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etc ...



Hiérachies binaires et Espaces ultramétriques

orientés.

Résumé : Les hiérarchies binaires orientées ont été introduites pour fournir une
représentation graphique orientée d’une famille de règles implicatives d’association.
Une telle structure étend d’une façon très spécifique celle sous jacente aux arbres
binaires hiérarchiques de classification. Nous proposons ici une formalisation
précise de ce nouveau type de structure. Une hiérarchie binaire orientée est
définie comme une famille de couples (ordonnés) de parties de l’ensemble à
organiser remplissant des conditions spécifiques. Une nouvelle notion d’ultramétricité
binaire orientée est construite. le résultat fondamental consiste en la mise en
correspondance bijective entre une structure binaire ultramétrique orientée et
une hiérarchie binaire orientée. De plus, un algorithme est proposé pour passer
de la structure ultramétrique à celle graphique d’un arbre binaire orienté et
valué.

Mots-clés : Classification ascendante hiérarchique orientée, Espaces ultramétriques,
Règles d’association, Représentation graphique
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1 Introduction

Given a finite set E of entities (objects or descriptive attributes) and a similarity
s, or a dissimilarity d, on E, the common objective of a hierarchical clustering
is to gather in small classes the most similar entities and to separate the most
dissimilar ones in different large classes (e.g. [2, 4, 19]). In the vast majority
of cases, the measures s and d are symmetrical. However, stimulated by appli-
cations in various area (e.g. co-citation analysis, social exchange, psychology)
some authors have considered asymmetric measures (e.g. [21, 5, 20, 26, 23].
Yadohisa [25, 23]) has proposed the concept of asymmetrical agglomerative hi-
erarchical clustering to take into account the asymmetry of the relationships in
a dendrogram representation.

A specific case of asymmetrical measures is notably found in data mining
when considering association rules. Relative to two boolean attributes a and b,
an association rule of the form a → b means that “when a is TRUE, then usually
b is also TRUE”. Association rules differ from logical rules by tolerating few
counter-examples; they evaluate an implicative tendency. This notion commonly
appears in real-life corpuses where we can observe few individuals for which a is
TRUE and b is FALSE without questioning the general trend to have b when we
have a. From the seminal works of Agrawal and al. in [1] 1993 and Manilla and
al. in 1994 [13], association rules have become one of the major concepts used in
data mining. Many measures have been proposed to quantify the strenght of the
rule implicative tendency (see Guillet and Hamilton 2007 for a recent state-of-
the-art [11]). The vast majority of them are non symmetrical: if Imp measures
the implication degree between entity conjunctions, Imp (a, b) 6= Imp (b, a).

Different clustering algorithms have been proposed for structuring the rule
sets (e.g. Toivonen et al. [24], Lent et al. [15]). Most of them build partitions.
But, in order to preserve the intrinsical asymmetry of the measures and to
discover relationships at different granularity levels, Gras (1996) [6] has proposed
a hierarchical model called afterwards “directed hierarchy” by Gras and Kuntz
(2005) [8]. Internal nodes of the binary directed hierarchy can be in a sense
”rules of rules”: e.g. (a → b) → (c → d) whose premisse (a → b) and conclusion
(c → d) can be rules themselves (see figure 1). We refer to Gras et al. (2008)
[7] for applications of this model in data mining and didactics.

A first formalization of the concept of binary directed hierarchy has been
proposed in a restricted context (where Imp is the implication intensity (Gras
and al. 2008)). In this paper, following a work set about by Lerman (2006,
2007) [16, 17], we reexamine this structure in a deeper more accurate and more
complete framework. We first define a binary directed hierarchy as a set of
ordered pairs of subsets of E which satisfy specific conditions. Then, we propose
a directed version of the ultrametricity and show that in a directed ultrametric
space the triangles remain isosceles. In these conditions we establish a new
bijection theorem between a binary directed hierarchy and a directed ultrametric
structure. Due to the orientation, the bijection requires additionnal conditions
not present in the classical case.

More precisely, in section 2, the notion of directed binary hierarchy is defined
in terms of a set of directed forks. Some of its basic properties are given. Sec-
tion 3 is devoted to the notion analysis of directed ultrametrics. By defining the
strict directed ultrametricity, we obtain a characterization of this new notion in
terms of directed isosceles triangles, for which the basis length is strictly lower
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Figure 1: Tree associated with a binary directed hierarchy

than the common length of the two other sides. The main result of this paper is
developed in section 4 where we establish the correspondence between a directed
binary hierarchy and an associated directed ultrametric space. This result can
be viewed as an extension of those obtained in [2, 12, 18] where a hierarchical
classification and an ultrametric numerical or ordinal similarity structure are
formally associated. Final remarks and comments are considered in the conclu-
sion (section 5).

Let us end this introduction by mentioning that this paper consists of a
development of a short summary given in [14].

2 Directed hierarchies

In this section we introduce the notion of complete binary directed hierarchy
on a finite set E. The main result is given in Theorem 1. We show that this
structure gives rise to a total order on E.

Definition 1 A directed fork of E is an ordered pair (X,Y ) of non empty
disjoint subsets of E such that X 6= E and Y 6= E. The top of the directed fork
(X,Y ) is formally represented by (X → Y,X ∪ Y ).

X Y, XUY)(

 YX

Figure 2: Directed fork

X → Y does mean a directed junction from the subset X to the subset Y .
X and Y designate the two components of the directed fork (X,Y ). X and Y
are called the left and the right components of the fork. X ∪Y defines the basis
of the directed fork. Thus, the nature of a fork is binary.

Definition 2 A binary directed hierarchy
−→
H (E) is a set of directed forks of E

which satisfies the following property: for each unordered pair {(X,Y ) , (Z, T )}

of distinct directed forks belonging to
−→
H (E), where card (X ∪ Y ) ≤ card (Z ∪ T ),

we have either (X ∪ Y ) ∩ (Z ∪ T ) = ∅ or X ∪ Y ⊆ Z or X ∪ Y ⊆ T .

