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Abstract

We present an extension of the Generalized Spectral Decomposition method for the
resolution of non-linear stochastic problems. The method consists in the construc-
tion of a reduced basis approximation of the Galerkin solution and is independent of
the stochastic discretization selected (polynomial chaos, stochastic multi-element or
multiwavelets). Two algorithms are proposed for the sequential construction of the
successive generalized spectral modes. They involve decoupled resolutions of a series
of deterministic and low dimensional stochastic problems. Compared to the classical
Galerkin method, the algorithms allow for significant computational savings and re-
quire minor adaptations of the deterministic codes. The methodology is detailed and
tested on two model problems, the one-dimensional steady viscous Burgers equation
and a two-dimensional non-linear diffusion problem. These examples demonstrate
the effectiveness of the proposed algorithms which exhibit convergence rates with
the number of modes essentially dependent on the spectrum of the stochastic solu-
tion but independent of the dimension of the stochastic approximation space.
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1 Introduction

The increasing availability of computational resources and complexity of nu-
merical models has stressed the need for efficient techniques to account for
uncertainties in model data and incomplete knowledge of the simulated sys-
tem. Uncertainty quantification (UQ) methods are designed to address this
need by providing a characterization of the uncertainty in the model output.
The uncertainty characterization and level of information provided depend on
the UQ method selected and range from the construction of simple confidence
intervals to the determination of complete probability laws. Among the differ-
ent UQ methods available, the polynomial chaos (PC) methods [40, 5, 13] are
receiving a growing interest as they provide a rich uncertainty characterization
thanks to their probabilistic character. In fact, PC methods for UQ have been
constantly improved and applied to problems with increasing complexity (e.g.
non-linear ones) since the early works of Ghanem and Spanos [13].
The fundamental concept of PC methods is to treat the UQ problem in a
probabilistic framework, where the uncertain model data are parameterized
using a finite set of random variables which are subsequently regarded as the
generator of new dimensions along which the model solution is dependent. A
convergent expansion along the uncertainty dimensions is then sought in terms
of orthogonal basis functions spanning an appropriate stochastic space. The
expansion coefficients provide a complete characterization of the uncertain so-
lution in a convenient format allowing for straightforward post-treatment and
uncertainty analysis such as the assessment of the impact of specific uncertain
data source on specific observables.

There are two distinct classes of techniques for the determination of the ex-
pansion coefficients. The non-intrusive techniques, such as quadrature-based
projections [34, 20] and regressions [4], offer the advantage of requiring the
availability of a deterministic code only, but are limited by the need of com-
puting the solution for a large number of realizations of the uncertain data.
Many works are currently focusing on numerical strategies for the minimiza-
tion of the number of solutions to be computed, essentially through the use
of coarse or adaptive quadrature formulas [16, 11]. The second class of tech-
niques relies on the model equations to derive a problem for the expansion
coefficients through Galerkin-type procedures. It yields accurate solutions but
usually requires the resolution of a large set of equations calling for ad hoc
numerical strategies, such as Krylov type iterations [12, 32, 15] and precon-
ditioning techniques [33, 21], as well as an adaptation of the deterministic
codes. The method presented in this paper focuses on the minimization of the
computational cost in Galerkin methods for non-linear models.

The essential motivation behind PC methods is the promise of obtaining ac-
curate estimates of the uncertain solution with a limited number of terms
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in the expansion. However, as applications and uncertainty settings gain in
complexity, the dimension of the expansion basis needed to yield accurate es-
timates quickly increases with significant increase in the computational cost
and memory requirements. These limitations have been partially addressed by
using better suited stochastic bases both in terms of probability distribution
of the random variables [41] and approximation properties of the basis func-
tions using so-called finite element, multi-element or multi-wavelet bases [7,
2, 10, 17, 18, 38]. An interesting feature of finite-element, multi-element and
multi-wavelet bases is the possibility to enrich adaptively the stochastic ap-
proximation basis to the sought solution (see for instance [18, 38, 39, 19, 22]).

