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Summability of solutions of the heat equation withinhomogeneous thermal ondutivity in two variablesWerner BALSERAbteilung Angewandte AnalysisUniversit�at Ulm, D-89069 ULM, GermanyEmail: balser�mathematik.uni-ulm.deMih�ele LODAY-RICHAUDLAREMA, Universit�e d'Angers, 2 boulevard Lavoisier49 045 ANGERS edex 01, FraneEmail: mihele.loday�univ-angers.frFebruary 26, 2009AbstratWe investigate Gevrey order and 1-summability properties of the formal solutionof a general heat equation in two variables. In partiular, we give neessary andsuÆient onditions for the 1-summability of the solution in a given diretion. Whenrestrited to the ase of onstants oeÆients, these onditions oinide with thosegiven by D.A. Lutz, M. Miyake, R. Sh�afke in a 1999 artile ([LMS99℄), and we thusprovide a new proof of their result.Keywords: Heat equation, Gevrey series, 1-summability.AMS lassi�ation: 35C10, 35C20, 35K05,40-99, 40B05.Contents1 The problem 22 Gevrey properties 43 1-summability 7
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1 THE PROBLEM 24 Initial onditions 154.1 Case a(z) = a 2 C � . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 Case a(z) = bz; b 2 C � . . . . . . . . . . . . . . . . . . . . . . . . . . 171 The problemA formal solution of the lassial heat initial onditions problem(1) ( �t u� �2z u = 0u(0; z) = '(z)in one dimensional spatial variable z reads in the formbu(t; z) = exp �t �2z t�'(z)= Xj�0 tjj!'(2j)(z)provided that all derivatives '(2j) exist1. When ' 2 O(Dp) is holomorphi in a disD� with enter 0 and radius � and hene satis�es, for any r < �, estimates of theform ��'(2j)(z)�� � C K2j �(1 + 2j)!;for all j � 0 and positive onstants C and K, on Dr then, bu(t; z) 2 O(D�)[[t℄℄ is aseries of Gevrey type of order 1 in t for all z 2 D� (in short, a 1-Gevrey series). TheGevrey estimates are loally uniform with respet to z in D�. These onditions areoptimal as shown by the following example: Let onsider '(z) = 11� z =Xn�0 zn sothat '(2j)(0) = (2j)!. The orresponding solution bu(t; z) is of exat Gevrey order1 and, in partiular, is divergent. It turns out that it is atually 1-summable inall diretion but R+ in the sense of De�nition 3.1 below, that is, 1-summable in tuniformally with respet to z near 0.In 1999, D. Lutz, M. Miyake and R. Sh�afke ([LMS99℄) gave neessary andsuÆient onditions on ' for bu to be 1-summable in a given diretion arg t = �.Various works have been done towards the summability of divergent solutions ofpartial di�erential equations with onstant oeÆients ( [Bal99℄, [Miy99℄, [BM99℄,[Bal04℄,. . . ) or variable oeÆients ([H99℄, [Ou02℄, [PZ97℄, [Mk08℄, [Mk09℄,. . . )1We denote bu, with a hat, to emphasize the possible divergene of the series bu.



1 THE PROBLEM 3in two variables. In [Mk05℄, S. Malek has investigated the ase of linear partialdi�erential equations with onstant oeÆients in more variables.In this artile we are interested in the very general heat initial onditions problemwith inhomogeneous thermal ondutivity and internal heat generation(2) ( �t u� a(z) �2z u = q(t; z) a(z) 2 O(D�)u(0; z) = '(z) 2 O(D�):The heat equation desribes heat propagation under thermodynamis and Fourierlaws. The oeÆient a(z), named thermal di�usivity, is related to the thermalondutivity � by the formula a = �� where  is the apaity and � the densityof the medium. We assume that a(z) and '(z) are analyti on a neighborhoodof z = 0. The internal heat input q may be smooth or not. An important aseis the ase with no internal heat generation orresponding to a homogeneous heatequation:(3) ( �t u� a(z) �2z u = 0 a(z) 2 O(D�)u(0; z) = '(z) 2 O(D�):In ase of an isotropi and homogeneous medium, �; ; � and hene a are onstants.An adequate hoie of units allows then to assume a = 1 and the equation reduesto the referene heat equation �tu� �2zu = 0.Atually, for notational onveniene, we onsider the problem in the form(4) �1� a(z) ��1t �2z� bu = bf(t; z) ; a(z) 2 O(D�) and bf(t; z) 2 O(D�)[[t℄℄where ��1t bu stands for the anti-derivative R t0 bu(s; z)ds of bu with respet to t whihvanishes at t = 0.Problem (4) is equivalent to( �t bu� a(z) �2z bu = �t bf(t; z)bu(0; z) = bf(0; z):and hene to Problem (2) by hoosing q(t; z) = �t bf(t; z) and '(z) = bf(0; z).Moreover, Problem (4) redues to the homogeneous ase (3) if and only if theinhomogenuity bf does not depend on t.