INRIA



Directed binary hierarchies and directed ultrametrics 5

(X ∪ Y ) ∩ (Z ∪ T ) = ∅ will be called exclusion between the two directed
forks (X,Y ) and (Z, T ). On the other hand, X ∪ Y ⊆ Z (resp. X ∪ Y ⊆ T )
will be called a left inclusion (resp., a right inclusion) of the fork (X,Y ) into
the fork (Z, T ).

Proposition 1 For each directed fork (X,Y ) ∈
−→
H (E), there is no other di-

rected fork (Z, T ) ∈
−→
H (E) such that X ∪ Y = Z ∪ T . In particular, (Y,X) /∈

−→
H (E).

ProofProofProof : Let us assume that there exist two directed forks (X,Y ) and (Z, T )
for which X ∪ Y = Z ∪ T . Then, we have clearly:

(X ∪ Y ) ∩ (Z ∪ T ) 6= ∅

As a consequence we have either

X ∪ Y ⊆ Z or X ∪ Y ⊆ T

Obviously, none of inclusions can hold. Because, they are equivalent to either

Z ∪ T ⊆ Z or Z ∪ T ⊆ T

respectively. But, according to the definition of a fork, Z and T are disjoint
and non empty. Hence, the previous equation is not valid. On the other hand,

since Y ∪ X = X ∪ Y then we can derive Y ∪ X /∈
−→
H (E). �

Corollary 1 A directed fork (X,Y ) for which X ∪ Y = E is unique.

This corresponds to a particular case of Proposition 1. �

Proposition 2 For every element x of E (x ∈ E), there is at most one directed
fork for which the singleton subset {x} is one of its components.

ProofProofProof : Suppose that there are two distinct directed forks having each {x}
as one of its components. For each of them two cases have to be considered
according to the position of {x} in the ordered subset pair defining the directed
fork. In fact, it is sufficient to consider the unique case where {x} is the left
component of both directed forks. The proof for the three other cases is strictly
analogous.
In these conditions, let us denote by ({x}, Y ) and ({x}, Z) the two distinct
directed forks for which {x} is their common left component. Without loss of
generality, let us suppose that card(Y ) ≤ card(Z). We have

({x} ∪ Y ) ∩ ({x} ∪ Z) 6= ∅

According to the above Definition 2, we have either

{x} ∪ Y ⊆ {x} or {x} ∪ Y ⊆ Z

RR n° 6815



6 I-C. Lerman & P. Kuntz

Since {x} ∩ Y = ∅, {x} ∩ Z = ∅ and Y 6= ∅ , Z 6= ∅ none of these inclusions
can hold. �

There is a natural strict partial order on
−→
H (E) that we denote by ≺H : for

any pair of directed forks (X,Y ) and (Z, T ) belonging to
−→
H (E), (X,Y ) ≺H

(Z, T ) if and only if the two following conditions are satisfied:

1. (X ∪ Y ) ∩ (Z ∪ T ) 6= ∅

2. card(X ∪ Y ) < card(Z ∪ T )

According to Definition 2 one has necessarily :

X ∪ Y ⊂ Z or X ∪ Y ⊂ T

Definition 3 A binary directed hierarchy is complete when

1. for any singleton x ∈ E, there is exactly one directed fork of
−→
H (E) such

that one component is {x};

2. there is a directed fork (X,Y ) in
−→
H (E) such that X ∪ Y = E;

3. for any directed fork (X,Y ) in
−→
H (E) such that X ∪Y 6= E, there exists a

directed fork (X ′, Y ′) in
−→
H (E) such that either X ′ = X∪Y or Y ′ = X∪Y .

Relative to the above item 2 and from Corollary 1, the directed fork such
that X ∪ Y = E is necessarily unique. Now, relative to the above item 3 and
from Definition 2, the directed fork (X ′, Y ′) is necessarily unique. To see this
point let us suppose without loss of generality that X ′ = X ∪ Y and assume
that there exists another fork (X ′′, Y ′′) such that we have either:

X ′′ = X ∪ Y or Y ′′ = X ∪ Y

Without loss of generality one may suppose that card(X ′′∪Y ′′) ≤ card(X ′′∪
Y ′′). In these conditions and from Definition 2, if X ′′ = X ∪ Y , then we have
necessarily X ′′∪Y ′′ ⊂ X ′ = X∪Y and this inclusion cannot hold ((X ′′∩Y ′′) =
∅). On the other hand, if Y ′′ = X∪Y , we have necessarily X ′′∪Y ′′ ⊂ Y ′ = X∪Y
and, for the same reason this inclusion cannot hold. �

(X ′, Y ′) will be called the mother of (X,Y ). Finally, according to the strict
partial order ≺H it is easy to establish that there cannot exist a directed fork
(Z, T ) strictly between (X,Y ) and (X ′, Y ′); that is to say such that:

(X,Y ) ≺H (Z, T ) ≺H (X ′, Y ′)

Proposition 3 Let
−→
H (E) be a complete binary directed hierarchy. Given an

unordered pair {x, y} from E ({x, y} ∈ P2(E)), there exists necessarily a directed

fork in
−→
H (E) such that one component contains x and the other one contains

y.

INRIA



Directed binary hierarchies and directed ultrametrics 7

ProofProofProof : Let us consider x as one of the two elements of {x, y}. From Def-

inition 3 there is exactly one directed fork of
−→
H (E) such that one component

is {x}. Initializing with this directed fork, consider the increasing sequence of
forks such that each fork is the mother of the preceding one. In this sequence of
directed forks consider the first one such that its top defines a basis including
x and y. Since the basis of the final directed fork is E, this directed fork does
necessarily exist. By construction, each of x and y belongs to one of the two
components of the latter directed fork. �

Proposition 4 If
−→
H (E) is a complete binary hierarchy of directed forks, and let

(x, y) ∈ E×E. Assume that there exists a fork (X,Y ) for which (x, y) ∈ X×Y ,
then this fork is unique.

