

d

We are just interested here in the persistent-sets computed for state s = (1, 1′, 1′′). Here
are the results given by the three algorithms, when one first adds transition a to EP (s):

Technique [GW92] [Ove81] [Val91b]
EP (s)

{a, b, c, e} {a, c, e}
{a, d, c}

EP (s) ∩ enabled(s) {a, c}

The three previous techniques are ordered from the less to the most refined one. Of
course, the more refined is the method, the greater is the cost of computation. Notice that

14

using the smallest persistent-set is nothing more than an heuristic: it does not ensure to
lead with the smallest state-space exploration.

Godefroid proved that [God96a]:

• No persistent-set computed by the algorithm of Overman is larger than all of those
computed by the algorithm of Godefroid and Wolper,

• There exists a persistent-set (stubborn-set) given by the algorithm of Valmari which
is smaller or equal to all of those computed by the way of the algorithm of Overman.

Selective State-Space Exploration with Persistent-sets. A persistent-set of tran-
sitions is computed in each state reached during the state-space exploration. From each
one of these states, we only execute the transitions which are in its persistent-set. Such an
exploration is said to be a selective state-space exploration.

Algorithm 2: Selective state-space exploration using persistent-sets.

Stack.push(s0); H := ∅
while Stack 6= ∅ do

s := Stack.pop()
if s 6∈ H then

H := H ∪ {s}
compute EP (s)
for each t ∈ EP (s) ∩ enabled(s) do

s′ := succt(s)
Stack.push(s′)

end for

end if

end while

Algorithm 2 presents an algorithm taking advantage of this method where EP (s) is
the persistent-set computed in state s (it is adapted from [Pag96]).

About the Persistent-Sets Method. This method avoids to explore the whole state-
space of the transition system we want to model-check. Thus, we can expect saving memory
if we only produce (or explore) a reduced automaton, and saving time because we explore
less paths. One can found in [God96b] a complete description of the techniques described
above and a comparison of the results and the complexity. It is also shown in [God96b]
that every reachable deadlock state is preserved by the method. Many other properties can
be checked by considering not only one but a subset of all the interleavings that preserve
them (e.g., [HGP92, Pel93, GW93, Val93, WW97]).

15

3.2.2 Sleep-Sets Method

This second method is based on the selection of independent transitions and the fact that
it is sometimes not necessary to explore some transitions because they lead to states which
have already been visited during the exploration.

For an example, consider the two automata of Figure 4. The first one (a) represents
the state-space reached during a basic exploration, whereas the second one (b) shows a
selective state-space exploration where one can avoid to fire a transition.

0

1 2

3

t1 t2

t2 t1

(a) Basic exploration.

0

1 2

3

t1 t2

t2

(b) Selective exploration (sleep-sets
technique).

Figure 4: Automata with two independent transitions.

Indeed, we assume that t1 and t2 are two independent transitions of an automaton,
both enabled in a state 0, and we perform a depth-first exploration starting in 0. Let first
execute t1, leading from state 0 to state 1 and then t2 finally leading to state 3. Then, we
return to state 0 where we execute t2. State 2 is now the current state and the transition
t1 is enabled there. But this transition leads from 2 to 3, which has already been visited.
So, it is sometimes not necessary to do this twice and this is the aim of this method.

Sleep-set. A sleep-set stores the transitions that lead to states which have already been
visited [God91, Pag96]:

Definition 4 A sleep-set for a state s is a set of transitions independent with respect to each
other in s, which lead to states which have already been visited.

Computation. A sleep-set is computed during the state-space exploration as it relies on
the past of the current state-space exploration. Indeed, the sleep-set of a state s′ depends
on the sleep-set of the previous state s and on the transition t which leads from s to s′

(s
t
−−−→ s′). Unlike persistent-sets, sleep-sets are computed from dynamic informations.
Here is a general algorithm for the computation of the sleep-set associated with a state

s′ reached by the execution of a transition: s
t
−−−→ s′ [Pag96].

16

1. clear sleep(s′).

2. Add to sleep(s′) all the transitions in sleep(s) which are independent with respect
to t.

3. Add t to sleep(s) (memorization of the transitions which have already been executed
from s).

Selective State-Space Exploration with Sleep-sets. Algorithm 3 performs a “selec-
tive exploration” using sleep-sets in order to optimize it. Each time a new state is reached,
one computes the associated sleep-set. All the enabled transitions but the alseep ones are
executed from a new state.

Algorithm 3: Selective state-space exploration using sleep-sets.

Stack.push(s0); H := ∅
while Stack 6= ∅ do

s := Stack.pop()
if s 6∈ H then

H := H ∪ {s}
for each t ∈ enabled(s) � sleep(s) do

s′ := succt(s)
compute sleep(s′)
Stack.push(s′)

end for

end if

end while

About the Sleep-Sets Method. Notice that the sleep-sets technique does not allow
one to reduce the number of visited states, but only the number of transitions which are
explored. The result is that we cannot expect any reduction in memory space, but only in
time space needed for the exploration.