2 GEVREY PROPERTIES 4From now, we denote D = 1� a(z) ��1t �2z and, given a series bu 2 O(D�)[[t℄℄, wedenote bu(t; z) =Xj�0 tjj!uj;�(z) =Xn�0 bu�;n(t)znn! = Xj;n�0 buj;n tjj! znn! �Sine �O(D�)[[t℄℄; �t; �z� is a di�erential algebra and a(z) 2 O(D�) the operatorD ats inside O(D�)[[t℄℄. More preisely, we an state:Proposition 1.1 The mapD : O(D�)[[t℄℄ �! O(D�)[[t℄℄is a linear isomorphism.Proof. The operator D is linear. A series bu(t; z) = Xj�0 tjj!buj;�(z) is a solution ofProblem (4) if and only if(5) buj;�(z) = bfj;�(z) + a(z) bu00j�1;�(z) for all j � 0 starting from bu�1;�(z) � 0:Consequently, to any bf(t; z) 2 O(D�[[t℄℄ there is a unique solution bu(t; z) 2 O(D�[[t℄℄,whih proves that D is bijetive. 2In Setion 2 we show that the inhomogenuity bf(t; z) and the unique solutionbu(t; z) are together 1-Gevrey.In Setion 3 we prove neessary and suÆient onditions for bu to be 1-summablein a given diretion arg t = �. The onditions are valid in the ase when eithera(0) 6= 0 or a0(0) 6= 0. When a(z) = O(z2) an easy ounter-example shows thateven the rationality of bf(t; z) is insuÆient.In Setion 4 we disuss the aessibility of our neessary and suÆient onditions.Indeed, the onditions are given not only in terms of the data bf but also in termsof the �rst two terms bu�;0 and bu�;1 of the solution bu itself.In the partiular ase a = 1 our onditions oinide with those of [LMS99℄. We thusprovide a new proof of the result of [LMS99℄.2 Gevrey propertiesIn this artile, we onsider t as the variable and z as a parameter. The lassialnotion of a series of Gevrey type of order 1 is extended to z-families as follows.



2 GEVREY PROPERTIES 5De�nition 2.1 (1-Gevrey series) A series bu(t; z) =Xj�0 tjj!buj;�(z) 2 O(D�)[[t℄℄ isof Gevrey type of order 1 if there exist 0 < r � �; C > 0; K > 0 suh that for allj � 0 and jzj � r we have jbuj;�(z)j � C Kj �(1 + 2j):In other words, bu(t; z) is 1-Gevrey in t, uniformally in z on a neighbourhood ofz = 0.We denote O(D�)[[t℄℄1 the subset of O(D�)[[t℄℄ made of the series whih are ofGevrey type of order 1.Proposition 2.2 �O(D�)[[t℄℄1; �t; �z� is a di�erential algebra stable under ��1t and��1z .Proof. The proof is similar to the one without parameter. Stability under �z isproved using the Cauhy Integral Formula and is guaranted by the ondition \thereexist r � � : : : " in De�nition 2.1. 2It results from this Proposition that the operator D = 1�a(z)��1t �2z ats insidethe spae O(D�)[[t℄℄1.Beause the main result of this setion (Theorem 2.5) is set up using Nagumonorms on O(D�) we begin with a reall of their de�nition and main properties andwe refer to [N42℄ or to [CRSS00℄ for more details.De�nition 2.3 (Nagumo norms)Let f 2 O(D�), p � 0; 0 < r � � and let dr(z) = jzj � r denote the eulidiandistane of z to the boundary of the dis Dr.The Nagumo norm kfkp;r of f is de�ned bykfkp;r = supjzj<r ��f(z)dr(z)p�� :Proposition 2.4 (Properties of Nagumo norms)(i) k:kp;r is a norm on O(D�);(ii) For all z 2 Dr; jf(z)j � kfkp;rd(z)�p;



