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MORSE 2-JET SPACE AND h-PRINCIPLE

ALAIN CHENCINER AND FRANÇOIS LAUDENBACH

Abstract. A section in the 2-jet space of Morse functions is not always homotopic to a holo-
nomic section. We give a necessary condition for being the case and we discuss the sufficiency.

1. Introduction

Given a submanifold Σ in an r-jet space (of smooth sections of a bundle over a manifold
M), it is natural to look at the associated differential relation R(Σ) formed by the (r + 1)-jets
transverse to Σ. For jrf being transverse to Σ at x ∈ M is detected by jr+1

x f . This is an open
differential relation in the corresponding (r + 1)-jet space. One can ask whether the Gromov
h-principle holds: is any section with value in R(Σ) homotopic to a holonomic section of R(Σ)?
(We recall that a holonomic section of a (r + 1)-jet space is a section of the form jr+1f .)

According to M. Gromov, the answer is yes when M is an open manifold and Σ is natural,
that is, invariant by a lift of Diff(M) to the considered jet space (see [3] p. 79, [1] ch. 7).

The answer is also yes when the codimension of Σ is higher than the dimension n of M ; this
case follows easily from Thom’s transversality theorem in jet spaces (see [6]). In the case of jet
space of functions and when Σ is natural and codimΣ ≥ n + 1, it also can be seen as a baby
case of a theorem of Vassiliev [9].

In this note we are interested in a codimension n case when M is a compact n-dimensional
manifold. Let Jr(M) denote the space of r-jets of real functions; when the boundary of M

is not empty, it is meant that we speak of jets of functions which are locally constant on the
boundary. We take Σ ⊂ J1(M) the set of critical 1-jets. Then R(Σ) ⊂ J2(M) is the open set
of 2-jets of Morse functions. We shall analyze the obstructions preventing the h-principle to
hold with this differential relation.

2. Index cocycles

It is more convenient to work with the reduced jet spaces J̃r(M), quotient of Jr(M) by R

which acts by translating the value of the jet. It is a vector bundle whose linear structure is

induced by that of C∞(M). For instance, J̃1(M) is isomorphic to the cotangent space T ∗M .
Let M denote the reduced 2-jets of Morse functions, that is the 2-jets which are transverse to

the zero section 0M of T ∗M (in the sequel, jet will mean reduced jet). Let π : J̃2(M) → J̃1(M)

be the projection and π0 : J̃2
0 (M) → 0M be its restriction over the zero section of the cotangent
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space. Since it is formed of critical 2-jets, it is a vector bundle whose fiber is the space of

quadratic forms, S2(T ∗
xM), x ∈ M . Let M0 := M ∩ J̃2

0 (M); it is a bundle over 0M whose

fiber consists of non-degenerate quadratic forms. Its complement in J̃2
0 (M) is denoted D (like

discriminant); it is formed of 2-jets which are not transverse to 0M . When M is connected, M0

has a connected component Mi
0 for each index i ∈ {1, ..., n} of quadratic forms.

2.1. Tranverse orientation. Each Mi
0 is a proper submanifold of codimension n in M. Moreover

the differential dπ gives rise to an isomorphism of normal fiber bundles

ν(Mi
0,M) ∼= π∗(ν(0M , T ∗M))|Mi

0 .

Of course, ν(0M , T ∗M) is canonically isomorphic to the cotangent bundle τ ∗M , whose total
space is T ∗M . When M is oriented, so is the bundle τ ∗M . When M is not orientable, one has a
local system of orientations of τ ∗M . Pulling it back by π yields a local system of orientations of
ν(Mi

0,M) (that is, co-orientations of Mi
0). Let us denote Meven

0 (resp. Modd
0 ) the union of the

Mi
0’s for i even (resp. odd). We endow Meven

0 with the above local system of co-orientations.
For reasons which clearly appear below, it is more natural to equip Modd

0 with the opposite
system of co-orientations.

Lemma 2.2. Let s = j2f be a holonomic section of M meeting M0 transversally. Then each
intersection point of s(M) with M0 is positive. The same statement holds when s is a local
holonomic section only.

