
On the properties of the solution path of the constrained

and penalized L2-L0 problems

Junbo Duan, Charles Soussen, David Brie, Jérôme Idier
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1 Domain of optimization

For k 6 n, we define the domain Dk ⊂ Rn:

Dk = {x ∈ Rn, ‖x‖0 = k}. (1)

Theorem 1 For k > 1, Dk is not a closed set, and Dk = {x ∈ Rn, ‖x‖0 6 k} (denoting by the closure
operator).

Proof 1 • Dk is not a closed set: it is easy to find a sequence xj ∈ Dk (j ∈ N) whose limit is not in Dk.
For instance, xj = (1/j)e, where e is a given vector in Dk. xj tends towards 0 /∈ Dk.

• Dk ⊆ {x ∈ Rn, ‖x‖0 6 k}. If x ∈ Dk, then there exists a sequence xj ∈ Dk (j ∈ N) whose limit is equal
to x. Then,

∀ε > 0, ∃J, j > J ⇒ ∀i, |x(i) − xj(i)| < ε.

Applying this property with ε = min
x(i) 6=0

|x(i)|, we deduce that there exists an iteration J , such that ∀j >

J, ∀i, x(i) 6= 0 ⇒ xj(i) 6= 0. In other words, ‖x‖0 6 ‖xj‖0 = k.

• {x ∈ Rn, ‖x‖0 6 k} ⊆ Dk. Let us show that if x is such that ‖x‖0 6 k, then there exists a sequence
xj ∈ Dk whose limit is equal to x. Given x, we define xj by setting xj(i) = x(i) if i ∈ A(x) (support of
x), and by replacing the k−‖x‖0 first zero valued entries of x by 1/j in xj, and setting to 0 the remaining
n − k entries xj(i). Obviously, xj ∈ Dk and this sequence tends towards x.

The consequence of theorem 1 is that

argmin
x∈Dk

{E(x) = ‖y − Ax‖2}

is not always defined, although the minimal value min
x∈Dk

E(x) is defined. On the contrary, the set of minimizers

Xc(k) = arg min
x∈Dk

E(x) = arg min
‖x‖06k

E(x)

is properly defined because Dk is a closed set and E is quadratic and convex (to be completed).

Example 1 Let us consider the minimization of ‖x‖2 over the domain Dk. For k > 1, there is no minimizer
over Dk, but the minimal cost min

x∈Dk

‖x‖2 is equal to 0. The set of minimizers over Dk is reduced to one vector:

Xc(k) = {0}.

Example 2 The set Xc(k) is not always a singleton. Let us consider the minimization of the 2D cost function
E(x) = x(1)2. It is easy to see that Xc(0) = {0}, Xc(1) = {[0, x(2)]T , x(2) ∈ R} and Xc(2) = Xc(1).
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2 WORKING ASSUMPTIONS AND NOTION OF CONSTRAINED SOLUTION PATH

Example 3 Let us consider the minimization of the 2D cost function E(x) = (x(1)−α)2 for a given α 6= 0. It
is easy to see that Xc(0) = {0}, Xc(1) = {[α, 0]T } and Xc(2) = {[α, x(2)]T , x(2) ∈ R}.

Remark 1 Obviously, the sets Dk have a nesting property (Dk ⊂ Dk+1), therefore, for all k, we have

∀xk ∈ Xc(k), ∀xk+1 ∈ Xc(k + 1), E(xk+1) 6 E(xk).

Theorem 2 Xc(k + 1) ∩ Dk ⊆ Xc(k).

Proof 2 Let us consider xk+1 ∈ Xc(k + 1) ∩ Dk. Since Dk ⊂ Dk+1 and xk+1 is a minimizer of E over Dk+1,
we have ∀x ∈ Dk, E(xk+1) 6 E(x). As xk+1 ∈ Dk, xk+1 is a minimizer of E over Dk.

2 Working assumptions and notion of constrained solution path

2.1 Unique representation property

We recall the definition of the unique representation property (URP), introduced in [1] in the underdetermined
case (when m 6 n):

Definition 1 A matrix A of size m × n (m 6 n) satisfies the URP if and only if any selection of m columns
of A forms a family of linearly independent vectors.

Under the URP assumption, we can solve y = Ax by imposing that x ∈ Dm. The system is then equivalent to
y = Bz where B is a matrix of size m×m extracted from A, and z is the corresponding vector extracted from
x, of size m × 1. According to the URP definition, B is always invertible, and we can find sparse solutions to
y = Ax with at most m non-zero entries (z = B−1y and then x = {z,0} for all the possible extractions B

from A).

When m > n, we adopt the following definition:

Definition 2 A matrix A of size m × n (m > n) satisfies the URP if and only if it is full rank.

When m > n, there is generally no solution to y = Ax but the minimizer of E(x) over Rn is unique (although
not necessarily sparse): Xc(n) = {(AT A)−1AT y}.