2 GEVREY PROPERTIES 6(iii) kfk0;r = supz2Dr jf(z)j is the usual sup-norm on Dr;(iv) kfgkp+q;r � kfkp;rkgkq;r;(v) (most important) kf 0kp+1;r � e(p+ 1)kfkp;r.Note that the same index r ours on both sides of the inequality (v). One gets thusan estimate of the derivative f 0 in terms of f without having to shrink the domainDr.Theorem 2.5 The mapD : ( O(D�)[[t℄℄1 �! O(D�)[[t℄℄1bu(t; z) 7! bf(t; z) = Dbu(t; z)is a linear isomorphism.Proof. It results from Proposition 2.2 that D�O(D�)[[t℄℄1� � O(D�)[[t℄℄1 andfrom Proposition 1.1 that D is linear and injetive. We are left to prove that D isalso surjetive.Let bf(t; z) =Xj�0 tjj! bfj;�(z) 2 O(D�)[[t℄℄1. The oeÆients bfj;�(z) satisfy8>><>>: � bfj;�(z) 2 O(D�) for all j � 0:� There exist 0 < r � �; C > 0; K > 0 suh that for all j � 0 and jzj � rj bfj;�(z)j � CKj�(1 + 2j)!and we look forward to similar onditions on the oeÆients buj;�(z) of bu(t; z) =Xj�0 tjj! buj;�(z).From the reurrene relation (5) the relationbuj;�(z)�(1 + 2j) = bfj;�(z)�(1 + 2j) + a(z) bu00j�1;�(z)�(1 + 2j)starting from bu�1;�(z) � 0 holds for all j � 0. Applying the Nagumo norms ofindies (2j; r) and properties (iv) and (v) of Proposition 2.4 we getkbuj;�(z)k2j;r�(1 + 2j) � k bfj;�(z)k2j;r�(1 + 2j) + ka(z)k0;r kbu00j�1;�(z)k2j;r�(1 + 2j)� 00 + ka(z)k0;r e2 kbuj�1;�(z)k2j�2;r��1 + (2j � 2)�



3 1-SUMMABILITY 7Denote gj = k bfj;�(z)k2j;r�(1 + 2j) and � = ka(z)k0;r e2 and onsider the numerial sequene( v�1 = 0vj = gj + � vj�1 for all j � 0:By onstrution, kbuj;�(z)k2j;r�(1 + 2j) � vj for all j � 0.Let us bound vj as follows. By assumption, 0 � gj � CKj�(1 + 2j)�(1 + 2j) r2j = C(Kr2)jfor all j and the series g(X) = Pj�0 gjXj is onvergent. Due to the reurrenerelation de�ning the vj's the series v(X) =Pj�0 vjXj satisfy (1��X)v(X) = g(X).It is then onvergent and there exist onstants C 0 > 0;K 0 > 0 suh that vj � C 0K 0jfor all j. Hene, kbuj;�(z)k2j;r � C 0K 0j�(1 + 2j) for all j � 0:We dedue a similar estimate on the sup-norm by shrinking the domain Dr. Indeed,let 0 < r0 < r. For all j � 0 and z 2 Dr0 ,jbuj;�(z)j = ���buj;�(z)dr(z)2j 1dr(z)2j ���� 1(r � r0)2j ��buj;�(z)dr(z)2j ��Hene, supz2Dr0 jbuj;�(z)j � 1(r � r0)2j kbuj;�k2j;r� C 0 � K 0(r � r0)2�j�(1 + 2j) 23 1-summabilityStill onsidering t as the variable and z as a parameter, one extends the lassialnotions of summability to families parameterized by z in requiring similar onditions,the estimates being however uniform with respet to the parameter z. For a generalstudy of series with oeÆients in a Banah spae we refer to [Bal00℄. Among themany equivalent de�nitions of 1-summability in a given diretion arg t = � at t = 0