Furthermore, this method is not suitable for reduced state-space generation, as is: for
example, state 2 in Figure 4(b) becomes a deadlock state.

The sleep-sets method has been improved (e.g., conflict-sets [HGP92]) or adapted in
several frameworks (e.g., [Pel93]).

Finally, these two techniques (persistent-sets and sleep-sets) can sometimes be used
together in order to go further in the reductions. For example, Godefroid and Wolper
have written an algorithm for deadlock states detection which uses both methods to-
gether [GW93].

17

4 Application of Partial-Order Methods to Electre

We now aim at building reduced FIFFO-lists. Therefore, we have been looking for known
works dealing with partial-order methods and reduced state-space generation (e.g., [Val91b,
Pel93]). As we will see later, such persistent-sets based techniques are not suitable in our
framework, so we have also been looking for other partial-order methods or different uses
of them (e.g., [God91, GW91, Val93, Pel94, GPS96]), one of which revealed to be more
accurate.

4.1 Principle of the Reduction

Let us introduce our idea with an example. Consider the Electre program Foo, in Figure 2
(page 8) whose associated FIFFO-list is pictured in Figure 5. Its transitions labeled −e
represent a dequeue of e, those which are labeled +e represent an enqueue of e, and tran-
sitions labeled τ are only used for synchronization purpose (see section 2.3).

∅

e1 e2

e1, e2 e2, e1

+e1

+e2

τ

+e2

−e1

+e1, τ

+e1

−e2

+e2, τ

−e2

−e1

+e1, + e2, τ

−e1

−e2

+e1, + e2, τ

Figure 5: FIFFO-list for the events e1 and e2 (5 states, 21 transitions).

This program reacts to the instances of events e1 and e2, which both can be memorized
once. Thus, at any time, the memorizing device has one of the following contents:

(∅) (e1) (e2) (e1, e2) (e2, e1)

As pictured in Figure 5, each possible content for the list corresponds to a state of its
automaton. Intuitively, program Foo can take into acount both events e1 and e2 imme-
diately. And both sequences e1e2 and e2e1 lead to the same state from the given one, as

18

shown in Figure 3 (page 8). The order between e1 and e2 is therefore irrelevant, and these
two events are independent with respect to each other (see definition 1).

It clearly appears that the distinction between the two interleavings e1, e2 and e2, e1

is not necessary nor useful for the program execution. This gives a way to reduce the
FIFFO-list: one replaces its two states (e1, e2) and (e2, e1) by a single state representing
both of them. Since e1 and e2 are independent, we have: [e1e2] = {(e1, e2) , (e2, e1)}, then,
it is possible to replace both states (e1, e2) and (e2, e1) by their trace [e1e2].

∅

e1 e2

[e1e2] e2e1

−e1

−e2

+e1, + e2, τ

+e1

+e2

τ

+e2

−e1

+e1, τ

+e1

−e2

+e2, τ+e1

−e2

−e1

+e1, + e2, τ

Figure 6: Reduced FIFFO-list for the independent events e1 and e2 (4 states, 16 transi-
tions).

Figure 6 shows the reduced automaton corresponding to the transition system in Fig-
ure 5. The suppressed parts are pictured in gray and dashed lines, whereas new parts are in
bigger and bolder style. Notice that the state [e1e2] in the new automaton stands for both
states (e1, e2) and (e2, e1) in the previous one. By the way, one state and five transitions
have been removed.

4.2 Computation of the Dependence Relation for Electre Pro-
grams

Our technique relies upon the fact that some events are independent with respect to each
other, and others are not. We now need to be able to establish which events are dependent
of which other ones. This can be done from a dependence relation (the definition is adapted
from [GW93]).

Definition 5 A dependence relation < is a binary relation such as for any couple of events e1

and e2:

19

• either (e1, e2) ∈ <, then e1 and e2 are dependent (see definition 1) with respect to each
other,

• or (e1, e2) 6∈ <, then e1 and e2 are said to be independent.

Notice that this is a symmetrical, but neither reflexive, nor transitive relation. Usually,
< is built reflexive, but here it is not necessary nor useful because each event appears at
most once in any FIFFO-list.

A control automaton associated with an Electre program is computed by rewriting
the program while taking into account the events it contains (see section 2.2.2). Then,
dependence between some events will imply that taking one of them into account will
disable or enable the others, or that the sequences built on these events will not lead to
the same states (see definition 1). Thus, all the dependences between a program events
can be computed on the control automaton. One only needs to explore this automaton
and determine if definition 1 holds every time several memorizable events can be taken
into account. Meanwhile, this method has an important drawback: it needs a complete
exploration of the control automaton.

We have developed another method which allows one to compute the dependence re-
lation directly from the Electre program. Consequently, it is sufficient to analyze the
structures of the program as explained in the following. The dependence relation is then
obtained in a linear (in the number of Electre operators appearing in the program) time
complexity.

Lemma 1 describes the cases of dependence and independence between events using the
structures of the Electre language.