Another way to minimize the size and numerical cost of Galerkin computa-
tions is to seek the approximate solution on a reduced space. It is remarked
that such reduction approach should not be opposed or understood as an
alternative to the adaptive methods mentioned above, but would actually fur-
ther improve their efficiency since adaptive techniques require the resolution of
large Galerkin problems, though local ones. The main idea of reduced approx-
imations is to take advantage of the structure of the full approximation space,
which results from the tensor product of the deterministic and stochastic ap-
proximation spaces: if one is able to appropriately reduce the deterministic
or stochastic approximation space, to a low dimensional sub-space, the size
of the Galerkin problem to be solved drastically reduces too. Of course, the
determination of a low dimensional sub-space that still accurately captures
the essential features of the solution is not immediate since the solution is
unknown. In [9], the Galerkin problem is first solved on a coarse deterministic
mesh to provide a coarse estimate of the solution which is then decomposed
into its principal components through Karhunen-Loeve (KL) expansion. The
first random coefficients of the KL expansion are then used as a reduced
stochastic basis in the Galerkin problem considered now on a fine determinis-
tic mesh. Alternatively, in [23], a Neumann expansion of the operator is used
to obtain an estimate of the covariance operator of the solution. The domi-
nant eigenspace of the approximate covariance operator is then considered as
the reduced deterministic (spatial) sub-space to be used subsequently in the
Galerkin procedure. In fact, as for the first approach, this can be interpreted
as a coarse a priori KL expansion of the solution. These two approaches have
demonstrated their effectiveness in reducing the size of the Galerkin problem
solved in fine. However, the second approach, based on Neumann expansion,
is dedicated to linear problems, and the extension of the first approach to
highly non-linear problems, such as for instance the Navier-Stokes equations,
seems critical due to limitations in the possible deterministic coarsening: the
reduced basis may simply miss important features of the non-linear solution.
Another alternative, called the Stochastic Reduced Basis Method [25, 35], has
been proposed for the a priori construction of reduced basis. In this method,
dedicated to linear problems, the reduced basis is a basis of a low-dimensional
Krylov sub-space of the random operator associated with the right hand side.
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It captures approximatively the active upper spectrum of the random opera-
tor. The main difference with the above techniques is that the reduced basis
is random. The method does not take part of the tensor product structure of
the function space and then does not circumvent the problem of memory re-
quirements. Moreover, the components of the solution on this basis, obtained
through a Galerkin projection, leads to a system of equations which has not
a conventional form.

We thus investigate in this paper the extension of the so-called Generalized
Spectral Decomposition (GSD) method which does not require one to provide
a reduced basis (a priori or determined by alternative means) but that instead
yields by itself the “optimal” reduced basis.

The Generalized Spectral Decomposition (GSD) method consists in searching
an optimal decomposition of the solution u to a stochastic problem under the
form

∑M
i=1 Uiλi, where the Ui are deterministic functions while λi are random

variables. In this context, the set of λi (resp. of Ui) are understood as a re-
duced basis of random variables (resp. of deterministic functions). Optimal
decompositions could be easily defined if the solution u were known. Such
a decomposition can for example be obtained by a KL expansion (or clas-
sical spectral decomposition) of u, which is the optimal decomposition with
respect to a classical inner product. The GSD method consists in defining an
optimality criterion for the decomposition which is based on the equation(s)
solved by the solution but not on the solution itself. The construction of the
decomposition therefore does not require to know the solution a priori or to
provide a surrogate (approximation on coarser mesh or low order Neumann
expansion) as pointed previously. The GSD method was first proposed in [27]
in the context of linear stochastic problems. In the case of linear symmetric
elliptic coercive problems, by defining an optimal decomposition with respect
to the underlying optimization problem, the functions Ui (resp. λi) were shown
to be solutions of an eigen-like problem. Ad-hoc algorithms, inspired by power
method for classical eigenproblems, have been proposed in [27] for the res-
olution of this eigen-like problem, while improved algorithms and in-depth
analysis of the GSD method for a wider class of linear problems (in particular
time-dependent problems) can be found in [28]. The main advantage of these
algorithms is to separate the resolution of a few deterministic problems and
a few reduced stochastic problems (i.e. using a reduced basis of deterministic
functions). These algorithms lead to significant computational savings when
compared to classical resolution techniques of stochastic Galerkin equations.
A first attempt for extending the GSD method to non-linear problems has
been investigated in [26]: algorithms derived for the linear case were simply
applied to subsequent linear stochastic problems arising from a classical non-
linear iterative solver. Reduced basis generated at each iteration were stored,
sorted and re-used for subsequent iterations. In this paper, we propose a “true”
extension of the GSD to non-linear problems, where we directly construct an
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optimal decomposition of the solution with regard to the initial non-linear
problem.