3 1-SUMMABILITY 8we hoose here a generalization of Ramis de�nition whih states that a series bf is1-summable in the diretion � if there exists a holomorphi funtion f whih is 1-Gevrey asymptoti to bf on an open setor ��;>� biseted by � with opening largerthan � (f. [R80℄ D�ef 3.1). There are various equivalent ways of expressing the1-Gevrey asymptotiity. We hoose to extend the one whih sets onditions on thesuessive derivatives of f (see [Mal95℄ p. 171 or [R80℄ Thm 2.4, for instane).De�nition 3.1 (1-summability) A series bu(t; z) 2 O(D�)[[t℄℄ is 1-summable inthe diretion arg t = � if there exist a setor ��;>�, a radius 0 < r � � and afuntion u(t; z) alled 1-sum of bu(t; z) in the diretion � suh that1. u is de�ned and holomorphi on ��;>� �Dr;2. For any z 2 Dr the map t 7! u(t; z) has bu(t; z) = Xj�0 tjj! buj;�(z) as Taylorseries at 0 on ��;>�;3. For any proper2 subsetor � �� ��;>� there exist onstants C > 0;K > 0suh that for all ` � 0, all t 2 � and z 2 Dr���t̀ u(t; z)�� � CK`�(1 + 2`) :We denote O(D�)fftgg1;� the subset of O(D�)[[t℄℄ made of all 1-summable series inthe diretion arg t = �. Atually, O(D�)fftgg1;� is inluded in O(D�)[[t℄℄1.For any �xed z 2 Dr, the 1-summabilty of the series bu(t; z) is the lassial1-summability and Watson Lemma implies the uniity of its 1-sum, if any.Proposition 3.2 �O(D�)fftgg1;� ; �t; �z� is a di�erential C -algebra stable under��1t and ��1z .Proof. Let bu(t; z) and bv(t; z) be two 1-summable series in diretion �. In De�nition3.1 we an hoose the same onstants r; C;K both for bu and bv. The produt w(t; z) =2In this ontext a subsetor � of a setor �0 is said a proper subsetor and one denotes � �� �0 ifits losure in C is ontained in �0 [ f0g.



3 1-SUMMABILITY 9u(t; z)v(t; z) satis�es onditions 1 and 2 of De�nition 3.1. Moreover,���t̀w(t; z)�� = ��� X̀p=0�p̀� �pt u(t; z)�`�pt v(t; z)���� C2K` �(1 + 2`) ����� X̀p=0 �(1 + `)�(1 + 2`) �(1 + 2p)�(1 + p) ��1 + 2(`� p)���1 + (`� p)� ������ C2K` (`+ 1)�(1 + 2`)� C 0K 0` �(1 + 2`) for adequate C 0;K 0 > 0:This proves ondition 3 of De�nition 3.1 for w(t; z), that is, stability ofO(D�)fftgg1;�under multipliation.Stability under �t, ��1t or ��1z is straightforward. Stability under �z is obtainedusing the Integral Cauhy Formula on a dis Dr0 with r0 < r. 2We may notie that the 1-sum u(t; z) of a 1-summable series bu(t; z) 2 O(D�)fftgg1;�may be analyti with respet to z on a dis Dr smaller than the ommon dis D�of analytiity of the oeÆients buj;�(z) of bu(t; z) = Xj�0 tjj!buj;�(z). With respet tot, the 1-sum u(t; z) is analyti on a setor supposedly open and ontaining a losedsetor ��;� biseted by � with opening �; there is no ontrol on the angular openingexept that it must be larger than � and no ontrol on the radius of this setorexept that it must be positive. Thus, the 1-sum u(t; z) is well de�ned as a setionof the sheaf of analyti funtions in (t; z) on a germ of losed setor of opening �(i.e., a losed interval I�;� of length � on the irle S1 of diretions issuing from 0,f. [MalR92℄ 1.1 or [L-R94℄ I.2) times f0g � C z . We denote OI�;��f0g the spae ofsuh setions.Corollary 3.3 The operator of 1-summationS : ( O(D�)fftgg1;� �! OI�;��f0gbu(t; z) 7! u(t; z)is a homomorphism of di�erential C -algebras for the derivations �t and �z and itommutes with ��1t and ��1z .