Lemma 1 Let < A >, < B > and < C > be, respectively, a module structure and two event
structures. We have for the following Electre operators (see Figure 1 page 7):

1. “< A > await < B >”. All the events of < A > are dependent with respect to all

the first level events5 of < B >,

2. “< B > or < C >”. All the events of < B > are dependent with respect to all the

events of < C >.

Otherwise, they are independent.

Proof sketch.
This lemma can be proved by induction on the rewriting rules defined for each one of the
Electre operators (see Figure 1 and furthermore [CR95]).2

For any given Electre program, the dependence relation is computed according to
lemma 1. Each time the Electre program corresponds to one of the cases above, we add a
couple of events (a dependence) per event of < B > and per event of < C > (resp. per

5The first-level events associated with a given Electre program are all the events that
can immediately be taken into account. For example, in the following Electre program,
“await{e1 launchA || e2 launch [B await e3]}”, e1 and e2 are first-level events, whereas e3 is not.

20

event of < A > and per first-level event of < B >) to the dependence relation. This is
done recursively on < B > and on < C > (resp. < A >), since an Electre program is
seen as its parse tree (see section 2.2.1).

Notice that the example chosen in order to illustrate our results (see program Foo in
Figure 2) does not contain dependent events. We would have preferred to show an example
with both dependent and independent events. But such an Electre program must contain
at least three events and then, leads to a non-reduced FIFFO-list with 16 states and 97
transitions. Obviously, this automaton cannot be pictured clearly.

4.3 Building of the Reduced FIFFO-List

We now describe our method for the construction of a reduced FIFFO-list. First, we
choose a partial-order method well-suited for the desired reduction. Then, we exhibit our
algorithms.

4.3.1 Choice of a Partial-Order Method

The reduction must preserve the FIFFO-list behaviors. For example, the expected reduced
FIFFO-list depicted in Figure 5 (page 18) is shown in Figure 6 (page 19). We first examine
the suitability of the persistent-sets method for that purpose, then the sleep-sets one.

Building a Reduced Automaton with a Persistent-Sets Method. First, consider
the persistent-sets method on the automaton of Figure 5. The reduced automaton produced
by the way of the persistent-sets technique is drawn in Figure 7(a) - where persistent-sets
are written for each state between braces - together with the expected automaton in Fig-
ure 7(b).

∅, {e1}

e1, {e2}

[e1e2]

+e1

+e2

(a) Reduced FIFFO-list (persistent-sets
technique).

∅

e1 e2

[e1e2]

+e1 +e2

+e2 +e1

(b) Expected reduced FIFFO-list.

Figure 7: Produced and expected FIFFO-lists (skeletons).

21

Obviously, the achieved result is not what we were expecting: this reduced FIFFO-
list does not allow the memorizing device to only contain an instance of event e2. The
persistent-sets method cannot be applied in order to get the reduction we are looking for.
Indeed, we only select e1 in the persistent-set of state 0 because e1 and e2 are independent.
This means that one does not need to take care of e2 in this state. But we could only have
to memorize e2. Our problem is due to the fact that the persistent-sets method preserves
the traces but not the states, and as explained in section 3, it omits some behaviors whereas
we need all of them.

Producing a Reduced FIFFO-List with the Sleep-Sets Method. We now try to
build, the reduced FIFFO-list corresponding to the automaton of Figure 5 by the way of
the sleep-sets technique.

∅, {}

(a) Initialy: the
FIFFO-list is empty.

∅, {e1}

e1, {}

+e1

(b) Enqueueing e1.

∅, {e1, e2}

e1, {} e2, {e1}

+e1 +e2

(c) Enqueueing e2.

∅, {e1, e2}

e1, {e2} e2, {e1}

[e1e2], {}

+e1 +e2

+e2

(d) Enqueueing e2

(state e1).

∅, {e1, e2}

e1, {e2} e2, {e1}

[e1e2], {}

+e1 +e2

+e2 +e1

(e) Enqueueing e1

(state e2): processing
the sleep-set.

∅

e1 e2

[e1e2]

+e1 +e2

+e2 +e1

(f) Reduced FIFFO-
list (sleep-sets tech-
nique).

Figure 8: Building the reduced FIFFO-list with sleep-sets method (example).

Of course, the sleep-sets technique applies very well in our framework, and it gives the
expected solution. Figure 8 shows the process to build the reduced FIFFO-list. It is just a
kind of selective state-space exploration using the sleep-sets method (see algorithm 3) but,

22

here, we produce the reduced automaton during its exploration. The dequeue transitions
are not shown on these automata because they are not necessary for the explanation, and
the sleep-sets are written between braces for each state. We see in Figure 8(e) that the
sleep-set of state e2 contains an occurrence of event e1. It means that there exists an
already built state which is equivalent to the state we would reach by a memorization of
event e1. So, we only need to create a transition towards this existing state, avoiding, by
the way, the creation of a new state, hence the reduction. This is the principle of our
algorithm.