In the following, we will assume that y 6= 0 and that A satisfies the URP.

2.2 Cardinality of the set Xc(k)

Theorem 3 For k 6 min(m, n), the set Xc(k) is finite under the URP assumption.

Proof 3 Because of the URP assumption, any selection of k 6 min(m, n) columns of A yields a matrix B of
size m× k whose rank is equal to k. Then, the energy reduces to E(x) = E(z;0) = ‖y −Bz‖2 (where z ∈ Rk),
and there is only one minimizer of z 7→ E(z;0) over Rk. Since the number of possible selections of k columns
of A is finite, the set Xc(k) is finite.

Remark 2 The minimal value of E(x) (for x ∈ Rn) can be reached when minimizing E over Dmin(m,n). Thus,
when m 6 n, it is not necessary to compute Xc(k) for k > m. According to theorem 3, when m > n, all the sets
Xc(k), k = 0, . . . , n are finite.

Theorem 4 When m 6 n and k is such that m < k 6 n, the set Xc(k) is of infinite cardinality.

Proof 4 Given a solution xm ∈ Xc(m), let A(xm) be the support of xm. We consider a support B of cardinality
k such that A(xm) ⊂ B ⊆ {1, . . . , n}, and we extract from A the matrix B of size m× k formed of the columns
ai of A (i ∈ B). Then, let us add to xm a vector n belonging to the null space of B. Clearly, xm + n ∈ Xc(k)
because ‖xm + n‖0 6 k and E(xm + n) = E(xm) = min

x∈Rn

E(x). Since the null space of B is of dimension

k − m > 0, Xc(k) is of infinite cardinality.
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3 PROPERTIES OF THE PENALIZED SOLUTION PATH

As a conclusion, the constrained solution path is defined in the following way, for any case (m 6 n or m > n).

Definition 3 The constrained solution path is the (finite) set

Xc =

min(m,n)⋃

k=0

Xc(k).

3 Properties of the penalized solution path

3.1 Penalized solution path

For a given λ > 0, we define the set of minimizers of J (x; λ) = E(x) + λ‖x‖0:

Xp(λ) = argmin
x∈Rn

{J (x; λ)}.

By extension, we define Xp(+∞) = {0}.

Definition 4 We denote the cardinality of a set A ⊆ {1, . . . , n} by

‖A‖0 , Card(A).

Definition 5 We denote by A(x) ⊆ {1, . . . , n} the support of a vector x ∈ Rn.

Definition 6 For a given active set A such that ‖A‖0 6 min(m, n), the corresponding least-square solution is
unique (due to the URP assumption). We denote this solution by

xA , arg min
A(x)⊆A

E(x) (2)

and the corresponding least-square cost by

EA , E(xA) = min
A(x)⊆A

E(x). (3)

Finally, we define the corresponding value of J by

JA(λ) , J (xA; λ) = EA + λ‖xA‖0 (4)

which is generally different from
min

A(x)⊆A
J (x; λ).

Theorem 5 If λ > 0 and xp(λ) ∈ Xp(λ), then the support of xp(λ), denoted by A , A(xp(λ)) for convenience,
is such that ‖A‖0 6 min(m, n), and xp(λ) = xA.

Proof 5 — First, we show that
xp(λ) ∈ arg min

{x∈Rn,A(x)⊆A}

E(x).

Since xp(λ) is a minimizer of J (x; λ), the following equivalent inequalities hold for all x such that A(x) ⊆ A:

J (x; λ) > J (xp(λ); λ)

E(x) + λ‖x‖0 > E(xp(λ)) + λ‖A‖0

E(x) − E(xp(λ)) > λ
(
‖A‖0 − ‖x‖0

)
> 0.

We finally deduce that xp(λ) is a minimizer of E over the set {x ∈ Rn, A(x) ⊆ A}.

— The case where ‖A‖0 > min(m, n) never occurs. If it does, remark 2 shows that there exists x ∈ Dmin(m,n)

such that E(x) = E(xp(λ)). Since ‖x‖0 6 min(m, n) < ‖xp(λ)‖0 = ‖A‖0, J (x; λ) < J (xp(λ); λ), which is in
contradiction with xp(λ) ∈ Xp(λ).

Finally, ‖A‖0 6 min(m, n) and there is only one minimizer of E over the set {x ∈ Rn, A(x) ⊆ A} (URP
assumption), which is xA.
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3.2 Piecewise constant property 3 PROPERTIES OF THE PENALIZED SOLUTION PATH

Corrolary 1 If λ > 0, the set Xp(λ) is finite and Xp(λ) ⊆ Dmin(m,n).

Proof 6 There are at most
∑min(m,n)

k=0 Ck
n distinct values xp(λ) (i.e.,

∑min(m,n)
k=0 Ck

n sets which are candidate to
be a set A and one optimal x-value xA per set), which shows that Xp(λ) is a finite set. Additionally, we have
seen in theorem 5 that for each solution xp(λ), ‖xp(λ)‖0 = ‖A‖0 6 min(m, n).