3 1-SUMMABILITY 10Theorem 3.4Let a diretion arg t = � issuing from 0 and a series bf(t; z) 2 O(D�)[[t℄℄ be given.Reall D = 1�a(z)��1t �2z and assume that either a(0) 6= 0 or a(0) = 0 and a0(0) 6= 0.Then, the unique solution bu(t; z) of Dbu = bf in O(D�)[[t℄℄ is 1-summable in thediretion � if and only if bu�;0(t); bu�;1(t) and bf(t; z) are 1-summable in the diretion�. Moreover, the 1-sum u(t; z), if any, satis�es equation (4) in whih bf(t; z) isreplaed by the 1-sum f(t; z) of bf(t; z) in diretion �.Proof. We �rst plae ourselves in the ase a(0) 6= 0.Denote a(z) =Xn�0 anzn.As a preliminary remark we notie that, by identi�ation of equal powers of z inEquation(4) �1� a(z) ��1t �2z�Xn�0 bu�;n(t) znn! =Xn�0 bf�;n(t) znn! ;we get 8><>: bu�;0(t)� a0 ��1t bu�;2(t) = bf�;0(t)bu�;1(t)� a1 ��1t bu�;2(t)� a0 ��1t bu�;3(t) = bf�;1(t)and so on : : :so that eah bu�;n(t) is uniquely and linearly determined from bu�;0(t); bu�;1(t) andbf(t; z).� The ondition is neessary by Proposition 3.2. Indeed, if bu is 1-summable thenso are bu�;0(t) = bu(t; 0); bu�;1(t) = 1z �bu(t; z) � bu�;0(t)����z=0 and bf = Du.� Prove that the ondition is suÆient. Assume that bu�;0(t); bu�;1(t) and bf(t; z)are 1-summable in diretion �.Set bu(t; z) = bu�;0(t) + z bu�;1(t) + ��2z bv(t; z) and bw = ��1t bv.With these notations Equation (4) beomes(6) �1� 1a(z)�t��2z � bw(t; z) = bg(t; z) where bg = 1a(z) (bu�;0 + zbu�;1 � bf)and it suÆes to prove that bw is 1-summable in diretion � when bg is. To thisend, we proeed through a �xed point method as follows.



3 1-SUMMABILITY 11Setting bw(t; z) =Xp�0 bwp(t; z) Equation (6) readsbw0 � 1a(z)�t��2z bw0 = bg+ bw1 � 1a(z)�t��2z bw1+ � � �+ bwp � 1a(z)�t��2z bwp+ � � �and we hoose the solution given by the system
(7) 8>>>>>>>><>>>>>>>>:

bw0 = bgbw1 = 1a(z)�t��2z bw0: : :bwp = 1a(z)�t��2z bwp�1: : :We an hek that, for all p � 0, the formal series bwp(t; z) are of order O(z2p)in z and onsequently, the series bw(t; z) =Pp�0 bwp(t; z) itself makes sense asa formal series in t and z.Let w0(t; z) denote the 1-sum of bw0 = bg in diretion � and for all p > 0, letwp(t; z) be determined as the solution of System (7) in whih all bwp are re-plaed by wp. All wp are de�ned on a ommon domain ��;>� �D�0 .We are willing to prove that the series Xp�0wp(t; z) is onvergent with sumw(t; z), the 1-sum of bw(t; z) in diretion �.The 1-summability of bw0 implies that there exists 0 < r0 < �0 and, for anysubsetor � �� ��;>�, there exist onstants C 0 > 0, K 0 > 0 suh that for all` � 0 and (t; z) 2 ��Dr0 ,���t̀w0(t; z)�� � C 0K 0` �(1 + 2`):Denote B = maxz2Dr ��� 1a(z) ���



3 1-SUMMABILITY 12From w1 = 1a(z) �t��2z w0 we dedue that���t̀w1�� = ��� 1a(z) �`+1t ��2z w0���� B maxz2Dr ���`+1t w0�� jzj22!� C 0K 0`+1 ��1 + 2(`+ 1)�Bjzj22!and, by reursion, that(8) ���t̀wp(t; z)�� � C 0K 0`+p ��1 + 2(`+ p)�(Bjzj2)p(2p)! for all p � 0:This impliesXp�0 ���t̀wp(t; z)�� � C 0K 0` �(1 + 2`)Xp�0�2`+ 2p2p ��K 0B jzj2�p� C 0 (4K 0)` �(1 + 2`)Xp�0 �4K 0Bjzj2�psine �2`+ 2p2p � � 2`+2pXk=0 �2`+ 2pk � = 22`+2p:Denote L = 4K 0Br2 and hoose r so small that L < 1.Denote C = C 0Pp�0 Lp <1 and K = 4K 0.Then,(9) Xp�0 ���t̀wp(t; z)�� � CK`�(1 + 2`) on ��Dr:In partiular, for ` = 0, the seriesPwp(t; z) is normally onvergent on ��Dr.Consequently, its sum w(t; z) exists and is analyti on � � Dr. This provespoint 1 of De�nition 3.1 if we hoose as setor � � ��;>� a setor biseted by� with opening larger than � .For all ` � 1, the series P �t̀wp(t; z) is also normally onvergent on � � Drso that the series Pwp(t; z) an be derivated termwise in�nitely many timeswith respet to t and the estimates (9) imply(10) ���t̀w(t; z)�� � CK`�(1 + 2`) on ��Drwhih proves the ondition 3 of De�nition 3.1.



3 1-SUMMABILITY 13Moreover, summing the Equations (7) for wp and the 1-sum g(t; z) insteadof bwp and bg(t; z) we get w(t; z) = g(t; z) + 1a(z)Xp�0 �t��2z wp(t; z) = g(t; z) +1a(z)�t��2z w(t; z). Hene, w(t; z) satis�es Equation (6) with right hand sideg(t; z) in plae of bg(t; z).Finally, the fat that all derivatives of w(t; z) with respet to t are bounded on� implies the existene of limt!0t2� �t̀w(t; z) for all z 2 Dr and hene the existene ofthe Taylor series of w at 0 on � for all z 2 Dr. Sine w(t; z) satis�es Equation(6), so does its Taylor series. Sine Equation (6) has a unique formal solutionbw(t; z), we an onlude that the Taylor expansion of w(t; z) is bw(t; z), whihproves part 2 of De�nition 3.1.This ahieves the proof of the 1-summability of bu(t; z) in diretion � in thease when a(0) 6= 0.� The fat that the 1-sum u(t; z) of bu(t; z) in diretion � satis�es Equation (4)with right hand side the 1-sum f(t; z) of bf(t; z) instead of bf(t; z) is equivalentto the fat that w(t; z) satis�es Equation (6) with right hand side g(t; z) insteadof bg(t; z), whih we proved above. It is also a onsequene of Corollary 3.3.In the ase when a(0) = 0 and a0(0) 6= 0 the neessary ondition again re-sults from Proposition 3.2. The fat that u(t; z) satis�es Equation (4) results fromCorollary 3.3. We sketh the proof of the suÆient ondition.Denote a(z) = zA(z) with A(0) 6= 0.In this ase, identi�ation of equal powers of z shows that bu�;0 = bf�;0 and that allbu�;n for n � 1 are uniquely determined by bu�;1 and bf .We set again bu(t; z) = bu�;0 + zbu�;1 + �t��2z bw so that bw satis�es the equation(11) �1� 1zA(z)�t��2z � bw(t; z) = bg(t; z) where bg = 1A(z)�bu�;1 + bu�;0 � bfz �:Still, bg is a formal series, assumed to be 1-summable in diretion � and we look for bwin the form bw =Xp�0 bwp as previously. The operator 1z ��2z implies that bwp = O(zp)instead of O(z2p). If we denote B = maxz2Dr 1jA(z)j , then, for all p and `,���t̀wp�� � C 0K 0`+p��1 + 2(`+ p)�(Bjzj)pp!