The outline of the paper is as follows. In section 2, we introduce a general
formulation of non-linear stochastic problems and the associated stochastic
Galerkin schemes. In section 3, we present the extension of GSD for non-linear
problems. In particular, we provide some basic mathematical considerations
which motivate this extension. The GSD is interpreted as the solution of an
eigen-like problem and two ad-hoc algorithms are proposed for building the
decomposition. These algorithms are inspired from the ones proposed in [27] in
the context of linear stochastic problems. Then, the GSD method is applied
to two non-linear models: the steady viscous Burgers equation (sections 4
and 5) and a stationary diffusion equation (sections 6 and 7). Computational
aspects of the GSD are detailed for each of these model problems. Finally, in
section 8, we summarize the main findings of this work and we discuss future
improvements and extensions of the method.

2 Non-linear stochastic problems

2.1 Variational formulation

We adopt a probabilistic modeling of uncertainties and introduce an abstract
probability space (Θ,B, P ). Θ is the space of elementary events, B a σ-algebra
on Θ and P a probability measure. We consider non linear problems having
the following semi-variational form:
Given an elementary event θ, find u(θ) ∈ V such that we have almost surely

b(u(θ), v; θ) = l(v; θ) ∀v ∈ V , (1)

where V is a given vector space, eventually of finite dimension, b and l are
semi-linear and linear forms respectively. The forms b and l may depend on the
elementary event θ. In this paper, we consider that V does not depend on the
elementary event. It could be the case when considering partial differential
equations defined on random domains [30, 29]. On the stochastic level, we
introduce a suitable function space S for random variables taking values in
R. The full variational formulation of the problem writes:
Find u ∈ V ⊗S such that

B(u, v) = L(v) ∀v ∈ V ⊗S , (2)
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where the semi-linear and linear forms B and L have for respective expressions:

B(u, v) =
∫

Θ
b(u(θ), v(θ); θ) dP (θ) := E(b(u, v; ·)), (3)

L(v) =
∫

Θ
l(v(θ); θ) dP (θ) := E(l(v; ·)). (4)

where E(·) denotes the mathematical expectation.

2.2 Stochastic discretization

In this article, we consider a parametric modeling of uncertainties. Semilin-
ear form b and linear form l are parametrized using a finite set of N real
continuous random variables ξ with known probability law Pξ. Then, by the
Doob-Dynkin’s lemma [31], we have that the solution of problem (1) can be
written in terms of ξ, i.e. u(θ) ≡ u(ξ). The stochastic problem can then be
reformulated in the N -dimensional image probability space (Ξ,BΞ, Pξ), where
Ξ ⊂ R

N denotes the range of ξ. The expectation operator has the following
expression in the image probability space:

E(f(·)) =
∫

Θ
f(ξ(θ)) dP (θ) =

∫

Ξ
f(y)dPξ(y). (5)

Since we are interested in finding an approximate stochastic solution of equa-
tion (1), function space S is considered as a finite dimensional subspace of
L2(Ξ, dPξ), the space of real second order random variables defined on Ξ. Dif-
ferent types of approximation are available at the stochastic level: continuous
polynomial expansion [13, 41, 36], piecewise polynomial expansion [7], multi-
wavelets [17, 18]. At this point, it is stressed that the method proposed in this
paper is independent of the type of stochastic approximation used.

Remark 1 The choice of a suitable function space S is a non trivial question
in the infinite dimensional case. Several interpretations of stochastic partial
differential equations (SPDE) are generally possible, e.g. by introducing the
concept of Wick product between random fields, leading to well posed problems
and then to different possible solutions [14, 3, 37]. These mathematical con-
siderations are beyond the scope of this article. For non-linear problems dealt
with in this article, where a classical interpretation of products between ran-
dom fields is used [2, 23], a possible choice could consist in classical Banach
spaces Lp(Ξ, dPξ) ⊂ L2(Ξ, dPξ), 2 6 p <∞. Usual approximation spaces being
contained and dense in these Banach spaces, it ensures the consistency of the
approximation.

In what follows, we will mainly use the initial probability space (Θ,B, P ). The
reader must keep in mind that at each moment, the elementary event θ ∈ Θ
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can be replaced by ξ ∈ Ξ in any expression.