Proof. Let a be such an intersection point in s(M)∩Mi
0; so i is the index of the corresponding

critical 2-jet. We can calculate in local coordinates (x, y′, y′′), where x = (x1, ..., xn) are local
coordinates of M ,y′ = (y′

1, ..., y
′
n) (resp. y′′ = (y′′

jk)1≤j≤k≤n) are the associated coordinates of

T ∗
xM (resp. S2T ∗

xM). Since f is holonomic, we have y′′
jk(a) =

∂y′

j

∂xk
(a). Finally, the sign of

det y′′(a) (positive if i is even and negative if not) gives the sign of the Jacobian determinant
at a of the map x 7→ y′(x), that is the sign of the intersection point when Mi

0 is co-oriented
by the canonical orientation of the y′-space. As we have reversed this co-orientation when i is
odd, the intersection point is positive whatever the index is. �

Proposition 2.3. 1) Each Mi
0 defines a degree n cocycle of M with coefficients in the local

system Z
or of integers twisted by the orientation of M . Let µi be its cohomology class in

Hn(M, Zor); in particular, if s : M → M is a section, < µi, [s] > is an integer.
2) When s is homotopic to a holonomic section j2f , then < µi, [s] > is positive and equals the
number ci(f) of critical points of the Morse function f . In particular the total number |Z| of
zeroes of the section π ◦ s (which, by construction, is transverse to the 0-section) satisfies:

|Z| ≥
n∑

i=0

ci(f) .

Proof. 1) Let σ be a singular n-cycle with twisted coefficients of M. It can be C0-approximated
by σ′, an n-cycle which is transverse to Mi

0. As Mi
0 is a proper submanifold, there are finitely

many intersections points in σ′ ∩Mi
0, each one having a sign with respect to the local system
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of coefficients. The algebraic sum of these signs defines an integer c(σ′). One easily checks that
c(σ′) = 0 if σ′ is a boundary. As a consequence, if σ′

0 and σ′
1 are two approximations of σ, as

σ′
1 − σ′

0 is a boundary, we have c(σ′
1)− c(σ′

0) = 0 which allows us to uniquely define c(σ) as the
value of an n-cocycle on σ. Typically, the image of a section carries an n-cycle with twisted
coefficients and this algebraic counting applies.
2) Since c defined in 1) is a cocycle, it takes the same value on s and on j2f . According to
lemma 2.2, it counts +1 for each intersection point in j2f ∩Mi

0, that is, for each index i critical
point of f . �

Corollary 2.4. If s is a section of M which is homotopic to a holonomic section, the integers
mi :=< µi, [s] > fulfill the Morse inequalities

m0 ≥ β0(F )
m1 − m0 ≥ β1(F ) − β0(F )

... ...

m0 − m1 + ... + (−1)nmn = β0(F ) − β1(F )... + (−1)nβn(F ) =: χ(M)

where F is a field of coefficients, βi(F ) = dimF Hi(M, F or) is the i-th Betti number with coeff-
cients in F or (F twisted by the orientation) and χ(M) is the Euler characteristic (independent
of the field F ).

Corollary 2.5. The h-principle does not hold true for the sections of M.

Proof. It is sufficient to construct a section s of M which violates the Morse inequalities, for
example a section which does not intersect M0

0. Leaving the case of the circle as an exercise, we
may assume n > 1. One starts with a section s1 of T ∗M tranverse to OM . Each zero of s1 has
a sign (if the local orientation of M is changed, so are both local orientations of s1 and 0M the
sign of the zero in unchanged). For each zero a, one can construct a homotopy fixing a, with
arbitrary small support, which makes s1 linear in a small neighborhood of a. As GL(n, R) has
exactly two connected components, one can even suppose that after the homotopy, s1 is near
a the derivative of a non degenerate quadratic fonction whose index can be chosen arbitrarily
provided it is even (resp. odd) if a is a positive (resp. a negative) zero. Finally, one can achieve
by homotopy that near each zero a, one has s1 = df with a a non-degenerate critical point of
f of index 2 (resp. 1) if a is a positive (resp. negative) zero.

Near the zeroes s1 has a canonical lift to M by s2 = j2f . Away from the zeroes, the lift s2

extends as a lift of s1 since the fibers of π are contractible over T ∗M \ 0M . By construction, we
have < µ0, [s2] >= 0, violating the first Morse inequality. �

Remark 2.6. Denote µeven = µ0 + µ2 + ... and µodd = µ1 + ... . The following statement holds
true: µeven = µodd if and only if the Euler characteristic vanishes.