ProofProofProof : This result can be deduced directly from Definition 2. Assume that
we have two different directed forks (X,Y ) and (Z, T ) such that (x, y) ∈ (X,Y )
and (x, y) ∈ (Z, T ). In these conditions we have:

(X ∪ Y ) ∩ (Z ∪ T ) 6= ∅

Without loss of generality one may suppose that card(X∪Y ) ≤ card(Z∪T ).
Then, we necessarily have one of these two alternatives:

1. X ∪ Y ⊆ Z

2. X ∪ Y ⊆ T

and neither of them is possible. Indeed, the first (resp., second) contradiction
is due to y /∈ Z (resp., x /∈ T ). �

Theorem 1 Let
−→
H (E) be a complete binary directed hierarchy on E. The

binary relation RH on E defined by

∀ (x, y) ∈ E × E, x 6= y, xRHy ⇔ ∃! (X,Y ) ∈
−→
H (E) , (x, y) ∈ X × Y

defines a strict total order on E.

ProofProofProof :

1. Antisymmetry :
Let us consider an arbitrary ordered pair (x, y) belonging to E × E. The

conjunction
xRHy and yRHx

is contradictory. Indeed,

xRHy ⇔ ∃!(X,Y ) ∈
−→
H (E) such that (x, y) ∈ X × Y

yRHx ⇔ ∃!(Y ′,X ′) ∈
−→
H (E) such that (y, x) ∈ Y ′ × X ′

Clearly,

RR n° 6815



8 I-C. Lerman & P. Kuntz

(X ∪ Y ) ∩ (Y ′ ∪ X ′) 6= ∅

According to Definition 2 we have at least, one of the following alternatives:

1. X ∪ Y ⊆ X ′;

2. X ∪ Y ⊆ Y ′;

3. X ′ ∪ Y ′ ⊆ X;

4. X ′ ∪ Y ′ ⊆ Y .

Since x /∈ Y , x /∈ Y ′, y /∈ X and y /∈ X ′, any of the four previous alternatives
is possible.

2. Transitivity : Let us show that

∀(x, y, t) ∈ E3, xRHy and yRHt ⇒ xRHt

From the definition of RH , there are two directed forks (X,Y ) and (Y ′, T )

in
−→
H (E) such that:

(x, y) ∈ X × Y and (y, t) ∈ Y ′ × T.

Since y ∈ Y ∩ Y ′, (X ∪ Y ) ∩ (Y ′ ∪ T ) 6= ∅. Consequently, from Definition 2,
we have either

X ∪ Y ⊂ Y ′ or Y ′ ∪ T ⊂ Y.

In the first case (x, t) ∈ Y ′ × T and then xRHt. The same conclusion holds
for the second case where (x, t) ∈ X × Y .

3. Total order :
This property is a direct consequence of the Propositions 3 and 4. Let (x, y) ∈

E × E with x 6= y. By Proposition 3, there exists (X,Y ) ∈
−→
H (E) such that

either (x, y) ∈ X × Y or (y, x) ∈ X × Y . If (x, y) ∈ X × Y Then by Proposition
4 (X,Y ) is unique and so xRHy. Similarly, if (y, x) ∈ X × Y , Proposition 4
implies yRHx. �

Since RH defines a total order on E, there exists a unique bijection {1, 2, ..., n} −→
E, i 7→ xi, compatible with the total order (recall n = card(E)). Let us denote
by IE the interval on E defined by the totally ordered sequence (x1, x2, ..., xi, ..., xn).

Corollary 2 Let (X,Y ) be a given directed fork of the complete binary directed

hierarchy
−→
H (E). By considering the restriction of RH on X and Y , (X,Y ) de-

termines an ordered pair of two consecutive subintervals of (x1, x2, ..., xi, ..., xn).

INRIA
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ProofProofProof : A recursion argument allows to establish this property that we can
call interval split property.

Consider the top fork that we denote (X1, Y1) whose basis is X1 ∪ Y1 = E.
By definition:

∀(x1, y1) ∈ X1 × Y1 , x1RHy1

By denoting IX1
and IY1

the subintervals defined by the restrictions of RH

on X1 and Y1 respectively, IX1
and IY1

are necessarily two connex, disjoint and
complementary intervals of IE . IX1

(resp., IY1
) is a begining (resp., ending)

subinterval of IE . If IX1
has the form (x1, x2, ..., xc), then IY1

has the form
(xc+1, xc+2, ..., xn). X1 ∪ Y1 = E and X1 ∩ Y1 = ∅.

Now, let us consider an arbitrary fork (X,Y ) belonging to
−→
H (E). There

exists a unique sequence of ordered forks:

(

(X1, Y1), (X2, Y2), ..., (Xm, Ym)
)

beginning with the initial fork (X1, Y1) and ending with the fork (Xm, Ym) =
(X,Y ) such that (Xj , Yj) is the mother fork of (Xj+1, Yj+1), 1 ≤ j ≤ m − 1.

Assume that the interval split property is established till (Xm, Ym) and con-
sider the two forks associated with Xm and Ym, respectively. Now, let us denote
by (X ′

m+1,X
′′
m+1) the fork whose basis is Xm and by (Y ′

m+1, Y
′′
m+1) that whose

basis is Ym. By the same argument used for the fork (X1, Y1) derived from E,
the restrictions of RH on X ′

m+1 and X ′′
m+1 (resp., on Y ′

m+1 and Y ′′
m+1) deter-

mine two connex, disjoint and complementary intervals of IXm
(resp., IYm

). In
these conditions the recursion is established. �

3 Directed ultrametrics

In this section we define the notion of a directed ultrametric space on a finite
set E. This notion depends on a notion of dissimilarity on E compatible with a
total order R on E. Under these conditions, for x, y, z ∈ E a directed triangle
(x, y, z) is such that xRy and yRz. The main result showed in theorems 2 and
3 consists in establishing that for a directed ultrametric space every directed
triangle is isosceles having its basis strictly smaller than its equal sides.