3 General Spectral Decomposition for non linear problems

3.1 Principle

The Generalized Spectral Decomposition (GSD) method consists in searching
an approximate low-order decomposition of the solution to problem (2):

uM(θ) =
M∑

i=1

Uiλi(θ), (6)

where Ui ∈ V are deterministic functions while λi ∈ S are random variables
(i.e. real-valued functions of the elementary random event). In this context,
the set of λi (resp. of Ui) can be understood as a reduced basis of random
variables (resp. of deterministic functions). In this section, we will see in which
sense optimal reduced basis can be thought as solutions of eigen-like problems.
Starting from this interpretation, we will propose two simple and efficient
algorithms for building the generalized spectral decomposition.

3.2 Definition of an optimal couple (U, λ)

First, let us explain how to define an optimal couple (U, λ) ∈ V × S . The
proposed definition is a direct extension to the non-linear case of the definition
introduced in [28].
It is remarked that if U was known and fixed, the following Galerkin orthog-
onality criterium would lead to a suitable definition for λ:

B(λU, βU) = L(βU) ∀β ∈ S . (7)

In other words, it consists in defining λU as the Galerkin approximation of
problem (2) in the sub-space U ⊗S ⊂ V ⊗S .
Alternatively, if λ was known and fixed, the following Galerkin orthogonality
criterium would lead to a suitable definition for U :

B(λU, λV ) = L(λV ) ∀V ∈ V . (8)

In other words, it consists in defining λU as the Galerkin approximation of
problem (2) in the sub-space V ⊗ λ ⊂ V ⊗S .
As a shorthand notation, we write λ = f(U) the solution of equation (7)
and U = F (λ) the solution of equation (8). It should be clear that a natural
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definition of an optimal couple (U, λ) consists in satisfying simultaneously
equations (7) and (8). The problem can then write: find λ ∈ S and U ∈ V

such that

U = F (λ) and λ = f(U). (9)

The problem can be formulated on U as follows: find U ∈ V such that

U = F ◦ f(U) := T (U), (10)

where mapping T is a homogeneous mapping of degree 1:

T (αU) = αT (U) ∀α ∈ R
∗. (11)

This property comes from properties of f and F , which are both homogeneous
mappings of degree (−1):

∀α ∈ R
∗, f(αU) = α−1f(U), F (αλ) = α−1F (λ). (12)

The homogeneity property of T allows to interpret equation (10) as an eigen-
like problem where the solution U is interpreted as a generalized eigenfunction.

By analogy with classical eigenproblems, each eigenfunction is associated with
a unitary eigenvalue. The question is then: how to define the best generalized
eigenfunction among all possible generalized eigenfunctions ? A natural answer
is: the best U is the one which maximizes the norm ‖Uf(U)‖ of the approx-
imate solution Uf(U), i.e. such that it gives the highest contribution to the
generalized spectral decomposition. In order to provide a more classical writing
of an eigen-problem, we now rewrite the approximation as αUf(U)/‖Uf(U)‖,
with α ∈ R

+. The problem is then to find a couple (U, α) ∈ V ×R
+ such that

α is maximum and such that the following Galerkin orthogonality criterium
is still satisfied:

αU = F (f(U)/‖Uf(U)‖) = ‖Uf(U)‖T (U) := T̃ (U). (13)

The mapping σ : U ∈ V 7→ ‖Uf(U)‖ ∈ R
+ is a homogeneous mapping of

degree 0. Then, mapping T̃ , which is a simple rescaling of T , is still homoge-
neous of degree 1, so that equation (13) can be interpreted as an eigen-like
problem on T̃ : find (U, α) ∈ V × R

+ such that

T̃ (U) = αU (14)

U is a generalized eigenfunction of T̃ if and only if it is a generalized eigen-
function of T . A generalized eigenfunction is associated with a generalized
eigenvalue α = σ(U) of mapping T̃ . The best U ∈ V then appears to be the
generalized eigenfunction associated with the dominant generalized eigenvalue
of T̃ .
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Remark 2 In the case where B is a bounded elliptic coercive bilinear form,
it is proved in [27] that the dominant generalized eigenfunction U is such that
it minimizes the error (u− Uf(U)) with respect to the norm induced by B.