4.3.2 Algorithms for the Construction of the Reduced FIFFO-List

We assume that we have got a list of events (listEvt), each of them can be stored at most
once in the memorizing device. Algorithm 4 is the general algorithm for construction of
the reduced automaton.
We use a queue in order to store the states that have to be treated later. It is named

Algorithm 4: Building the reduced FIFFO-list.

queueNextStates.enqueue (∅, {})
listStates.append(∅)
while queueNextStates 6= ∅ do

state ← queueNextStates.dequeue()
listNextStates ← state.computeNextStates()
for each stateNext ∈ listNextStates \ listStates do

queueNextStates.enqueue(stateNext)
listStates.append(stateNext)

end for

end while

queueNextStates. The states that have already been computed are stored in a list: listStates.
Each one of the states is a structure containing the content of the memorizing device and
a sleep-set: state = (memorizing device content, sleep− set).

The main part of the algorithm is represented by the computation of the successors of
a state. Algorithm 5 is devoted to this task.

For each state s:

1. First, we examine its sleep-set. For each asleep event, it consists in searching for a
state equivalent to the one we would have reached by adding the event. And then,
we establish a transition between them,

2. Then, we compute the successors of our state which are reached by adding the events
which are neither in the sleep-set of s, nor in its memorizing device content,

3. Finally, we add the dequeueing transitions and the loops used for synchronization
with the FIFFO-transition system (see section 2.3).

23

Algorithm 5: Computing the successors of a state s = (memorizing device content, sleep−
set) (function computeNextStates).

/* Processing the sleep-set */
for each event e ∈ s.sleepSet do

Search in listStates the state s′ equivalent to s.memorizingDeviceContent ∪ {e}
Connect s to s′ through transition (s,+e, s′)

end for

/* Computing the successors */
for each event e ∈ listEvt \ (s.sleepSet ∪ s.memorizingDeviceContent) do

stateSuccessor ← inherit(s,e)
end for

/* Adding loops for events that have already been stored */
for each event e ∈ s.memorizingDeviceContent do

Connect s to s through loop (s,+e, s)
end for

/* Adding the τ loop */
Connect s to s through loop (s, τ, s)

/* Add the dequeue transitions */
for each event e ∈ s.memorizingDeviceContent do

Search in listStates a state s′ equivalent to s.memorizingDeviceContent \ {e}
Connect s to s′ through transition (s,−e, s′)

end for

Return the list of all the created successors states

Now, we only need to describe the function “inherit” which computes the successor
s′ of a state s, reached by a transition labeled by event e. This function first computes
the memorizing device content associated with s′. It only adds e to the content of s:
s′.memorizingDeviceContent ← s.memorizingDeviceContent ∪ {e}. Then, it computes
the sleep-set of s′ according to the algorithm given in section 3.2.2.

4.4 Complexity Issue and Results

The structure of the unreduced FIFFO-list is specific. Each one of its states corresponds
to a permutation of p events among n (p ≤ n). As a consequence, the complexity of the
algorithm could seem very easy to determine, but as we will see, it is not actually the fact.
Our algorithm has been implemented in Objective CAML 2.03 and the resulting tool has
been used during the verification phase of an embedded software dedicated to the control
program of an aircraft engine. The results are given in section 4.4.2.

24

4.4.1 Complexity Issue

The most interesting characteristic of the algorithms that produce reduced transition sys-
tems is the amount of reduction they provide. Hence, we aim at expressing the complexity
of our method as the number of states of the generated reduced automaton.

Theoretical Approach of Complexity. As explained in section 4.1, each state of the
unreduced automaton is a p ordered outcome from a permutation of n events (p ≤ n) and
each permutation of p ∈ [1, n] events between n is a state of the unreduced automaton. So
the number of states of the unreduced automaton is:

Nur =

n
∑

r=0

r!

(

n

r

)

=

n
∑

r=0

n!

(n− r)!

Moreover, if all the program events are dependent, no reduction can be expected. In
this case, in fact the worst case, the “reduced” automaton and the unreduced one are
identical. Thus, the number of states in the worst case is:

Nworst = Nur =
n

∑

r=0

r!

(

n

r

)

At the opposite, when all the events are independent, the reduction is maximal. In this
case, the best one, there is no matter in the event order. Thus, the complexity falls from a
permutation down to a combination. Therefore, the number of states of the best-reduced
automaton is given by:

Nbest =

n
∑

r=0

(

n

r

)

=

n
∑

r=0

n!

r!× (n− r)!

The last case is the average one. Despite the combinatorial structure of the automaton
and the fact that both previous cases were easy, we were not able to find an expression
for the average complexity. First, notice that unlike the best and the worst cases, all the
events do not behave in the same way. Each event can now only permute with the events
of which it is independent. One can imagine modelling this by a number of dependent
events and a number of independent ones linked to each event, but this is not sufficient
because the most important difference between the best case and the worst case on the
one hand, and the average case on the other hand, is the difficulty to model the order the
events appear in. Example 2 shows its big importance.