Definition 7 The penalized solution path is defined as the union of sets

Xp =
⋃

λ>0

Xp(λ).

Imposing λ > 0 (rather than λ > 0) guarantees that Xp(λ) is of finite cardinality for all λ. Moreover, it is easy
to see (from theorem 5) that the solution path is of finite cardinality, since all the sets Xp(λ) are included in a

common set of cardinality
∑min(m,n)

k=0 Ck
n:

{
x ∈ Rn, ∃A ⊆ {1, . . . , n}, ‖A‖0 6 min(m, n) and x = xA

}
.

3.2 Piecewise constant property

Theorem 6 The dependence of the set Xp(λ) w.r.t. λ (λ > 0) is piecewise constant, with a finite number
of intervals (λ⋆

i , λ
⋆
i+1): for all i, Xp(λ) is constant for λ ∈ (λ⋆

i , λ
⋆
i+1) and if λ ∈ (λ⋆

i , λ
⋆
i+1), then Xp(λ) ⊆

Xp(λ
⋆
i ) ∩ Xp(λ

⋆
i+1).

The minimal cost value J (λ) , min
x∈Rn

J (x; λ) is a continuous and piecewise linear function of λ, and

∀λ, J (λ) = min
{A⊆{1,...,n}, ‖A‖06min(m,n)}

JA(λ). (5)

Definition 8 In the following, we will define the values λ = λ⋆
i (i = 1, . . . , I) as the critical values. These

values, together with λ⋆
0 = 0 and λ⋆

I+1 = +∞, define the piecewise constant domain Xp(λ):

0 = λ⋆
0 < λ⋆

1 < . . . < λ⋆
I < λ⋆

I+1 = +∞. (6)

λ⋆
i are also the λ-values at which the derivative of J is changing: at λ = λ⋆

i , λ 7→ J (λ) is not differentiable,
and J is linear on each interval [λ⋆

i , λ
⋆
i+1] (see Fig. 1).

Proof 7 — The result (5) can be illustrated geometrically, by considering the affine curves λ 7→ JA(λ) for all
the possible supports A such that ‖A‖0 6 min(m, n) (see Fig. 1). Let us prove that (5) holds.

When λ is fixed, let xp(λ) ∈ Xp(λ), and let A , A(xp(λ)).

• According to theorem 5, ‖xp(λ)‖0 = ‖A‖0 6 min(m, n) and xp(λ) = xA. Thus, E(xp(λ)) = EA and

J (xp(λ); λ) = JA(λ).

• xp(λ) ∈ Xp(λ) implies that for all A′ ⊆ {1, . . . , n} such that ‖A′‖0 6 min(m, n),

J (xp(λ); λ) 6 JA′(λ) = J (xA′ ; λ).

Here, we have shown that (5) holds since J (λ) = J (xp(λ); λ).

— λ 7→ J (λ) is a continuous and piecewise linear function of λ because of (5). Since the number of affine
curves λ 7→ JA(λ) is finite, λ 7→ J (λ) is described by a finite set of values {(λ⋆

i , EAi
, ‖xAi

‖0), i = 0, . . . , I},
where λ⋆

0 = 0 < λ⋆
1 < . . . < λ⋆

I < λ⋆
I+1 = +∞. Each value λ⋆

i (i = 1, . . . , I) corresponds to the intersection
between a pair of affine curves (see Fig. 1), and the restriction of J to a given interval [λ⋆

i , λ
⋆
i+1] is linear:

∀λ ∈ [λ⋆
i , λ

⋆
i+1], J (λ) = EAi

+ λ‖xAi
‖0. (7)

In particular, for i = 0, we have
∀λ ∈ [0, λ1], J (λ) = EA0

+ λ‖xA0
‖0, (8)
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3.2 Piecewise constant property 3 PROPERTIES OF THE PENALIZED SOLUTION PATH

where EA0
= minx∈RnE(x) is the minimal least-square error, and ‖xA0

‖0 is the minimal L0-norm of the
minimizers of E over Rn. For i = I, we have necessarily xAI

= 0 and EAI
= ‖y‖2, thus

∀λ ∈ [λ⋆
I , +∞), J (λ) = ‖y‖2. (9)

— For a given interval [λ⋆
i , λ

⋆
i+1], let us show that when λ ∈ (λ⋆

i , λ
⋆
i+1), Xp(λ) is a constant set. For some given

λ-value ∈ (λ⋆
i , λ

⋆
i+1), we consider x ∈ Xp(λ), then necessarily, the following equivalent equations hold:

J (λ) = J (x; λ)

EAi
+ λ‖xAi

‖0 = E(x) + λ‖x‖0.