Remark 3 Let us note that the previous reasoning can be made on a problem
formulated on λ, writing: find (λ, α) ∈ S × R

+ such that

T̃ ∗(λ) = αλ, (15)

where T̃ ∗(λ) = σ∗(λ)f ◦F (λ), with σ∗(λ) = ‖F (λ)λ‖. We can easily show that
if U is a generalized eigenfunction of T̃ , then λ = f(U) is a generalized eigen-
function of T̃ ∗, associated with the generalized eigenvalue σ∗(λ) = σ(f(U)).
Problems on U and λ are completely equivalent. In this article, we arbitrarily
focus on the problem on U .

3.3 A progressive definition of the decomposition

Following the previous observations, we now propose to build progressively
the generalized spectral decomposition defined in equation (6). The couples
(Ui, λi) are defined one after the others. To this end, let us assume that uM is
known. We denote (U, λ) ∈ V ⊗S the next couple to be defined. A natural
definition of this couple still consists in satisfying the two following Galerkin
orthogonality criteria:

B(uM + λU, βU) = L(βU) ∀β ∈ S , (16)

B(uM + λU, λV ) = L(λV ) ∀V ∈ V . (17)

As a shorthand notation, we write λ = fM(U) the solution of equation (16) and
U = FM(λ) the solution of equation (17). This problem can still be formulated
on U as follows: find U ∈ V such that

U = FM ◦ fM(U) := TM(U). (18)

where mapping TM is an homogeneous mapping of degree 1. Problem (18) can
still be interpreted as an eigen-like problem. In fact, by analogy with classical
eigenproblems, operator TM can be interpreted as a “deflation” of the initial
operator T (see [28] for details).
Introducing σM(U) = ‖UfM(U)‖ allows to reformulate problem (18) as an
eigen-like problem on mapping T̃M = σM(U)TM(U): find the dominant gener-
alized eigenpair (U, α) ∈ V × R

+, satisfying:

T̃M(U) = αU, (19)

where α = σM(U) appears to be the generalized eigenvalue of T̃M associated
with the generalized eigenfunction U .
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Finally, denoting by (Ui, σi−1(Ui)) the dominant eigenpair of operator T̃i−1,
the generalized decomposition of order M is then defined as

uM =
M∑

i=1

Uifi−1(Ui) =
M∑

i=1

σi−1(Ui)Uifi−1(Ui)/‖Uifi−1(Ui)‖, (20)

where for consistency, we let u0 = 0.

3.4 Algorithms for building the decomposition

With the previous definition, optimal couples (Ui, λi) appears to be dominant
eigenfunctions of successive eigen-like problems. The following algorithms, ini-
tially proposed in [27] for linear stochastic problems, are here extended to the
non-linear framework. In the following, we denote WM = (U1, . . . , UM) ∈
(V )M , ΛM = (λ1, . . . , λM) ∈ (S )M and

uM(θ) := WM · ΛM(θ). (21)

3.4.1 Basic power-type method: algorithm 1

In order to find the dominant eigenpair (U, σM(U)) of eigen-like problem (19),
we suggest to use a power-type algorithm. It consists in building the series
U (k+1) = T̃M(U (k)), or equivalenty U (k+1) = γ(k)T̃M(U (k)), where γ(k) ∈ R is
a rescaling factor. We emphasize that the rescaling factor has no influence
on the convergence of this series, due to homogeneity property of mapping
T̃M (inherited from those of fM and FM). This strategy leads to algorithm 1,
which can be interpreted as a power-type algorithm with deflation for building
the whole decomposition.

Algorithm 1 Power-type algorithm

1: for i = 1 . . .M do

2: Initialize λ ∈ S

3: for k = 1 . . . kmax do

4: U := Fi−1(λ)
5: U := U/‖U‖V (normalization)
6: λ = fi−1(U)
7: Check convergence on σi−1(U) (tolerance ǫs)
8: end for

9: Wi := (Wi−1, U)
10: Λi := (Λi−1, λ)
11: Check convergence
12: end for
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The main advantage of this algorithm is that it only requires the resolution of
problems λ = f(U) and U = F (λ) which are respectively a simple nonlinear
equation on λ and a nonlinear deterministic problem.