Example 2
We consider the three events e1, e2, e3 linked by the following dependence relation: < =
{(e1, e2), (e1, e3)} obtained from an Electre program. The two following permutations of
these three events show that, the number of their equivalent sequences of events depend on
the order:

• (e1, e2, e3) has an equivalent permutation: (e1, e3, e2),

• rather than, (e2, e1, e3) does not have any.

25

Overview of the Complexity on Some Examples. Since we did not manage to find
an expression for the average case complexity, we now give a flavour of it. Two parameters
step in our method: the number of events (all independent) and the ratio of dependence
between events. So, we look at two test phases, one for each of these parameters, and we
make them vary.

As our evaluation criterion is the number of suppressed states, we give in tables 1 and 2
(one per test phase) the number of states of the rough automaton, the number of states of
the reduced one, and the ratio of suppressed states gathered with the Electre programs of
these tests. Notice that these programs are only examples, and a lot of others, having the
same characteristics (number of events and percentage of dependent events), could have
been choosen and would have produced the same results.

First Test. Consider 5 Electre programs with an increasing number of independent events.
Table 1 shows both test programs and the achieved results.

Notice that the ratio of suppressed states increases quickly. This can be explained
in the following way: consider a program containing the five independent events: e1,
e2, e3, e4 and e5. One can build 120 (5!) different ordered sequences containing each
of these 5 events once. But all these sequences have the same trace: [e1e2e3e4e5], due
to the empty dependence relation. Thus, in the reduced automaton, this unique last
state stands for the 120 others in the rough automaton.

events Program # states # states %
(rough) (reduced) reduction

1 await e1 2 2 0%
2 await {e1 || e2} 5 4 20%
3 await {e1 || e2 || e3} 16 8 50%
4 await {e1 || e2 || e3 || e4} 65 16 75%
5 await {e1 || e2 || e3 || e4 || e5} 326 32 90%

Table 1: Ratio of suppressed states with respect to the number of events.

Second Test. Now, in order to evaluate the influence of the ratio of event dependences,
consider 5 programs written in the Electre language, all of them containing the same
5 events, but having an increasing ratio of dependence: from 0% to 100%. This
simply comes from:

• First, a program where all the events are composed in a parallel preemption
structure, making them independent,

• Then, the parallelism operators (“||”) are gradually replaced by exclusive oper-
ators (“or”). This increases the ratio of dependent events (see lemma 1).

Table 2 shows the programs written to get the variation of the ratio of dependence
together with the resulting numbers.

26

% dependent Program # states # states %
events (rough) (reduced) reduction

0% await {e1 || e2 || e3 || e4 || e5} 326 32 90%
20% (1− 4

5
) await {e1 or {e2 || e3 || e4 || e5}} 326 40 88%

40% (1− 3

5
) await {e1 or e2 or {e3 || e4 || e5}} 326 64 80%

60% (1− 2

5
) await {e1 or e2 or e3 or {e4 || e5}} 326 130 60%

100% await {e1 or e2 or e3 or e4 or e5} 326 326 0%

Table 2: Ratio of suppressed states with respect to the ratio of dependent events.

If all the events are dependent with respect to each other, or if there is one or no event
appearing in an Electre program, then any reduction can be expected. Indeed, in these
cases the computed traces contain one and exactly one sequence of events (the number of
traces is equal to the number of sequences).

4.4.2 Results

Consider the program Foo in Figure 2 (page 8) and the FIFFO-list associated with it: the
rough one (in Figure 5, page 18) and the reduced one (see Figure 6, page 19). Here, our
reduction technique allows removing 1 state (20% of the total number of states) and 5
transitions.

A Real-Case Study. Nevertheless, program Foo is an academic example, and moreover,
a very small but readable one. The tool implementing our method has been used during
the verification phase of an embedded software dedicated to the control program of an
aircraft engine.

This case study is more deeply described in [Boi99] from which the following main
features and results were extracted. It is mainly composed of two tasks: the first one is
dedicated to input/output control (IO), and the second one to computation (CMP). Both of
them are divided in several programs: IO1, IO2, IO3 for the input/output control task
and CMP1, CMP2 for the computer. Furthermore, their communications are handled by two
tasks: IO CMP and CMP IO. Table 3 shows for each program: its number of operators, its
number of events, the ratio of dependence between its events, and the number of states of
its non-reduced associated FIFFO-list.

The dependence relation has been computed for each one of these programs using the
method given by lemma 1. The time complexity of this method is linear in the number of
Electre operators appearing in the program. Thus, despite the high number of operators
appearing in these programs, the time needed for the computation of the dependence
relation is negligible6.

6It is not comparable to the time one would need to compute the dependence relation using a state-
space exploration of the FIFFO-transition system. For example, the control transition systems associated
to programs IO1 and CMP1 have got 233 states/3,359 transitions and 9,651 states/212,766 transitions

27

Program #Electre #Events Ratio of Rough FIFFO-list
operators dependence #states

IO1 60 10 3.33% 9,864,101
IO2 12 11 100% 108,505,112
IO3 10 9 100% 986,410
CMP1 49 15 2.86% ' 3,550,000,000,000
CMP2 14 13 100% 16,926,797,486
IO CMP 14 13 100% 16,926,797,486
CMP IO 12 11 100% 108,505,112

Table 3: Overview of the software.