3 1-SUMMABILITY 14and it follows that, for a onvenient hoie of r > 0,���t̀w(t; z)�� � CK` �(1 + 2`)with C = C 0Xp�0(4KBr)p <1 and K = 4K 0. 2The ase of a thermal di�usivity a(z) = O(z2) gives rise to the onditionsbu�;0(t) = bf�;0(t) and bu�;1(t) = bf�;1(t) and we ould hope of similar neessary andsuÆient onditions whih apply to the inhomogenuity bf(t; z) only. This is not thease sine the previous proof annot be extended to that situation. Indeed, theappearane of ��2zz2 instead of ��2z or ��2zz implies that no power of z remains in theestimates (8) and we annot guaranty the onvergene of the estimate for �t̀w.The ounter-example below shows that even with bf(t; z) independent of t andrational the 1-summability of bu(t; z) may fail.Counter-example 3.5Consider the heat initial onditions problem (4) with bf(t; z) = Xn�0 zn = 11� zand a(z) � 1. The series bf(t; z) is independent of t and is onvergent in z near 0with rational sum. The problem is equivalent to the heat initial onditions problemwithout internal heat generation(12) 8><>: �tbu� z2 �2zbu = 0bu(0; z) =Xn�0 znIn this ase, bu�;0(t) = bf�;0(t) � 1, bu�;1(t) = bf�;1(t) � 1 and for all n � 2, bu�;n(t)satis�es bu0�;n(t)� n(n� 1)bu�;n(t) = 0 and bu�;n(0) = n!:Consequently, bu�;n(t) = n! en(n�1)t.Suppose bu(t; z) is 1-summable in a diretion � with sum u(t; z).Then, sine bu�;n(t) = �nz bu(t; z)���z=0 all bu�;n(t) are 1-summable in diretion � withsum u�;n(t) = �nz u(t; z)���z=0. The Integral Cauhy Formula applied to �nz u(t; z) atz = 0 provides estimates of the formju�;n(t)j = ����� n!2�i Zj�j=R<r u(t; �)�n+1 d������ � n!2� C2�RRn+1 = C kn n!



4 INITIAL CONDITIONS 15on a setor biseted by � with opening larger than �. In our ase, bu�;n(t) = u�;n(t) =n! en(n�1)t. The funtions en(n�1)t being unbounded on any setor larger than a halfplane suh estimates are impossible. Hene, bu(t; z) is 1-summable in no diretion. 24 Initial onditionsWe end this artile with a disussion of how to apply the above result and we developthe ases when a(z) = a 2 C � or a(z) = bz; b 2 C � .The formal series bf(t; z) is a data of the problem and although its 1-summabilitymay be not obvious we assume that it is known. bf(t; z) is not itself the initialonditions but is losely onneted to (see Setion 1).The series bu�;0(t) and bu�;1(t) an, at least theoretially, be omputed in termsof bf(t; z) from the formulabu(t; z) =Xk�0 �a��1t �2z�k bf(t; z)and an expliit omputation an be ahieved for simple a(z) suh as a(z) = aonstant, a(z) = bz (b 2 C �) or a(z) = a+ bz. However, an expliit omputation ofbu�;0(t) and bu�;1(t) looks like hopeless for a general a(z).4.1 Case a(z) = a 2 C �When a is a onstant then the operators a; �t and �z ommute and �a��1t �2z�k =ak��kt �2kz . From the alulation of bu(t; z) =Pk�0 �a��1t �2z�k bf(t; z) we obtain(13) 8>>>>><>>>>>: bu�;0(t) = Xk�0 tkk! Xj+n=k an bfj;2nbu�;1(t) = Xk�0 tkk! Xj+n=k an bfj;2n+1Our aim is to haraterize the 1-summability of these two series as a property ofthe inhomogenuity bf .� We start with the ase where bf(t; z) = Xn�0 bf0;n znn! is independent of t whihorresponds to Problem (3). For simpliity, we denote bf(z).