It is well known for classical eigenproblems that the power method does not
necessarily converge or can exhibit a very slow convergence rate. This is the
case when the dominant eigenvalue is of multiplicity greater than one or when
dominant eigenvalues are very close. However, a convergence criterium based
on eigenfunction U is not adapted to our problem. In fact, a pertinent eval-
uation of convergence should be based on the eigenvalue, which in our case
corresponds to the contribution σi−1(U) of a couple (U, fi−1(U)) to the gen-
eralized spectral decomposition. In the case of multiplicity greater than one,
a convergence of the eigenvalue indicates that the current iterate U should
be a good candidate for maximizing the contribution to the generalized de-
composition. When dominant eigenvalues are very close, a slow convergence
rate can be observed on the eigenvalue when approaching the upper spectrum.
However, close eigenvalues are associated to eigenfunctions which have simi-
lar contributions to the decomposition. Therefore, any of these eigenfunctions
seems to be a rather good choice, the rest of the upper spectrum being ex-
plored by subsequent “deflations” of the operator. The above remarks indicate
that a relatively coarse convergence criterium (tolerance ǫs) can be used for
the power iterates:

|σi−1(U
(k))− σi−1(U

(k−1))| 6 ǫsσi−1(U
(k)) (22)

This will be illustrated in numerical examples.

Remark 4 A natural choice for the norm ‖Uλ‖ on V ⊗S consists in taking
a tensorization of norms defined on V and S . The contribution of Uf(U)
can then be simply written ‖Uf(U)‖ = ‖U‖V ‖f(U)‖S . In algorithm 1, U
being normalized, the evaluation of σi−1(U) (step (7)) then only requires the
evaluation of ‖λ‖S .

Remark 5 For computational and analysis purposes, one may want to per-
form an orthonormalization of the decomposition. This orthonormalization can
concern the deterministic basis WM or the stochastic basis ΛM . In both cases,
it involves a non singular M ×M matrix R such that the linear transforma-
tion writes WM ← WM · R (resp. ΛM ← ΛM · R) for the orthonormalization
of WM (resp. ΛM). To maintain the validity of the decomposition, the inverse
transformation R−1 has also to be applied to the complementary basis, i.e.
ΛM ← ΛM ·R−1 (resp. WM ← WM ·R−1).
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3.4.2 Improved power-type method: algorithm 2

A possible improvement of algorithm 1 consists in updating the reduced ran-
dom basis ΛM every time a new couple is computed, while keeping unchanged
the deterministic basis WM . We denote VM = span{Ui, i = 1 . . .M} ⊂ V

the subspace spanned by WM ; on this subspace, Equation (2) becomes: find
uM ∈ VM ⊗S such that

B(uM , vM) = L(vM) ∀vM ∈ VM ⊗S . (23)

This problem is equivalent to find ΛM ∈ (S )M such that

B(WM · ΛM ,WM · Λ∗M) = L(WM · Λ∗M) ∀Λ∗M ∈ (S )M . (24)

We write ΛM = f0(WM) the solution to equation (24), which is a set of M
coupled non-linear stochastic equations. The improved algorithm including
stochastic basis updates is:

Algorithm 2 Power-type algorithm with updating of the random basis

1: for M = 1 . . .Mmax do

2: Do steps 2 to 10 of algorithm 1
3: Orthonormalize WM (optional)
4: Update ΛM = f0(WM)
5: Check convergence
6: end for

In the very particular case where b(·, ·) is bilinear and deterministic, it can be
proved that the updating does not modify the decomposition [28]. This can
be explained by the fact that dominant eigenfunctions of successive operators
T̃M are optimal regarding the initial problem, i.e. are dominant eigenfunctions
of the initial operator T̃ = T̃0. In the general case, this property is not verified
and makes that this updating can lead to a significant improvement of the
accuracy of the decomposition. This will be illustrated in numerical examples.

Remark 6 The orthonormalization step (3) of algorithm 2 is actually op-
tional, as it does not affect the reduced spaces generated. Still, for numerical
and analysis purposes, it is often preferred to work with orthonormal functions.