Imagine that EAi
6= E(x), then, necessarily, the two functions J (λ′) = EAi

+ λ′‖xAi
‖0 and J (x; λ′) = E(x) +

λ′‖x‖0 do not coincide for λ′ ∈ [λ⋆
i , λ

⋆
i+1]\{λ}. Moreover, J (x; λ′) is strictly lower than J (λ′) either for

λ′ ∈ [λ⋆
i , λ) or for λ′ ∈ (λ, λ⋆

i+1]. This is in contradiction with (7) and the definition of J (λ′) in theorem 6.

We have shown that EAi
= E(x). Since J (λ) = J (x; λ) and λ > 0, we deduce that ‖xAi

‖0 = ‖x‖0, and
that ∀λ′ ∈ [λ⋆

i , λ
⋆
i+1], J (λ′) = J (x; λ′). Finally, if λ ∈ (λ⋆

i , λ
⋆
i+1) and x ∈ Xp(λ), then x ∈ Xp(λ

′) for all
λ′ ∈ [λ⋆

i , λ
⋆
i+1]. Xp(λ) is then a constant set when λ ∈ (λ⋆

i , λ
⋆
i+1), and Xp(λ) ⊆ Xp(λ

⋆
i ) ∩ Xp(λ

⋆
i+1).

Lemma 1 The function λ 7→ J (λ) is increasing and concave.

Proof 8 J is an increasing and concave function as the minimum of a finite set of increasing and concave
functions.

Lemma 2 Xp(0) ∩ Xp 6= ∅, and if m > n, then Xp(0) ⊂ Xp.

Proof 9 The application of the result of theorem 6: “for all i, if λ ∈ (λ⋆
i , λ

⋆
i+1), then Xp(λ) ⊆ Xp(λ

⋆
i )” with

i = 0 yields
∀λ ∈ (0, λ⋆

1), Xp(λ) ⊆ Xp(0).

Thus, we always have Xp(0)∩Xp 6= ∅. For m > n, Xp(0) is formed of only one vector, thus ∀λ ∈ (0, λ⋆
1), Xp(λ) =

Xp(0), and Xp(0) ⊆ Xp. Since y 6= 0 and A is full rank, the domain (6) is formed of at least two intervals
(I > 1), thus Xp(0) ⊂ Xp.

Theorem 7 For a given λ-value which is distinct from λ⋆
0, λ

⋆
1, . . . , λ

⋆
I , all the elements of Xp(λ) are of same

L0-norm, which is equal to the derivative of J (λ), and yield the same least-square cost.

Proof 10 Because of theorem 6, for a given value of i, there exists Ai ⊆ {1, . . . , n} such that

∀λ′ ∈ [λ⋆
i , λ

⋆
i+1], J (λ′) = JAi

(λ′). (10)

Now, let us fix the value of λ ∈ (λ⋆
i , λ

⋆
i+1) and let xp(λ) ∈ Xp(λ). Because of theorem 6, Xp(λ

′) is constant for
λ′ ∈ (λ⋆

i , λ
⋆
i+1), and xp(λ) ∈ Xp(λ

′) for all λ′ ∈ [λ⋆
i , λ

⋆
i+1]. (10) implies that

∀λ′ ∈ [λ⋆
i , λ

⋆
i+1], J (xp(λ); λ′) = JAi

(λ′)

∀λ′ ∈ [λ⋆
i , λ

⋆
i+1], E(xp(λ)) + λ′‖xp(λ)‖0 = EAi

+ λ′‖xAi
‖0. (11)

Taking the derivative of (11) yields ‖xp(λ)‖0 = ‖xAi
‖0 = J ′(λ), and then, due to (11), E(xp(λ)) = EAi

.

Theorem 8 Let xp(λ) be a sequence such that ∀λ, xp(λ) ∈ Xp(λ). Then, necessarily, ‖xp(λ)‖0 is a decreasing
function of λ, and E(xp(λ)) is an increasing function of λ.

Proof 11 • Recall that for i ∈ {0, . . . , I}, there exists a set Ai such that if λ ∈ (λ⋆
i , λ

⋆
i+1) and xp(λ) ∈ Xp(λ),

then ‖xp(λ)‖0 = ‖xAi
‖0 (see theorem 7);

• The first result is a direct consequence of theorem 7: ∀λ /∈ {λ⋆
0, . . . , λ

⋆
I}, ‖xp(λ)‖0 = J ′(λ), and of lemma 1:

J is a concave function, thus its derivative (when it is defined) is a decreasing function of λ. At this point,
we know that λ 7→ ‖xp(λ)‖0 is piecewise constant on R+, and that its restriction to R+\{λ⋆

0, . . . , λ
⋆
I} is

decreasing: ∀i ∈ {1, . . . , I}, ‖xAi−1
‖0 > ‖xAi

‖0. The remaining part is to study the behavior of ‖xp(λ)‖0

at λ = λ⋆
i , i = 0, . . . , I.