Definition 4 Let R be a total order on E. A directed dissimilarity dR compat-
ible with R is a mapping E ×E → R+ = R+ ∪{∞}, where R+ is the set of non
negative numbers, of E ×E on the positive real numbers R+ which satisfies the
four following conditions :

1. for any x ∈ E, dR (x, x) = 0;

2. for any (x, y) ∈ E × E, x 6= y, 0 < dR (x, y) < +∞ if xRy;

3. for any ((x, y), (z, t)) ∈ (E × E) × (E × E), x 6= y and z 6= t, dR (x, y) <
dR (t, z) if xRy and zRt;

4. for any triple (x, y, z) ∈ E3 x 6= y, x 6= z, y 6= z, such that xRy and yRz,
then dR (x, z) > min {dR (x, y) , dR (y, z)}.

RR n° 6815



10 I-C. Lerman & P. Kuntz

Definition 5 Let us consider a total order R on E and a compatible directed
dissimilarity dR. Then, dR is called a directed ultrametric if, for any triple
(x, y, z) ∈ E3 such that xRy and yRz, the three conditions are satisfied:

1. dR (x, y) ≤ Max {dR (x, z) , dR (y, z)};

2. dR (x, z) ≤ Max {dR (x, y) , dR (y, z)};

3. dR (y, z) ≤ Max {dR (x, y) , dR (x, z)}.

Moreover, the directed ultrametric is strict if 1 or 3 is strict.

Definition 6 Let us consider a total order R on E. A triple (x, y, z) ∈ E3,
x 6= y 6= z, forms a directed triangle if xRy and yRz.

In order to distinguish this specific and important case an R-compatible
directed ultrametric will be denoted duR.

Theorem 2 Let us consider a total order R on E and a compatible directed
ultrametric duR compatible with R. We have either: duR(x, y) < duR(x, z) =
duR(y, z) or duR(y, z) < duR(x, y) = duR(x, z)

Thus, each directed triangle from R is isosceles in the metric space (E, duR)
with basis length strictly smaller than the length of the two equal sides; the
basis being either xy or yz.

ProofProofProof : Two cases have to be distinguished:

1. duR(x, y) ≤ duR(y, z)

2. duR(y, z) ≤ duR(x, y)

Let us consider the first case where duR(x, y) ≤ duR(y, z). According to the
condition 4 of Definition 4, necessarily,

duR(x, z) > duR(x, y)

Then, 3 of Definition 5 gives:

duR(y, z) ≤ duR(x, z).

On the other hand, 2 of Definition 5 gives:

duR(x, z) ≤ duR(y, z).

Finally,

duR(y, z) = duR(x, z) > duR(x, y).

The proof for the second case where duR(y, z) ≤ duR(x, y) is analogous to
that for the first case. The condition 4 of Definition 4 entails:

INRIA



Directed binary hierarchies and directed ultrametrics 11

duR(x, z) > duR(y, z)

Then, 1 of Definition 5 gives:

duR(x, y) ≤ duR(x, z).

On the other hand, 2 of Definition 5 gives:

duR(x, z) ≤ duR(x, y).

Finally,

duR(x, y) = duR(x, z) > duR(y, z).

Now, let us notice that for the first case the inequality 1 of Definition 5 is
strict, but 3 of Definition 5 is reduced to an equality. On the contrary, for the
second case, the inequality 3 of Definition 5 is strict, but 1 of Definition 5 is
reduced to an equality.

A reciprocal property of the above theorem can be stated as follows:

Theorem 3 If R is a total order on E and dR is a directed dissimilarity such
that, each directed triangle (x, y, z) is isosceles having its basis length strictly
smaller than the common length of the other sides, then, dR is strictly ultramet-
ric.

The proof is obvious. �

4 Directed binary hierarchy and directed ultra-

metricity

Now and of course, the objective consists in obtaining as in the classical case
[2, 12, 18] a “bijection theorem” between the new concepts of valuated binary
directed hierarchy and strictly directed ultrametric distance. However, due to
the order on E introduced by the orientation, the bijection theorem requires
additional restrictive conditions.

4.1 Directed ultrametricity associated with a directed bi-

nary hierarchy

A family of directed ultrametric distances is associated with a directed hierarchy
−→
H (E). Each member of this family is defined by a strictly monotone numerical

valuation on
−→
H (E) endowed with ≺H . This valuation gives rise to the directed

ultrametric distance.

RR n° 6815



12 I-C. Lerman & P. Kuntz

Theorem 4 Let
−→
H (E) be a complete binary directed hierarchy on E. From

−→
H (E) can be derived a directed dissimilarity dRH

which satisfies the following
property: ∀(x, y, z), x 6= y 6= z , for which xRHy and yRHz , exactly one of the
two following conditions holds:

1. dRH
(x, y) < dRH

(x, z) = dRH
(y, z)

2. dRH
(y, z) < dRH

(x, y) = dRH
(x, z)

In particular, dRH
is ultrametric and compatible with RH .

ProofProofProof : Let us begin by recalling an elementary property concerning the
existence of a strictly monotone valuation of a strict partial order on a finite
set. By denoting this set by F and by designating ≺F the strict partial order
on F , there exists an infinity of strictly monotone numerical valuations on F
endowed with ≺F .

In these conditions, a numerical positive function ν can be defined on
−→
H (E)

endowed with the strict partial order ≺H , defined in Section 2:

ν :
−→
H (E) → R+

such that,

∀((X,Y ), (Z, T )) ∈
−→
H (E) ×

−→
H (E) , (X,Y ) ≺H (Z, T ) ⇒ ν(X,Y ) < ν(Z, T )

Now, let us consider an ordered pair (x, y) ∈ E × E, x 6= y, such that
xRHy. From the previous Propositions 3 and 4 there is exactly one directed

fork (X,Y ) ∈
−→
H (E), such that (x, y) ∈ X × Y . In these conditions, we set

dRH
(x, y) = ν(X,Y ). Otherwise, according to Definition 4, dRH

(x, x) = 0 for
every x ∈ E and - for simplicity reasons - we can set dRH

(y, x) = +∞ for every
(x, y) ∈ E ×E such that xRHy and x 6= y. Since RH is a total order on E, this
defines the map dRH

: E × E → R+ uniquely.