Unfortunately, most of the programs have strongly dependent events, more especially,
one cannot expect any reduction of the FIFFO-lists associated to the programs IO2, IO3,

CMP2, IO CMP and CMP IO, since all their events are dependent.

Program Reduced FIFFO-lists Percentage of
#states suppressed states

IO1 2,048 99,98%
CMP1 133,120 99,99%

Table 4: Reduced FIFFO-lists.

But, the both programs (IO1 and CMP1) have a very low amount of dependent events
(respectively 3.33% and 2.86%). So, our method has been successfully applied on these
programs, and the rate of suppressed states between the unreduced automata on the one
hand, and the reduced one on the other hand is amazing. We figure out the results in
table 4.

5 Conclusion

We have shown in this paper a model of reactive applications with event memorization.
This a meaningful and important feature of the asynchronous reactive language Electre.
The memorizing device is itself modelled by a FIFFO-list which is bounded, since at most
one occurrence of each event is stored. But it is usually far too large. We focussed on
some verification issues on this model and more accurately on the reduction of the event
memorization space.

Our Contribution. Due to the special structure of a FIFFO-list (each one of its state is
equivalent to the interleaving which leads from the initial state to this one), we have been

respectively)

28

able to produce reduced FIFFO-lists by the means of a partial-order method. Since these
techniques rely upon the equivalence of interleavings of actions, and lead to the suppression
of all but one equivalent interleavings, it is quite an amazing result in our case. Indeed,
we were not able to remove any state or behavior from the FIFFO-list.

Our technique uses concurrency in Electre programs as a starting point and idea for a re-
duction, and more especially sleep-sets method for the detection and merging of equivalent
states.

Of course, the reduction does not preserve all the properties of the FIFFO-list. For
example, the order between the stored events is lost, and properties such as “Is every
occurrence of e1 always preceeded by an occurrence of e2” can not be safely checked on
the reduced model. But, this reduction preserves all the behaviors of the FIFFO-list.
Furthermore, it leads to drastic reductions in the number of states as shown in the real-
case study.

Future Work and Perspectives. The next step of our researches in this area lies
in the proof of bisimulation between the FIFFO-transition system synchronized with the
rough FIFFO-list on the one hand, and the FIFFO-transition system synchronized with
the reduced FIFFO-list on the other hand. Such a result would mean that our reduction
does not only preserves all the behaviors of the system, but it does not create any wrong
ones.

Our technique could also be improved in order to make it possible to check some
properties dealing with the order between the stored events occurrences. For example, the
following property: “Is every occurrence of e1 always preceeded by an occurrence of e2”,
could be checked in the reduced model, if the order between the occurrences of e1 and e2

had been kept. We only need to specify independently from the Electre program, that e1

and e2 are dependent events.
Finally, one appealing question is to study the unbounded FIFFO-lists. Indeed, it is

possible to endow the events with the property of unbounded memorization. It would the
be challenging to try to combine the partial-order techniques with abstraction techniques,
in order to deal with such FIFFO-lists.

29

References

[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicat-
ing sequential processes. ACM Transactions on Programming Languages and
Systems, 2(3):359–385, July 1980. 3

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and real-
time systems. Proceedings of the IEEE, 79(9):1270–1282, september 1991. 1

[BBRR97] F. Boniol, A. Burgueño, O. Roux, and V. Rusu. Analysis of slope-parametric
hybrid automata. Lecture Notes in Computer Science, 1201:75–??, 1997. 2

[Bd91] F. Boussinot and R. de Simone. The esterel language. Proceedings of the
IEEE, 79(9):1293–1304, september 1991. 2.1

[Boi99] P. Boisieau. Vérification et exécution d’applications temps-réel industrielles
avec Electre. PhD thesis, Ecole Centrale de Nantes, 1999. 4.4.2

[BR99] P. Boisieau and O. Roux. Splitting reachability analysis of hybrid automata. In
Proc. 11th Euromicro Conference On Real-Time Systems, pages 98–105, York,
England, June 1999. 2

[CR95] F. Cassez and O. Roux. Compilation of the ELECTRE reactive language into
finite transition systems. Theoretical Computer Science, 146(1–2):109–143, July
1995. 1, 2, 2.2.2, 4.2

[EF82] T. E. Elrad and N. Francez. Decomposition of distributed programs into com-
municationclosed layers. Science of Computer Programming, 2(3), 1982. 3

[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer Pro-
gramming, 23(2–3):151–195, December 1994. 3

[GH85] M. G. Gouda and J. Y. Han. Protocol validation by fair progress state ex-
ploration. Computer Networks and ISDN systems, pages 353–361, May 1985.
3

[GHP95] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited.
Formal Methods in System Design, pages 1–15, November 1995. also in: Proc.
CAV92, Montreal, Canada. 3

[GKPP99] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time logic model checking. INFCTRL: Information and Computation
(formerly Information and Control), 150, 1999. 3