For i ∈ {1, . . . , I}, let us show that xp(λ
⋆
i ) is such that ‖xAi−1

‖0 > ‖xp(λ
⋆
i )‖0 > ‖xAi

‖0:
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3.3 Cardinality of Xp(λ) 3 PROPERTIES OF THE PENALIZED SOLUTION PATH

– λ 7→ J (xp(λ
⋆
i ); λ) and λ 7→ J (λ) coincide at λ = λ⋆

i ;

– J ′(λ) is equal to ‖xAi−1
‖0 when λ ∈ (λ⋆

i−1, λ
⋆
i ), and to ‖xAi

‖0 when λ ∈ (λ⋆
i , λ

⋆
i+1).

– the derivative of λ 7→ J (xp(λ
⋆
i ); λ) is equal to ‖xp(λ

⋆
i )‖0.

Due to the definition of λ 7→ J (λ) in theorem 6, the affine function λ 7→ J (xp(λ
⋆
i ); λ) is necessarily

greater or equal to λ 7→ J (λ) for λ ∈ (λ⋆
i−1, λ

⋆
i ) and for λ ∈ (λ⋆

i , λ
⋆
i+1). This implies that ‖xAi−1

‖0 >
‖xp(λ

⋆
i )‖0 > ‖xAi

‖0.

A similar argument can be given to show that ‖xp(λ
⋆
0)‖0 > ‖xA0

‖0.

Finally, we have shown that λ 7→ ‖xp(λ)‖0 is decreasing on R+.

• Second result: for a given i ∈ {1, . . . , I}, the continuity of J at λ = λ⋆
i reads EAi−1

+ λ⋆
i ‖xAi−1

‖0 =
EAi

+ λ⋆
i ‖xAi

‖0. Because ‖xAi−1
‖0 > ‖xAi

‖0, EAi−1
6 EAi

.

When λ varies from 0 to +∞ and λ /∈ {λ⋆
1, . . . , λ

⋆
I}, E(xp(λ)) takes sequentially the values EAi

, i = 0, . . . , I.
Thus, the restriction of λ 7→ E(xp(λ)) to R+\{λ⋆

1, . . . , λ
⋆
I} is increasing. With similar arguments than in

the first result, we can show that for i ∈ {1, . . . , I}, EAi−1
6 E(xp(λ

⋆
i )) 6 EAi

. Finally, λ 7→ E(xp(λ)) is
increasing on R+.

3.3 Cardinality of Xp(λ)

It is easy to see that:

• For all i ∈ {1, . . . , I}, the cardinality of Xp(λ
⋆
i ) is larger than 2, because at λ = λ⋆

i , at least two distinct
affine curves λ 7→ JA(λ) = EA + λ‖xA‖0 intersect (see Fig. 2).

• Xp(λ) is reduced to the unique vector 0 for the largest λ-values (λ > λ⋆
I ⇒ Xp(λ) = {0}).

• For λ = 0 (the least-square error E(x) is minimized with no penalty), Xp(0) is either reduced to the unique
vector (AT A)−1AT y when m > n, or is of infinite cardinality otherwise.

We conclude that at least for m > n, the cardinality of Xp(λ) is not monotonic w.r.t. λ.

3.4 Relationship between the constrained and the penalized solution paths

Generally, the solution paths Xc and Xp do not coincide. This is a consequence of the non-convexity of the
L0-norm [2]. However, Xp ⊆ Xc is always true (a well-known result in the literature of multi-objective opti-
mization?).

In general, the proposition “∀k, ∃λ, Xc(k) ⊆ Xp(λ)” is false (see Fig. 1).

Theorem 9 If λ 6= {λ⋆
0, . . . , λ

⋆
I}, then there exists k such that Xp(λ) = Xc(k).

Proof 12 For a given λ-value, let x ∈ Xp(λ), let A , A(x) denote the support of x and kx , ‖x‖0 = ‖A‖0.
According to theorem 5, ‖A‖0 6 min(m, n) and x = xA.

— Let us show that x ∈ Xc(kx). If x /∈ Xc(kx), there exists a (minimal) support B such that ‖B‖0 6 kx and
EB < E(x) = EA, then J (xB; λ) < J (xA; λ). This is in contradiction with x ∈ Xp(λ).

At this point, we have shown that

∀λ, ∀x ∈ Xp(λ), ∃kx, x ∈ Xc(kx),

or equivalently,
Xp ⊆ Xc.

— The following of the proof requires the assumption λ 6= {λ⋆
0, . . . , λ

⋆
I}. We have seen that if x and y ∈ Xp(λ),

then x ∈ Xc(kx) and y ∈ Xc(ky). According to theorem 7, all the elements of Xp(λ) are of same L0-norm.
Therefore, ky = kx. At this point, we have shown that

∀λ 6= {λ⋆
0, . . . , λ

⋆
I}, ∃kλ, Xp(λ) ⊆ Xc(kλ).
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3.4 Relationship between the constrained and the penalized solution paths3 PROPERTIES OF THE PENALIZED SOLUTION PATH

6

-

.............