Let us now consider a directed triangle (x, y, z) ∈ E3 associated with RH .
By definition we have xRHy and yRHz. Let us denote by (X,Y ) and (Y ′, Z)
the two unique directed forks such that (x, y) ∈ (X,Y ) and (y, z) ∈ (Y ′, Z),
respectively. As (X ∪ Y ) ∩ (Y ′ ∪ Z) 6= ∅ (this intersection contains at least the
element y), two cases are possible:

1. X ∪ Y ⊂ Y ′

2. Y ′ ∪ Z ⊂ Y

Indeed, Definition2 implies that we have one of the four possibilities: (a)
X ∪ Y ⊂ Y ′, (b) X ∪ Y ⊂ Z, (c) Y ′ ∪ Z ⊂ X and (d) Y ′ ∪ Z ⊂ Y . Case (b)
cannot occur since y ∈ Y and y /∈ Z as Y ′ ∩Z = ∅, similarly (c) cannot happen
as y ∈ Y ′ and y /∈ X.

In case 1, (X,Y ) ≺RH
(Y,Z), thus ν(X,Y ) < ν(Y ′, Z), consequently:
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dRH
(x, y) < dRH

(y, z)

Besides, (x, z) ∈ Y ′ × Z and (y, z) ∈ Y ′ × Z, then dRH
(x, z) = dRH

(y, z) =
ν(Y ′, Z). Finally, we have:

dRH
(x, y) < dRH

(x, z) = dRH
(y, z)

The second case is completely similar. In that case (Y ′, Z) ≺RH
(X,Y ) then

ν(Y ′, Z) < ν(X,Y ), consequently:

dRH
(y, z) < dRH

(x, y)

Besides, (x, y) ∈ X × Y and (x, z) ∈ X × Y , then dRH
(x, y) = dRH

(x, z) =
ν(X,Y ). Finally, we have:

dRH
(y, z) < dRH

(x, y) = dRH
(x, z).

�

4.2 Directed binary hierarchy associated with a directed

ultrametric dissimilarity

Let (E,R) be a totally ordered set and let duR : E × E → R+ be a compat-
ible directed strict ultrametric dissimilarity (see Definitions 4 and 5). In this
paragraph we establish a constructive mapping associating with duR a valuated
directed hierarchy. The valuated directed binary hierarchy is built recursively:
at each step a family of directed forks ordered by the inclusion relationship (left
inclusion or right inclusion) (see Definition 2).

4.2.1 Definitions

Recall that the strict compatible direct ultrametricity is equivalent to the follow-
ing isosceles property: for any directed triangle (x, y, z) ∈ E3 associated with R,
we have either duR (x, y) < duR (x, z) = duR (y, z) or duR (y, z) < duR (x, y) =
duR (x, z) (see Theorems 2 and 3 in Section 3).

Now, let us denote by

(x1, x2, ..., xi, ..., xn)

the ordered sequence of the elements of E, according to the total and com-
plete order R. Thus we have:

∀i, 1 ≤ i ≤ n − 1, xiRxi+1

Consider an interval

(xi, xi+1, ..., xm) (m ≤ n)

of the above sequence and associate with xi, the sequence of its distances
duR with the subsequent elements in this interval, namely:

{duR(xi, xj)|i ≤ j ≤ m}

RR n° 6815



14 I-C. Lerman & P. Kuntz

From the compatibility of duR with respect to the total order R and from
its ultrametricity it follows:

∀i, 1 ≤ i ≤ n − 1, if i ≤ j ≤ n − 1, then duR(xi, xj) ≤ duR(xi, xj+1).

More precisely (Condition 4 in Definition 4),

duR(xi, xj+1) > min{duR(xi, xj), duR(xj , xj+1)}

Then (xi, xj+1) cannot be the basis of the directed isosceles triangle (xi, xj , xj+1).
Therefore,

duR(xi, xj) ≤ duR(xi, xj+1)

and then, the preceding numerical sequence {duR(xi, xj)|i ≤ j ≤ m} is no
decreasing.

Among the distance values {duR(xi, xj)|i ≤ j ≤ m} associated with the
ordered set defining the sequence (xi, xi+1, ..., xm), we assume that there are in
all km

i distinct values that we retain and denote them by increasing order:

ηm
i (0) < ηm

i (1) < ηm
i (2) < ... < ηm

i (h) < ... < ηm
i (km

i )

where ηm
i (0) = 0 and ηm

i (km
i ) is the biggest value. Under these conditions

we have:

{

{x ∈ E|duR(xi, x) ≤ ηm
i (0)} = {xi}

{x ∈ E|duR(xi, x) ≤ ηm
i (km

i )} = {xi, xi+1, ..., xm}

Let us now consider the following increasing sequence of discrete ordered
intervals which constitute circles centered at xi:

(

Xm
i (h)

)

0≤h≤km

i

=
(

Xm
i (0),Xm

i (1), ...,Xm
i (km

i )
)

where

Xm
i (h) = {xi′ ∈ {xi, ..., xm}|duR(xi, xi′) ≤ ηm

i (h)}

Notice that the left bound of all these intervals is xi. The sequence of these
intervals is increasing with respect to the inclusion relation. The first interval
equals (xi) and the last one equals (xi, xi+1, ..., xm), totally ordered by R. We
call xi the attraction center of the above series of circles.