Proof. Assume first µeven = µodd. Proposition 2.3 yields for any holonomic section in M:
meven = modd, that is χ(M) = 0. Conversely, if χ(M) = 0, there exists a non-vanishing 1-form

on M and hence, by lifting it to J̃2(M), a section v0 in M avoiding M0. We form

W = {z ∈ J̃2(M) | z = z0 + tv0, z0 ∈ M0, t ≥ 0 or z0 ∈ D, t > 0}.
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It is a proper submanifold in M whose boundary (with orientation twisted coefficients) is
Meven

0 −Modd
0 . Therefore, every cycle c satisfies < µeven, c >=< µodd, c >, which implies the

wanted equality. �

3. Are Morse inequalities sufficient?

This question is closely related to the problem of minimizing the number of critical points of
a Morse function. This problem was solved by S. Smale in dimension higher than 5 for simply
connected manifolds, as a consequence of the methods he developped for proving his famous
h-cobordism theorem (see [8] or chapter 2 in [2]). Under the same topological assumptions we
can answer our question positively. But there are other cases, discussed later, where the answer
is negative.

Proposition 3.1. Two sections s, t of M ⊂ J̃2(M) are homotopic as sections of M if and
only if their algebraic intersection numbers mi with Mi

0 are the same.

Proof. According to proposition 2.3 1), the condition is necessary. Let us prove that it is
sufficient. Leaving the 1-dimensional case to the reader, we assume dim M ≥ 2. Denote
s1 = π ◦ s. Each zero of s1 is given an index due to its lifting by s to a point of some Mi

0. For

each index i choose |mi| zeroes of s1, a1
i , . . . , a

|mi|
i , among its zeroes of index i; when mi > 0

(resp. mi < 0), we choose the a
j
i so that the corresponding intersection points of s(M) with

Mi
0 are positive (resp. negative). When mi = 0, no points are selected. In the same way, |mi|

zeros b1
i , . . . , b

|mi|
i of t1 are chosen.

The intersection signs being the same, one can find a homotopy of t in M, which brings the
b
j
i to coincide with the a

j
i and makes the two sections s and t coincide in the neighborhood of

these points.
The other zeroes of s1 of index i can be matched into pairs of points {aj+

i , a
j−
i } of opposite

sign. A Whitney type lemma allows us to cancel all these pairs by a suitable homotopy of s in
M, reducing to the case when s1 has no other zeroes than the a

j
i ’s, j = 1, . . . , |mi|. A similar

reduction may be assumed for t. Let us finish the proof in this case before stating and proving
this lemma.

Both sections s1 and t1 of T ∗M are homotopic (among sections) by a homotopy which is
stationary on a neighborhood N(aj

i ). Making this homotopy h : M × [0, 1] → T ∗M transverse

to the zero section, the preimage of 0M consists of arcs {aj
i} × [0, 1] and finitely many closed

curves γk. Each of these closed curves can be arbitrarily decorated with an index i. This choice

allows us to lift h to J̃2(M) as a homotopy h̃ from s to t; this h̃ is the desired homotopy. More

precisely, we proceed as follows for getting h̃. First h|γk is lifted to Mi
0 by using that the fiber

of π : Mi
0 → 0M is connected. The transversality of h to 0M allows us to extend this lifting to

a neighborhood of γk, making h̃ transverse to Mi
0. Now it is easy to extend h̃ to M × [0, 1],

since the fiber of π over any point outside 0M is contractible.

A Whitney type lemma. Let (b+, b−) be a pair of transverse intersection points of s with
Mi

0 having opposite sign when they are thought of as zeroes of s1 in M . Let α be a simple
path in M joining them avoiding the other zeroes of s1 and let N be a neighborhood of α. Then
there exists a homotopy S = (su)u∈[0,1] of s0 = s into M, supported in N and cancelling the
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pair (b+, b−), that is, π ◦ s1 has no zeroes in N .