4 INITIAL CONDITIONS 16The formul� (13) beome(14) 8>>>>><>>>>>: bu�;0(t) = Xk�0 (at)kk! bf0;2kbu�;1(t) = Xk�0 (at)kk! bf0;2k+1De�ne the 2-Laplae transform of bf(z) by L[2℄z bf(�) = Xn�0 bf0;n �nn! n![n=2℄! where[n=2℄ stands for the integer part of n=2. Then,L[2℄z bf�(at)1=2� = bu�;0(t) + (at)1=2bu�;1(t):and we may stateProposition 4.1 Suppose a(z) = a 2 C � and bf(t; z) = bf(z).Then, the following three assertions are equivalent.(i) bu�;0(t) and bu�;1(t) are 1-summable in diretion �;(ii) L[2℄z bf(z) is 2-summable in the diretions 12 (� + arg a) mod �;(iii) bf(z) is analyti near 0 and it an be analytially ontinued to setors neigh-bouring the diretions 12 (� + arg a) mod � with exponential growth of order 2at in�nity.Assertion (iii) with a = 1 (hene arg a = 0) is how the onditions are formulatedin [LMS99℄ and proved via diret Borel-Laplae estimations. Our method providesthus a new proof of this result.� Consider now the ase of a general bf(t; z).The interpretation of the 1-summability of bu�;0(t) and bu�;1(t) beomes more involvedand uses Borel and Laplae transforms of bf(t; z) in both variables.We denote Lz or Bz and so on. . . the 1-Laplae or 1-Borel transform w.r.t. z and soon. . . . These operators are de�ned here by Lzzn = �n[n℄! and Bz = L�1z where [n℄denotes the integer part of n.Consider LtLz bf��; (a�)1=2� = Xk�0 �k Xj+n=k bfj;2nan + (a�)1=2Xk�0 �k Xj+n=k bfj;2n+1anand



4 INITIAL CONDITIONS 17B�LtLz bf��; (a�)1=2�(t) = Xk�0 tkk! Xj+n=k bfj;2nan + (at)1=2Xk�0 tkk! Xj+n=k bfj;2n+1an (theterms in �k are divided by k! and the terms in �k+1=2 by [k + 1=2℄! = k!).Denote bF (t) = B�LtLz bf��; (a�)1=2�(t2). Then,bF (t1=2) = bu�;0(t) + (at)1=2bu�1(t)and we may state:Proposition 4.2 Suppose a(z) = a 2 C � and bf(t; z) general.Then, the series bu�;0(t) and bu�;1(t) are 1-summable in diretion � if and only if theseries bF assoiated with bf as above is 2-summable in the diretions �=2 mod �.The ondition in Proposition 4.1 may be not easy to hek but seems reasonnable.In Proposition 4.2, the link between bf and bF is more ompliated and the questionremains of how to hek the 2-summability of bF in pratie.4.2 Case a(z) = bz; b 2 C �In this ase, �a(z)��1t �2z�k = bk��kt (z�2z )k and(z�2z )k � znn! = 8><>: zn�k(n� k)! (n� 1)!(n� k � 1)! if 0 � k < n0 if n � k:From the alulation of bu(t; z) =Pk�0 �bz��1t �2z�k bf(t; z) we obtain(15) 8>>>>><>>>>>: bu�;0(t) = Xj�0 tjj! bfj;0 = bf�;0(t)bu�;1(t) = Xj;k�0 bfj;k+1 bk tj+k(j + k)!k!Sine bu�;0(t) = bf�;0(t) is 1-summable when so is bf(t; z), our aim is now to hara-terize the 1-summability of the series bu�;1(t) as a property of bf .� Let us �rst again plae ourselves in the situation of Problem (3) where the inho-mogenuity bf(t; z) =Pn�0 bf0;n znn! is independent of t.
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