[GL94] O. Grumberg and D. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, May
1994. 1

30

[God91] P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke, editor, Proceedings of the 2nd International Conference on
Computer-Aided Verification (CAV ’90), Rutgers, New Jersey, 1990, number
531 in Lecture Notes in Computer Science, pages 176–185, Berlin-Heidelberg-
New York, 1991. Springer. 3, 4, 3.2.2, 4

[God96a] P. Godefroid. On the costs and benefits of using partial-order methods for the
verification of concurrent systems. In Proceedings of DIMACS Workshop on
Partial-Order Methods in Verification, AMS, Princeton, 1996. 1, 1, 3, 4, 3.2.1

[God96b] P. Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem, volume 1032. Springer-Verlag Inc.,
New York, NY, USA, 1996. 3, 4, 3.2.1, 3.2.1

[GP93] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order ver-
ification methods (extended abstract). In Proceedings of the 5th International
Conference on Computer Aided Verification, Greece, number 697 in Lecture
Notes in Computer Science, pages 409–423, Berlin-Heidelberg-New York, 1993.
Springer. 3, 4

[GPS96] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in
the formal validation of industrial concurrent programs. IEEE Transactions on
software engineering, 22(7), July 1996. 3.2, 4

[GW91] P. Godefroid and P. Wolper. A partial approach to model checking. In 6th
symposium on logic in computer science, Amsterdam, 1991. 1, 1, 3, 3.2, 4

[GW92] P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. In Kim G. Larsen and Arne Skou,
editors, Proceedings of Computer Aided Verification (CAV ’91), volume 575 of
LNCS, pages 332–342, Berlin, Germany, July 1992. Springer. 3, 4, 3.2.1, 1

[GW93] P. Godefroid and P. Wolper. Partial-order methods for temporal verification.
CONCUR ’93 Proceedings Lecture Notes in Computer Science, 715:233–246,
August 1993. 3, 3.1, 3.2.1, 3.2.1, 3.2.2, 4.2

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
language lustre. Proceedings of the IEEE, 79(9):1304–1320, september 1991.
2.1

[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. 12th Int. Conf on Protocol Speci-
fication, Testing, and Verification, INWG/IFIP, Orlando, Fl., June 1992. 3,
3.2.1, 3.2.2

31

[Hol87] G. J. Holzmann. Automated Protocol Validation in Argos: Assertion Proving
and Scatter Searching. IEEE Transactions on Software Engineering, 13(6):683–
696, June 1987. 3

[HP94] G. J. Holzmann and D. Peled. An improvement in formal verification. October
1994. 1, 1, 3

[JZ93] W. Janssen and J. Zwiers. Specifying and proving communication closedness
in protocols. In Proc. 13th IFIP WG 6.1 International Symposium on Protocol
Specification, Testing and Verification, pages 323–339, Liège, May 1993. North-
Holland. 3

[KP86] Y. Kornatzky and S. S. Pinter. A model checker for partial order temporal
logic. Technical Report EE PUB 597, Departement of Electrical Enginering,
Technion-Israel Institute of Technology, 1986. 3

[KP87] S. Katz and D. Peled. Interleaving set temporal logic. In Proceedings of the 6th

Annual ACM Symposium on Principles of Distributed Computing, pages 178–
190, August 1987. See also Technical Report #505, Technion – Israel Institute
of Technology, Department of Computer Science, Haifa, Israel, March 1988. 3

[KP92a] S. Katz and D. Peled. Defining conditional independence using collapses. The-
oretical Computer Science, 101(2):337–359, July 1992. 3.1

[KP92b] S. Katz and D. Peled. Verification of distributed programs using representative
interleaving sequences. Distributed Computing, 6:107–120, 1992. 3, 4

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978. 3

[LBBG86] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. signal: a data-flow
oriented language for signal processing. IEEE transactions on ASSP, ASSP-
34(2):362–374, 1986. 2.1

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships
to Other Models of Concurrency, Advances in Petri Nets 1986, Part II: Pro-
ceedings of an Advanced Course, volume 255 of Lecture Notes in Computer
Science, pages 279–324, 1986. 3, 3.1

[McM92] K. L. McMillan. Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In G. v. Bochman and D. K. Probst,
editors, Proc. International Workshop on Computer Aided Verification, volume
663 of Lecture Notes in Computer Science, pages 164–177. Springer-Verlag,
1992. 3

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
1

32

[MP93] Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609–678,
1993. 1

[Ove81] W.T. Overman. Verification of concurrent systems: function and timing. PhD
thesis, Universisty of California, Los Angeles, 1981. 1, 1, 3, 4, 3.2.1, 1

[Pag96] F. Pagani. Partial orders and verification of real-time systems. Lecture Notes
in Computer Science, 1135:327–??, 1996. 3, 3.2.1, 3.2.1, 3.2.1, 3.2.2, 3.2.2