Proof. We choose an embedded 2-disk (with corners) ∆ in N × [0, 1[ meeting N × {0}
transversally along α. We first construct the homotopy S1 := π ◦S of s1 among the sections of
T ∗M , following the cancellation process of Whitney which we are going to recall. We require
S1 to be transverse to 0M with (S1)−1(0M) = β, where α ∪ β = ∂∆. Using a trivialization
of T ∗M |N , S1|N × [0, 1] reads S1(x, u) = (x, g(x, u)). The requirement is that g vanishes
transversally along the arc β; it is possible exactly because dim M ≥ 2 and the end points have
opposite signs. Let T be a small tubular neighborhood of β; its boundary traces an arc β ′ on
∆, “parallel” to β. Let α′ be the subarc of α whose end points are those of β ′. The restriction
g|T is required to be a trivialization of T , but this latter may be chosen freely. We choose it
so that the loop (g|β ′) ∪ (s1|α′) be homotopic to 0 in (Rn)∗ \ {0}; of course, when n > 2 this
condition is automatically fulfilled. Now g can be extended to the rest of ∆ as a non-vanishing
map. As N × [0, 1] collapses onto N ×{0}∪∆∪T , the extension of g can be completed without
adding zeroes outside β, yielding the desired homotopy S1.

It remains to lift S1 to M. The lifting is first performed along β with value in Mi
0. Then it

is globally extended in the same way as in the above lifting process. �

Corollary 3.2. Let s be a section of M ⊂ J̃2(M) and mi be its algebraic intersection number
with Mi

0. Let f : M → R be a Morse function whose number ci(f) of critical points of index i

satisfies

ci(f) = mi

for all i ∈ {0, . . . , n}. Then s and j2(f) are homotopic as sections of M.

Corollary 3.3. We assume dim M ≥ 6 and π1(M) = 0. Let s be a section of M ⊂ J̃2(M)
whose algebraic intersection numbers mi fulfills the Morse inequalities for every field of coeffi-
cients. In particular, they are non-negative. Then s is homotopic through sections in M to a
holonomic section.

Proof. Under these topological assumptions the following result holds true: For any set of
non-negative integers {c0, c1, · · · , cn} satisfying the Morse inequalities for any field of coeffi-
cients, there exists a Morse function on M with ci critical points of index i (see theorem 2.3 in
[2]). So we have a Morse function f : M → R with mi critical points of index i. According to
corollary 3.2, s is homotopic in M to j2f . �

3.4. We end this section by recalling that the Morse inequalities are not sharp for estimating
the number of critical points of a Morse function on a non-simply connected closed manifold.
Typically when π1(M) equals its subgroup of commutators (perfect group), some critical points
of index 1 are required for generating the fundamental group, but the Morse inequalities allow
c1 = 0 (see [7] for more details). On the other hand, the only constraint for a section of M
with intersection numbers mi is the Euler-Poincaré identity:

m0 − m1 + ... = χ(M).
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So it is possible to find a section s whose intersection number mi is the minimal rank in degree
i of a free complex whose homology is H∗(M, Z), that is,

mi = βi + τi + τi−1,

where βi stands for the rank of the free quotient of Hi(M, Z) and τi denotes the minimal num-
ber of generators of its torsion subgroup ([2] p. 15). Such a set of integers satisfies the Morse
inequalities but is far from being realizable by a Morse function. Finally this section s is not
homotopic in M to a holonomic section.

4. Failure of the 1-parametric version of the h-principle

We thank Yasha Eliashberg who pointed out to us the failure of the h-principle in the 1-
parametric version of the problem under consideration.

Here M is assumed to be a product M = N × [0, 1]. Let f0 : M → [0, 1] be the projection.
When M is not 1-connected and dim M ≥ 6, according to Allen Hatcher the so-called pseudo-
isotopy problem has always a negative answer: there exists f without critical points which is
not joinable to f0 among the Morse functions (see [4]). But j2f can be joined to j2f0 by a
path γ in M. Indeed, take a generic homotopy γ1 joining df to df0; then arguing as in the
proof of proposition 3.1 it is possible to lift it to M. When M is the n-torus T

n, A. Douady
showed very simply the stronger fact that the path γ1 can be taken among the non-singular
1-forms (see appendix to [5]). This γ is not homotopic in M with end points fixed to a path
of holonomic sections.

References

[1] Y. Eliashberg, N. Mishachev, Introduction to the h-principle, GSM 48, Amer. Math. Soc., 2002.
[2] J. Franks, Homology and Dynamical Systems, CBMS Regional Conf. vol. 49, Amer. Math. Soc., 1982.
[3] M. Gromov, Partial Differential Relations, Springer Verlag, 1986.
[4] A. Hatcher, Higher simple homotopy theory, Annals of Math. (2) 102 (1975), 101-137.
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