Definition 7 The series of directed forks {(Xm
i (h),Xm

i (h + 1) − Xm
i (h))|0 ≤

h ≤ km
i − 1} defines the fork decomposition of the totally R-ordered sequence

(xi, xi+1, ..., xm), endowed with the directed ultrametric dissimilarity duR, with
respect to the attraction center xi.
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Definition 8 The valuated fork decomposition of the totally-R ordered se-
quence (xi, xi+1, ..., xm), endowed with the directed ultrametric dissimilarity duR,
with respect to the attraction center xi is defined by the series of the valuated
directed forks

{
(

(Xm
i (h),Xm

i (h + 1) − Xm
i (h)), ηm

i (h + 1)
)

|0 ≤ h ≤ km
i − 1},

where ηm
i (h + 1) is the common duR dissimilarity of two elements belonging to

Xm
i (h) and Xm

i (h + 1) − Xm
i (h)) respectively.

4.2.2 First steps of the hierarchical construction

As the hierarchical building process is recursive we here detail the two first steps.

The first step consists in repeating the fork decomposition of (x1, x2, ..., xn)
endowed with the total order R and the directed ultrametric duR. In this case the
attraction center is x1 and the increasing sequence of the η values (duR(x1, xi)
dissimilarities) can be denoted by

η1(0) < η1(1) < η1(2) < ... < η1(h) < ... < η1(k1)

Let us consider the increasing sequence - with respect to the inclusion rela-
tion - of the discrete intervals which constitute circles centered at x1:

{X1(h)|0 ≤ h ≤ k1}

where

X1(h) = {xi|duR(x1, xi) ≤ η1(h)}

The first interval contains the single element x1 and the last one the set
E. The set difference X1(h + 1) − X1(h) between two successive intervals is
itself a discrete interval. It can also be interpreted as an annulus defined by the
difference between the two circles X1(h+1) and X1(h) centered at x1 and having
the radii η1(h + 1) and η1(h), respectively. Each directed fork (X1(h),X1(h +
1)−X1(h)) is included in the next one (X1(h+1),X1(h+2)−X1(h+1)), (left
inclusion) and the basis of (X1(h),X1(h + 1)−X1(h)) is the left component of
(X1(h + 1),X1(h + 2) − X1(h + 1)), 1 ≤ h ≤ k1 − 2.

Hence, considering the partial order ≺H associated with the fork inclusion,
we have:

(X1(h),X1(h + 1) − X1(h)) ≺H (X1(h + 1),X1(h + 2) − X1(h + 1))

Proposition 5 ∀h ∈ [0, k1] ∀(x, y) ∈
(

X1(h)
)2

,∀(z, t) ∈
(

X1(h + 1) − X1(h)
)2

duR(x, z) = duR(x, t) = duR(y, z) = duR(y, t) = η1(h + 1),
duR(x, y) < η1(h + 1) and duR(z, t) < η1(h + 1).

P roofProofProof : By construction we have:

duR(x, z) = duR(x, t) = η1(h + 1).

Due to the strict isosceles triangle property, it follows:
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16 I-C. Lerman & P. Kuntz

duR(z, t) < duR(x, z) = duR(x, t) = η1(h + 1).

On the other hand, since, by construction, duR(x, y) ≤ η1(h) and duR(x, z) =
η1(h + 1), the strict isosceles triangle property gives:

duR(x, y) < duR(x, z) = duR(y, z) = η1(h + 1).

Now, by considering the strict isosceles triangle (x, y, t), where we already
have duR(x, y) < η1(h+1) and duR(x, t) = η1(h+1), we deduce that duR(y, t) =
η1(h + 1). �

To the directed fork (X1(h),X1(h + 1) − X1(h)) is assigned the numerical
value η1(h + 1) which represents the common value of duR between two respec-
tive elements from X1(h) and X1(h + 1)−X1(h). This value is strictly smaller
than the next one η1(h + 2), assigned to the directed fork (X1(h + 1),X1(h +
2) − X1(h + 1)), 0 ≤ h ≤ k1 − 2.

The second step consists in repeating fork decomposition of the discrete in-
terval X1(h

1 +1)−X1(h
1 where h1 is the smallest value of h for which the right

component of (X1(h),X1(h + 1) − X1(h)), 1 ≤ h ≤ k1 − 1, contains more than
one single element. The first element of X1(h

1 + 1) − X1(h
1) denoted by xi(2)

is the new attraction center. As in the first step, the numerical value assigned
to each new directed fork is equal to the value duR between any two elements
belonging respectively to its left and right components, respectively. The new
directed forks are ranked on the right, after the previous ones according to their
occurence order.

4.2.3 Algorithmic construction

The general process consists in recursively repeating from left to right, the fork
decomposition of the right component of the first encountered directed fork in-
cluding more than one element and for which the fork decomposition has not
yet been applied. The new attraction center is the left element of the right
component. Each new directed fork is valuated according to the duR dissim-
ilarity between its two components. The process goes on while there remains
a directed fork with a right component of cardinality greater than one and on
which any fork decomposition has yet been applied.

All the new built directed forks are valuated respectively according to their
occurence order and ranked on the right in order to obtain a global sequence of
the already built forks.

Algorithm DH (Directed-Hierarchy)

Let us define a φ structure as an ordered pair
(

(X,Y ), η
)

whose second
component η is a numerical value and whose first component (X,Y ) is it-
self an ordered pair of two consecutive and disjoint intervals of the sequence
(x1, x2, ..., xn). By denoting v-fork-decomposition the valuated fork decompo-
sition function defined in the previous Definition 8, one can associate with the
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v-fork-decomposition
(

(xi, xi+1, ..., xm)
)

(1 ≤ i < m ≤ n) the following array
variable:

var Di : array[1, km
i − 1] of φ

Now, let us denote by C the array variable which will contain the successive
valuated fork decompositions leading to the construction of the directed binary
hierarchy. In the latter, there are exactly n − 1 internal nodes. Consequently,
there are exactly n − 1 fork decompositions and the dimension of C is n − 1.
Thus, we have:

var C : array[1, n − 1] of φ

{
(

C[j] = ((X[j], Y [j]), η[j]) or C[j] = empty
)