.........................
λ∗

2λ∗
1

EA2

EB

EA1

EA0 λ

A2

A0

B

A1

JA(λ)

A′
1

EA′
1

Figure 1: Representation of the affine curves λ 7→ JA(λ) = EA + λ‖xA‖0 for all the possible supports A such
that ‖A‖0 6 min(m, n). Note that a given affine curve may correspond to several supports A and B for which
∀λ, JA(λ) = JB(λ). The piecewise linear function λ 7→ J (λ) is defined according to (5) and is represented in
bold lines. From this illustration, let us comment on the nonequivalence of both solution paths Xc and Xp. By
following the bold curve representing λ 7→ J (λ), we see that the penalized solution path is described by the
active sets A0, A1 and A2 (and the possible other sets yielding the same three curves λ 7→ JAi

(λ)) for which
‖xA‖0 is equal to 3, 2 and 0, respectively. A′

1 is an active set such that ‖xA′
1
‖0 = 2 but EA′

1
> EA1

. No active
set such that ‖xA‖0 = 1 is present in Xp. B is the active set such that ‖xB‖0 = 1 whose energy EB is the lowest
among all the active sets such that ‖xA‖0 6 1, however, ∀λ, JB(λ) > J (λ). Thus, Xc(1) = {xB} 6⊂ Xp. On the
contrary, for all λ 6= {λ⋆

0, . . . , λ
⋆
I}, Xp(λ) = Xc(kλ), with kλ = J ′(λ) = 3, 2 or 0.

7
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.........................
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EA1
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JA(λ)
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Figure 2: Content of Xp(λ) at a critical λ-value λ = λ⋆
i , i > 1: Xp(λ

⋆
i ) ⊂ Xc, and Card(Xp(λ⋆

i )) > 2. On this
example, Xp(λ

⋆
2) = Xc(0) ∪ Xc(1) ∪ Xc(2) and Card(Xp(λ⋆

2)) > 3 since xA1
, xA2

and xB ∈ Xp(λ
⋆
2).

— Now, let us prove the reverse inclusion. Given λ, there exists at least one x such that x ∈ Xp(λ), kλ = ‖x‖0

and x ∈ Xc(kλ). For all y ∈ Xc(kλ), we have necessarily E(y) = E(x) and ‖y‖0 6 ‖x‖0, thus J (y; λ) 6 J (x; λ).
Since x ∈ Xp(λ), we deduce that J (y; λ) = J (x; λ) and that y ∈ Xp(λ). This completes the proof, since we
have shown that

∀λ 6= {λ⋆
0, . . . , λ

⋆
I}, Xc(kλ) ⊆ Xp(λ).

Actually, kλ = J ′(λ) according to theorem 7.

3.5 Content of Xp(λ) at critical λ-values

Lemma 3 If λ⋆
i−1 < λ < λ⋆

i < λ′ < λ⋆
i+1, then Xp(λ) ∩ Xp(λ

′) = ∅.

Proof 13 According to theorem 7, all the vectors of Xp(λ) (respectively of Xp(λ
′)) are of same L0-norm, which

is the derivative of J at λ (resp. λ′). Thus, if Xp(λ) ∩ Xp(λ
′) 6= ∅, the derivative of J is constant on

(λ⋆
i−1, λ

⋆
i+1)\{λ

⋆
i }, which is in contradiction with the definition of λ⋆

i (critical point, at which the derivative of
J is changing).

Theorem 10 If λ⋆
i−1 < λ < λ⋆

i < λ′ < λ⋆
i+1, then Xp(λ)∪Xp(λ′) ⊆ Xp(λ

⋆
i ), thus Card(Xp(λ))+Card(Xp(λ′)) 6

Card(Xp(λ⋆
i )) (Card denotes the cardinality). If λ ∈ (λ⋆

i−1, λ
⋆
i+1)\{λ

⋆
i }, then Card(Xp(λ)) < Card(Xp(λ⋆

i )).

See illustration in Fig. 2.

Proof 14 • First result: according to theorem 6, if λ ∈ (λ⋆
i , λ

⋆
i+1), then Xp(λ) ⊆ Xp(λ

⋆
i ) ∩ Xp(λ

⋆
i+1).

According to lemma 3, if λ⋆
i−1 < λ < λ⋆

i < λ′ < λ⋆
i+1, then Xp(λ) ∩ Xp(λ

′) = ∅. Thus, Xp(λ) ∪ Xp(λ
′) ⊆

Xp(λ
⋆
i ) and Card(Xp(λ)) + Card(Xp(λ′)) 6 Card(Xp(λ⋆

i )).