3.5 Extension to affine spaces

In many situations, e.g. when dealing with non homogeneous boundary con-
ditions, the solution u is to be sought in an affine space, with an associated
vector space denoted V ⊗S . In order to apply the GSD method, the problem
is classically reformulated in vector space V ⊗S by introducing a particular
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function u0 of the affine space. The variational problem (2) becomes:
Find u = u0 + ũ, with ũ ∈ V ⊗S , such that

B(u0 + ũ, v) = L(v) ∀V ⊗S . (25)

Then, now denoting ũM = WM · ΛM and extending the definition of uM to

uM = u0 + ũM = u0 +WM · ΛM , (26)

it is seen that the algorithms 1 and 2 apply immediately for the construction of
the generalized spectral decomposition ũM of ũ. This procedure is used in the
next section, which details the application of the proposed iterative methods
to the Burgers equation.

Remark 7 The definition of a particular function u0 is usual in the con-
text of Galerkin approximation methods. For example, when dealing with non-
homogeneous Dirichlet boundary conditions and when using finite element ap-
proximation at the spatial level, it simply consists in defining a finite ele-
ment function with ad-hoc nodal values at the boundary nodes. The problem
on ũ ∈ V ⊗S is then associated with homogeneous Dirichlet boundary con-
ditions.

4 Application to Burgers equation

4.1 Burgers equation

We consider the stochastic steady Burgers equation on the spatial domain Ω =
(−1, 1), with random (but uniform) viscosity µ ∈ L2(Θ, dP ). The stochastic
solution,

u : (x, θ) ∈ Ω×Θ 7→ u(x, θ) ∈ R, (27)

satisfies almost surely

u
∂u

∂x
− µ∂

2u

∂x2
= 0, ∀x ∈ Ω. (28)

This equation has to be complemented with boundary conditions. We assume
deterministic boundary conditions:

u(−1, θ) = 1, u(1, θ) = −1 (a.s.). (29)

We further assume that µ(θ) > α > 0 almost surely to ensure a physically
meaningful problem. Thanks to the mathematical properties of the Burgers
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equation (the solution is bounded by its boundary values), we have almost
surely u(x, θ) ∈ [−1, 1] and u(x, ·) ∈ L2(Θ, dP ) for all x ∈ [−1, 1].

4.2 Variational formulation

We introduce the following function space:

U = {v ∈ H1(Ω); v(−1) = 1, v(1) = −1}. (30)

The space U is affine, and we denote V the corresponding vector space:

V = {v ∈ H1(Ω); v(−1) = 0, v(1) = 0}. (31)

The stochastic solution u(x, θ) is sought in the tensor product function space
U ⊗S . It is solution of the variational problem (25) with

b(u, v; θ) =
∫

Ω

(
µ(θ)
∂u

∂x

∂v

∂x
+ u
∂u

∂x
v

)
dx, (32)

l(v; θ) = 0. (33)

Remark 8 The previous variational formulation implicitly assumes that S ⊂
L2(Θ, dP ) is finite dimensional.

To detail the methodology, we write

b(u, v; θ) = µ(θ)a(u, v) + n(u, u, v), (34)

where a and n are bilinear and trilinear forms respectively, defined as:

a(u, v) =
∫

Ω

∂u

∂x

∂v

∂x
dx, (35)

n(u, v, w) =
∫

Ω
u
∂v

∂x
w dx. (36)

Remark 9 It is seen that the forms a and n have no explicit dependence
with regards to the elementary event θ. Generalization of the methodology to
situations where forms depend on the event is however immediate.

The boundary conditions being deterministic, an obvious choice for u0 ∈ U is
u0(x, θ) = −x. Then, to simplify the notations, we define λ0 = 1 and U0 = u0

such that the approximate solution uM writes:

uM = u0 +
M∑

i=1

λiUi =
M∑

i=0

λiUi (37)
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4.3 Application of GSD algorithm to the Burgers equation

Algorithms 1 and 2 can now be applied to perform the generalized spectral
decomposition of the solution. We now detail the main ingredients of the
algorithms, namely steps (4) and (6) of algorithm 1, and the update step of
algorithm 2.