[Pel93] D. Peled. All from one, one from all: on model checking using representa-
tives. In Proceedings of the 5th International Conference on Computer Aided
Verification, Greece, number 697 in Lecture Notes in Computer Science, pages
409–423, Berlin-Heidelberg-New York, 1993. Springer. 1, 1, 3, 3.2, 4, 3.2.1,
3.2.2, 4

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking.
Lecture Notes in Computer Science, 818:377–??, 1994. 3, 3.2, 4

[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,
11(3):297–326, 1988. 3

[Pen90] W. Penczek. Proving partial order properties using cctl. In Proc. Concurrency
and Compositionality Workshop, San Miniato, Italy, 1990. 3

[PH85] A. Pnueli and D. Harel. On the Development of Reactive Systems, volume F
13 of NATO ASI, pages 477–498. Springer-Verlag Berlin Heidelberg, k.r. apt
edition, 1985. 1

[Pnu86a] A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In W.-P. de Roever and G. Rozen-
berg, editors, Current trends in Concurrency: Overviews and Tutorials, volume
224 of Lecture Notes in Computer Science, pages 510–584. Springer-Verlag, New
York, N.Y., 1986. 3

[Pnu86b] A. Pnueli. Specification and development of reactive systems. In Information
Processing. Elsevier Science Publishers B.V. (North Holland), 1986. 1

[Pra86] V. R. Pratt. Modeling concurrency with partial orders. International Journal
of Parallel Programming, 15(1):33–71, February 1986. 3

[PRH92] J. Perraud, O. Roux, and M. Huou. Operational semantics of a kernel of the
language electre. Theoretical Computer Science, 97(1):83–104, april 1992. 1

[PW84] S. S. Pinter and P. Wolper. A temporal logic to reason about partially or-
dered computations. In Proc. 3rd ACM Symp. on Principles of Distributed
Computing, pages 28–37, Vancouver, August 1984. 3

33

[SdR89] F. A. Stomp and W. P. de Roever. Designing distributed algorithms by means
of formal sequentially phased reasoning (extended abstract). In Jean-Claude
Bermond and Michel Raynal, editors, Distributed Algorithms, 3rd International
Workshop, volume 392 of Lecture Notes in Computer Science, pages 242–253,
Nice, France, 26–28 September 1989. Springer. 3

[SFRC99] G. Sutre, A. Finkel, O. Roux, and F. Cassez. Effective recognizability and
model checking of reactive fiffo automata. Lecture Notes in Computer Science,
1548:106–123, 1999. 2

[Val88a] A. Valmari. Error detection by reduced reachability graph generation. In Proc.
9th International Conference on Application and Theory of Petri Nets, pages
95–112, Venice, 1988. 3, 4

[Val88b] A. Valmari. Heuristics for lazy state generation speeds up analysis of concurrent
systems. In Proc. of the Finnish Artificial Intelligence Symposium STeP-88,
volume 2, pages 640–650, Helsinki, 1988. 3, 4

[Val91a] A. Valmari. A stubborn attack on state explosion. Lecture Notes in Computer
Science, 531:156–??, 1991. 3

[Val91b] A. Valmari. Stubborn sets for reduced state space generation. LNCS 483 :
Advances in Petri Nets’90, 1991. 1, 1, 3.2, 4, 3.2.1, 1, 4

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5th Conference
on Computer Aided Verification, volume 483 of Lecture Notes in Computer
Science, pages 397–408. Springer-Verlag, Elounda, June 1993. 3, 3.2, 4, 3.2.1,
4

[Wes86] C. H. West. Protocol validation by random state exploration. In Proc. 6th
IFIP WG 6.1 International Symposium on Protocol Specification, Testing and
Verification, pages 233–242. North-Holland, 1986. 3

[Win86] G. Winskel. Event structures. In W. Brauer, editor, Petri nets: central mod-
els and their properties; advances in Petri nets; proceedings of an advanced
course, Bad Honnef, 8.-19. Sept. 1986, Vol. 2, number 255 in Lecture Notes in
Computer Science, Berlin-Heidelberg-New York, 1986. Springer. 3

[WW97] B. Willems and P. Wolper. Partial-order methods for model checking: From
linear time to branching time. In Actes de JBOPAD97, June 1997. 3.2, 3.2.1

34

	1 Introduction
	2 Electre: an Asynchronous Reactive Language with Event Memorization
	2.1 Asynchronous Features
	2.2 Partial Semantics of Electre Programs
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 Semantics including memorization

	3 Independence Relation and Partial-Order Methods
	3.1 Dependence and Independence between the Actions of an Automaton
	3.2 Partial-Order Methods
	3.2.1 Persistent-Sets Method
	3.2.2 Sleep-Sets Method

	4 Application of Partial-Order Methods to Electre
	4.1 Principle of the Reduction
	4.2 Computation of the Dependence Relation for Electre Programs
	4.3 Building of the Reduced FIFFO-List
	4.3.1 Choice of a Partial-Order Method
	4.3.2 Algorithms for the Construction of the Reduced FIFFO-List

	4.4 Complexity Issue and Results
	4.4.1 Complexity Issue
	4.4.2 Results

	5 Conclusion