• Second result: since neither Xp(λ) nor Xp(λ
′) is empty, their cardinality is larger or equal to 1, then,

applying Card(Xp(λ)) + Card(Xp(λ′)) 6 Card(Xp(λ⋆
i )), we deduce that Card(Xp(λ)) < Card(Xp(λ⋆

i ))
and Card(Xp(λ′)) < Card(Xp(λ⋆

i )).
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4 SBR AND CSBR ALGORITHMS

4 SBR and CSBR algorithms

4.1 SBR iterates and output

Let us consider the SBR algorithm for a given λ-value. An SBR iterate takes the form of:

• an active set A (for simplicity, we omit the dependence w.r.t. λ);

• the corresponding least-square minimizer xA = argmin
{x∈Rn, A(x)⊆A}

E(x).

x̂(λ) , xA is chosen as the estimator of a minimizer (there may be several) of J (x; λ) = E(x) + λ‖x‖0 overRn.

First, recall that for the SBR iterates (and in particular when SBR terminates), ‖xA‖0 = ‖A‖0. This
property can be guaranteed by including in the SBR loops a small procedure which removes from the active set
A all the indices i ∈ A such that xA(i) = 0 (however, these removals rarely occur in practice). The following
remark follows from this property.

Remark 3 For a given λ-value, the cost of an SBR iterate xA is JA(λ) = EA + λ‖A‖0. Because the cost of
SBR iterates only depend on their support and for convenience, we will omit their dependence w.r.t. x.

Remark 4 SBR terminates after a finite number of iterations. Moreover, a set A cannot be explored twice
while running SBR.

Proof 15 SBR is a descent algorithm and the number of sets A which are reachable is finite (i.e., the number
of subsets of {1, . . . , n}).

Remark 5 When SBR terminates, the estimate x̂(λ) = xA is generally not included in Xp(λ) because SBR is
a sub-optimal algorithm.

Remark 6 At the SBR output A, J is “locally minimum w.r.t. A”: any replacement of A by A • i (where
• , ∪ or \) does not yield a decrease of the cost JA(λ)). Formally, this property reads:

∀i, JA(λ) 6 JA•i(λ), (12)

or equivalently,

∀i, EA + λ‖A‖0 6 EA•i + λ‖xA•i‖0

∀i, EA − EA•i 6 λ
(
‖xA•i‖0 − ‖A‖0

)
. (13)

Here, we do not consider the small removal procedure described above for A• i (update of A• i by removing the
indices corresponding to the zero valued entries of xA•i), therefore we use ‖xA•i‖0, which may be lower than
‖A • i‖0.

4.2 Iterative computation of λ in the CSBR algorithm

When λ = λq > 0 (q-th call to SBR), let A = Aq be the support of the output of SBR(λq). Then, (13) holds.
For simplicity, we will omit, when possible, the dependence of A w.r.t. q. When λq is replaced by another value
λ 6 λq and A = Aq is kept fixed, for which λ-values does (13) remain valid?

When • = \, both terms on the left- and right-hand sides of the inequality are strictly negative (‖xA\i‖0 6
‖A‖0 − 1), while when • = ∪, both terms are positive since EA − EA∪i > 0 and (13) holds for λ = λq (this
implies that ‖xA∪i‖0 = ‖A‖0 or ‖A‖0 + 1). Therefore, (13) remains valid for λ 6= λq if and only if

(0 6) max
i/∈A and ‖xA∪i‖0=‖A‖0+1

(EA − EA∪i) 6 λ 6 min
i∈A

[
EA − EA\i

‖xA\i‖0 − ‖A‖0

]
. (14)

9



4.3 Termination of CSBR 4 SBR AND CSBR ALGORITHMS

The lower bound of (14) can be simplified to max
i/∈A

(EA − EA∪i) because if i /∈ A is such that ‖xA∪i‖0 = ‖A‖0,

then (13) implies that EA − EA∪i = 0. Thus, including these indices i in the computation of the lower bound
of (14) does not change its value, and (14) simplifies to

max
i/∈A

(EA − EA∪i) 6 λ 6 min
i∈A

[
EA − EA\i

‖xA\i‖0 − ‖A‖0

]
. (15)

Given λq, the next λ-value λq+1 < λq is found by computing the lower bound of (15).

How to choose λq+1? Setting λq+1 to the lower bound of (15) is not judicious, since for this λ-value, J is
still “locally minimum w.r.t. A” in the sense of (12). One possibility is to set λq+1 to the lower bound of (15)
minus some ε > 0, without guarantee that this value is larger than the “next lower bound” of (15). Another
possibility is to sort the values of

λ̃i , EA − EA∪i > 0 (16)

for all indices i /∈ A, and then to set λq+1 to the mean of the two largest values. This setting ensures

that the inequality λ̃i 6 λq+1 does not hold for one value of λ̃i only.

• If the number of indices i /∈ A such that λ̃i > 0 is equal to 1, then we set λq+1 to half of the value of λ̃i.

• If all indices i /∈ A are such that λ̃i = 0, then we terminate CSBR.

• If A is the complete set {1, . . . , n}, the lower bound of (15) is undefined, and we terminate CSBR.