}

RR n° 6815



18 I-C. Lerman & P. Kuntz

{Initialization}

for j:= 1 to n − 1
C[j]:=empty
endfor
place D1 in C from the index 1

{Progression and stop rule}

for j:= 1 to n − 2
Y [j] := second interval component of C[j]
if card(Y [j]) > 1
Dj := v − fork − decomposition(Y [j])
place Dj in C from its first empty cell
endfor

4.2.4 Illustration

Let us denote by E = {x1, x2, x3, x4, x5, x6} the set on which a strict total order
R and a compatible strict directed ultrametric dissimilarity are given. Assume
that R is defined as follows:

R : x1 < x2 < x3 < x4 < x5 < x6

The compatible strict directed ultrametric dissimilarity is given by the fol-
lowing table. It is easy to check that every directed triangle (there are in all 20)
is isosceles with a basis length strictly lower than the common length of both
sides:

x1 x2 x3 x4 x5 x6

x1 0 0.9 0.9 0.9 0.9 0.9
x2 ∞ 0 0.6 0.7 0.7 0.7
x3 ∞ ∞ 0 0.7 0.7 0.7
x4 ∞ ∞ ∞ 0 0.3 0.3
x5 ∞ ∞ ∞ ∞ 0 0.1
x6 ∞ ∞ ∞ ∞ ∞ 0

Let us now make explicit the sequence of the different steps of the algo-
rithmic construction AC. With each built directed fork will be associated its
valuation ν. The ν value is equal to the common ultrametric dissimilarity
between two elements belonging respectively to the two components of the con-
cerned directed fork.

First step: Valuated fork decomposition of E, totally ordered, with respect
to x1 as an attraction center: xi(1) = x1.

The increasing sequence of the η values (duR dissimilarities) from x1 becomes
here (0., 0.9). The associated increasing sequence of dicrete ordered intervals is:

((x1), (x1, x2, x3, x4, x5, x6))

The first sequence of valuated directed forks is:
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(

(({x1}, {x2, x3, x4, x5, x6}), ν = 0.9)
)

This sequence is reduced to one directed fork whose valuation is 0.9. Its
second component includes more than one single element of E. The latter cor-
responds to the subinterval (x2, x3, x4, x5, x6).

Second step: Valuated fork decomposition of (x2, x3, x4, x5, x6) with respect
to its first element x2 as an attraction center: xi(2) = x2.

The increasing sequence of the η values from x1 is (0., 0.6, 0.7, 0.7, 0.7). The
associated increasing sequence of dicrete ordered intervals is:

((x2), (x2, x3), (x2, x3, x4, x5, x6))

This fork decomposition leads to the following sequence of directed forks:

(

(({x2}, {x3}), ν = 0.6), (({x2, x3}, {x4, x5, x6}), ν = 0.7)
)

The new global sequence of built valuated directed forks is:

(

(({x1}, {x2, x3, x4, x5, x6}), ν = 0.9), (({x2}, {x3}), ν = 0.6), (({x2, x3}, {x4, x5, x6}), ν = 0.7)
)

In this sequence the first directed fork whose second component contains
more than one single element and for which valuated fork decomposition has
not been yet considered is the third one. This second component is defined by
the interval (x4, x5, x6). The valuated fork decomposition has to be applied on it.

Third step: Valuated fork decomposition of (x4, x5, x6) with respect to its
first element x4 as an attraction center: xi(3) = x4. The increasing sequence of
the η values is (0., 0.3). The associated increasing sequence of discrete intervals
is:

((x4), (x4, x5, x6))

This Valuated fork decomposition leads to the following sequence of directed
forks which contains only one element:

(

(({x4}, {x5, x6}), ν = 0.3)
)

The new global sequence of built valuated forks is:

(

(({x1}, {x2, x3, x4, x5, x6}), ν = 0.9), (({x2}, {x3}), ν = 0.6), (({x2, x3}, {x4, x5, x6}), ν = 0.7),

(({x4}, {x5, x6}), ν = 0.3)
)

In this sequence the first directed fork whose second component contains
more than one single element and for which Valuated fork decomposition has
not been yet considered is the fourth one. This second component is defined
by the interval (x5, x6). The Valuated fork decomposition has to be applied on it.

Fourth step: Valuated fork decomposition of (x5, x6) with respect to its first
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20 I-C. Lerman & P. Kuntz

element x4 as an attraction center: xi(3) = x4. The increasing sequence of the
η values is (0., 0.1). The associated increasing sequence of discrete intervals is:

((x5), (x5, x6))

This Valuated fork decomposition leads to the following sequence of directed
forks which contains only one element:

(

(({x5}, {x6}), ν = 0.1)
)

The new global sequence of built valuated directed forks is:

(

(({x1}, {x2, x3, x4, x5, x6}), ν = 0.9), (({x2}, {x3}), ν = 0.6), (({x2, x3}, {x4, x5, x6}), ν = 0.7),

(({x4}, {x5, x6}), ν = 0.3), (({x5}, {x6}), ν = 0.1)
)

In this sequence of directed forks there does no remain any directed fork
whose right member contains more than one single element and for which Valu-
ated fork decomposition has not been applied. Then, the algorithmic construc-
tion process is ended.

x1        x2       x3         x4        x5        x6

0.1

0.3

0.7

0.6

0.9

Figure 3: Directed tree associated with the built series of directed forks
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4.2.5 Properties

Lemma 1 At each step of the algorithm DH, the new built directed forks re-
spect either the exclusion or inclusion (either left or right) relationships with the
directed forks built at the previous steps.

ProofProofProof : From the recursive nature of the algorithm, it is sufficient to prove
this proposition for the first two steps. Four cases can be considerered.

Case 1: (left inclusion between forks built at step 1 ). For the series of di-
rected forks

{(X1 (h) ,X1 (h + 1) − X1 (h)) ; 0 ≤ h ≤ k1 − 1} ,

the basis of any directed fork constitutes the left component of the next one.
Thus, the left inclusion relationship is verified.