Remark 7 For a given i /∈ A for which ‖xA∪i‖0 = ‖A‖0 + 1, λ̃i is the λ-value for which both affine curves
λ 7→ JA(λ) and λ 7→ JA∪i(λ) intersect. Similarly, for i ∈ A, the value

λ̃i ,
EA − EA\i

‖xA\i‖0 − ‖A‖0
(17)

is the λ-value for which both affine curves λ 7→ JA(λ) and λ 7→ JA\i(λ) intersect.

Proof 16 For i /∈ A and for the λ-value λ̃i, (13) is an equality, then JA(λi) = JA∪i(λi). Since ‖xA∪i‖0 is
supposed to be different from ‖A‖0, both affine curves λ 7→ JA(λ) and λ 7→ JA∪i(λ) are not parallel (their slopes
are equal to ‖A‖0 and ‖xA∪i‖0 = ‖A‖0 + 1 respectively), and they intersect at λ = λi. A similar proof holds in
the case where i ∈ A and ∪ is replaced by \.

Remark 8 A set A of cardinality larger than min(m, n) cannot be explored.

Proof 17 — SBR: if a set A of cardinality larger than min(m, n) is explored, then SBR has earlier explored at
least one set B of cardinality min(m, n) (recall that the initial solution is A = ∅). Due to the URP assumption,
EB = EA = minx∈Rn E(x) is the optimal least-square cost. Therefore, ‖A‖0 > ‖B‖0 ⇒ ∀λ > 0, JA(λ) > JB(λ).
This cannot occur because SBR is a descent algorithm.

— CSBR. Recursively, for each λ = λq, if the initial set Aq−1 (input of SBR(λq)) is of cardinality lower than
min(m, n), then the output Aq of SBR(λq) is also of cardinality lower than min(m, n).

4.3 Termination of CSBR

Remark 9 When CSBR terminates, EA = JA(0) is locally minimum w.r.t. A, then ∀i /∈ A, EA∪i = EA.

Remark 10 CSBR terminates after a finite number of SBR iterations.

Proof 18 • According to remark 4, for a given λ-value λq, SBR(λq) terminates after a finite number of
iterations.

• According to remark 7, each value of λq is such that there exists µq and µq such that

10
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Figure 3: A given set A may be explored twice during the CSBR procedure, at different λ-values. Here, each
vertical line corresponds to one call to SBR (A and A’ are two SBR iterates at λq and λ′

q), i.e., to a fixed
λ-value while the plain lines are the affine curves λ 7→ JA(λ) and λ 7→ JA′(λ).

– 0 6 µq 6 λq 6 µq;

– λq = (µq + µq)/2;

– µq and µq are critical values for which two affine curves λ 7→ JA(λ) and λ 7→ JA(λ ∪ i) intersect.

From the recursive construction of the sequence (λq , q > 0), it is clear that ∀q, µq < λq−1, thus ∀q, µq <
µq−1. Since each value of µq can be associated to a given intersection between two affine curves λ 7→ JA(λ)
and λ 7→ JB(λ) and the number of possible subsets A and B of {1, . . . , n} whose cardinality is lower than
min(m, n) is finite, the number of possible values taken by µq is also finite. Since the sequence (µq, q > 0)
satisfies ∀q, µq < µq−1, we conclude that the number of iterations q at which SBR(λq) is run is finite.

Despite remark 10, we cannot claim that a given set A is never explored twice during the CSBR procedure. In
remark 4, we have seen that a given set A can never be explored twice while running SBR for a given λ-value.
However, A may be explored several times while running CSBR, i.e., once while running SBR at some λ-value
λq, and another time while running SBR at another λ-value λq′ 6 λq (for q′ > q). See Fig. 3 for a simple
illustration.

Remark 11 When CSBR terminates, the solution xA is an unconstrained least-square estimate.

Proof 19 Let us define the residual r = y − AxA and the unit vectors ei ∈ Rn in which all entries are equal
to 0 except the i-th entry, equal to 1. Then, Aei = ai, where ai stands for the i-th column of A.

Firstly, we prove that ∀i 6∈ A, aT
i r = 0. According to remark 9, A is such that ∀i /∈ A, EA∪i = EA. Then,

the following inequalities hold:

∀i /∈ A, ∀ε ∈ R, E(xA + εei) − E(xA) > 0

∀i /∈ A, ∀ε ∈ R, ‖r − εai‖
2 − ‖r‖2 > 0

∀i /∈ A, ∀ε ∈ R, ε2‖ai‖
2 − 2εaT

i r > 0

∀i /∈ A, aT
i r = 0.
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Secondly, because xA is a solution to the constrained problem (2):

∀i ∈ A, ∀ε ∈ R, E(xA + εei) − E(xA) > 0

∀i ∈ A, aT
i r = 0.

Finally, we deduce that

∀i ∈ {1, . . . , n}, aT
i r = 0

AT r = 0

AT AxA − AT y = 0

∇E(xA) = 0.

Since E is quadratic, we have shown that xA is an unconstrained least-square estimate.
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