Case 2: (left inclusion between forks built at step 2 ). Let us consider the
decomposition of

(

X1

(

h1 + 1
)

− X1

(

h1
))

considered in the second step of the

algorithm, and let us denote by
(

xi(2), xi(2)+1, ..., xi(2)+k2

)

the discrete interval
which contains k2 + 1elements. Then,

duR

(

xi(2), xj

)

≤ duR

(

xi(2), xj′

)

,

for i(2) < j < j′ ≤ i(2) + k2. Hence, by construction, the left inclusion is
checked for all the new built directed forks on

(

xi(2), xi(2)+1, ..., xi(2)+k2

)

with
the attraction center xi(2).

Case 3: (right inclusion between forks built at step 2 and forks built at step
1 ). The new built directed forks on

(

xi(2), xi(2)+1, ..., xi(2)+k2

)

with the attrac-
tion center xi(2) respect the right inclusion with the forks obtained from the
fork decomposition of (x1, x2, ..., xn), with the attraction center obtained from
the fork decomposition of (x1, x2, ..., xn), with the attraction center xi(1) = x1.

Case 4: (exclusion between forks with a right component of cardinality one).
The directed forks built on Xh

1 whose the right component is restricted to
a single element are disjoint from the built forks whose basis is included in
(

X1

(

h1 + 1
)

− X1

(

h1
))

.

Lemma 2 . Let (xi, xj)be any ordered pair of E (xiRxj). In the directed fork
set built by the algorithm DH, there exists a unique directed fork (X,Y )such that
(xi, xj) ∈ X × Y .

ProofProofProof : As the initial fork decomposition starts on (x1, x2, ..., xn) which con-
tains {xi, xj}, there exists at least one directed fork buit by the algorithm DH
which contains xi and xj . Let us denote by (Xl (g) ,Xl (g + 1) − Xl (g)) the
smallest one : {xi, xj} ∈ Xl (g + 1) and card (Xl (g + 1)) is minimum among
the set of directed forks built by the DH algorithm.

Xl (g) can not contain a single element which is not xi. Indeed, in this case,
{xi, xj} ⊂ Xl (g + 1) − Xl (g), which is in contradiction with the assumption
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: the fork decomposition of Xl (g + 1) − Xl (g) would lead to a directed fork
whose basis contains xi and xjand whose cardinality is strictly smaller than
card (Xl (g + 1)).

Xl (g) can not contain more than one single element such that {xi, xj} ⊂
Xl (g). Otherwise, we would have card (Xl (g)) < card (Xl (g + 1)).

If Xl (g) contains one single element which is xi, then necessarily xj belongs
to Xl (g + 1) − Xl (g).

Xl (g + 1)−Xl (g) can not contain one single element which is not xj . Oth-
erwise, we would have {xi, xj} ⊂ Xl (g) and card (Xl (g)) < card (Xl (g + 1)).

Xl (g + 1)−Xl (g) can not contain more than one single element s.t. {xi, xj} ⊂
Xl (g + 1)−Xl (g). Otherwise, the fork decomposition of Xl (g + 1)−Xl (g)would
lead to a directed fork whose basis contains xi and xjand whose cardinality is
strictly smaller than card (Xl (g + 1)).

Consequently, we necessarily have (xi, xj) ∈ Xl (g) × (Xl (g + 1) − Xl (g))
and duR (xi, xj) is the common value between any pairs of elements from re-
spectively Xl (g) and Xl (g + 1).

Theorem 5 To a total order R on E and a compatible directed ultrametric
dissimilarity duR on E, the algorithmic construction DH associates a unique
complete directed binary hierarchy valuated by duR.

The proof is directly derived from the above Property 5 and Lemmas 1 and
2. �

5 Conclusion and further work

Directed binary hierarchy is a new combinatorial structure devoted to data or-
ganization in case where a specific asymmetrical similarity measure is relevant.
This structure has been characterized and studied in terms of a set of directed
forks. A specific notion of directed ultrametric depending on a total order on
the organized set, has been defined and studied with respect to several aspects.
An important point concerns its characterization in terms of directed isosceles
triangles. The main result obtained here consists of establishing the correspon-
dence between these two previous structures. As mentioned in the introduction,
this result is an extension of the “bijection theorem” obtained in the classical
symmetrical case [2, 12, 18]. However, for the latter, two versions can be dis-
tinguished: numerical [2, 12] and ordinal [18]. For the first, the correspondence
is established up to a strictly increasing function on the ultrametric distances.
But, for the second version, the bijection associates two equally finite spaces,
the represented set and the representation set. Ordinal directed ultrametric
space can also be considered in this work. One other facet may consist in estab-
lishing a formal correspondence between the formalization of this new specific
hierarchical structure and those considered in the literature. Thus, it is easy
to establish that if in the metric space there does not exist equilateral triangle,
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then Condition 4 of Definition 4 is more general than Robinson condition [22]
adapted to an asymmetrical dissimilarity. On the other hand, one can relate our
formal presentation to the classification formalization in terms of a hypergraph
(E,K) (see [3]). In our case as in the ascendant hierarchical classification, E
is a set of elements and represents the vertice set.The edge set K is defined by
all subsets of E corresponding to the tops of the different forks. Due to the
orientation specific results or specific formalization can be obtained in the case
of directed hierarchies.

The objective is now to define a complete framework to build and analyse
directed hierarchies for real-life applications. It requires aggregation criteria
adapted to the directed forks, an efficient algorithm and indicators for inter-
pretation aiding. A first attempt was proposed in [6, 10] in the context of rule
mining. Besides, a mathematical and statistical analysis of different criterion
types is provided in [16]. However, the aggregation criterion and the indicators
defined to study the directed hierarchy are strongly dependent on the implica-
tive statistical analysis framework in which all these works have been developed
(see [9]). We believe that the proposed algorithm is general enough to be easily
adapted to any kind of dissimilarity.
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