4.3.1 Resolution of U = FM(λ)

To compute U = FM(λ), one has to solve for U the equation (17). This is
equivalent to solve for U the following deterministic problem (remember that
λ is given):

BM(λU, λV ) = LM(λV ) ∀V ∈ V . (38)

where ∀u, v ∈ V ⊗S ,

BM(u, v)≡B(uM + u, v)−B(uM , v), (39)

LM(v)≡L(v)−B(uM , v). (40)

Substracting B(uM , v) on both sides of (17) to yield (38) ensures that the
right-hand side LM vanishes whenever uM solves the weak form of the stochas-
tic Burgers equation. This manipulation is however purely formal. With some
elementary manipulations, it is easy to show that

BM(λU, λV ) =E(λλµ)a(U, V ) + E(λλλ)n(U,U, V ) (41)

+
M∑

i=0

E(λiλλ) [n(Ui, U, V ) + n(U,Ui, V )] ,

LM(λV ) =−
M∑

i=0

E(µλiλ)a(Ui, V )−
M∑

i,j=0

E(λλiλj)n(Ui, Uj, V ). (42)

Therefore, one can recast the equation on U in the formal way:

µ̃a(U, V ) + n(U,U, V ) + n(Ũ , U, V ) + n(U, Ũ , V ) =

−a(Ŭ , V )− n(1, Ẑ, V ), ∀V ∈ V , (43)

where

µ̃ =
E(λλµ)

E(λ3)
, Ũ =

M∑

i=0

E(λiλλ)

E(λλλ)
Ui, (44)

Ŭ =
M∑

i=0

E(µλiλ)

E(λλλ)
Ui, Ẑ =

1

2

M∑

i,j=0

E(λiλjλ)

E(λλλ)
UiUj, (45)
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Equation (43) shows that U is the solution of a non linear deterministic prob-
lem, with homogeneous boundary conditions, involving a quadratic non lin-
earity term (n(U,U, V )) which reflects the non linearity of the original Burgers
equation. In fact, the resulting problem for U has the same structure as the
weak form of the deterministic Burgers equations, with some additional (lin-
ear) terms expressing the coupling of U with uM (due to the non linearity)
and a right-hand side accounting for the equation residual for u = uM . As a
result, a standard non linear solver can be used to solve this equation, e.g. one
can re-use a deterministic steady Burgers solver with minor adaptations.

Remark 10 At first thought, equation (43) suggests that a robust non linear
solver is needed for its resolution, since a priori the effective viscosity µ̃ may
become negative and experience changes by orders of magnitudes in the course
of the iterative process. However, one can always make use of the homogeneity
property

U

α
= FM(αλ), ∀α ∈ R

∗, (46)

to rescale the problem and fit solver requirements if any. Note that equa-
tion (46) together with equation (43) also indicate that the nature of the non-
linear deterministic problems to be solved is preserved along the course of the
iterations. For instance, the effective viscosity goes to zero as |λ| → ∞ but
the problem does not degenerate to an hyperbolic one since the right-hand-side
also goes to zero and U satisfies homogeneous boundary conditions.

4.3.2 Resolution of λ = fM(U)

The random variable λ ∈ S is solution of the variational problem:

BM(λU, βU) = LM(βU) ∀β ∈ S . (47)

After some manipulations, this equation is found to be equivalent to:

E(βλλ)n(U,U, U) + E(βµλ)a(U,U) +
M∑

i=0

E(βλiλ) [n(U,Ui, U) + n(Ui, U, U)]

= −
M∑

i=0

E(βµλi)a(Ui, U)−
M∑

i,j=0

E(βλiλj)n(Ui, Uj, U).

(48)

This is a simple stochastic quadratic equation on λ: a standard non linear
solver can be used for its resolution.
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4.3.3 Resolution of ΛM = f0(WM)

To update ΛM = (λ1, . . . , λM) ∈ (S )M , one has to solve:

B(u0 +WM · ΛM ,WM · Λ∗M) = L(WM · Λ∗M) ∀Λ∗M ∈ (S )M . (49)

This equation can be split into a system of M equations:

∀k ∈ {1, . . . ,M}, B(u0 +WM · ΛM , Ukβk) = L(Ukβk) ∀βk ∈ S . (50)

Introducing the previously defined forms, it comes:

M∑

i=0

µ(θ)λi(θ)a(Ui, Uk) +
M∑

i,j=0

λiλjn(Ui, Uj, Uk) = 0, ∀k ∈ {1, . . . ,M}. (51)

Again, it is seen that the updating step consists in solving a system of quadratic
non linear equations for the {λi}Mi=1. A standard non linear solver can be used
for this purpose.

4.4 Spatial discretization

Let us denote PNx+1(Ω) the space of polynomials of degree less or equal to
Nx + 1 on Ω. We define the approximation vector space V h as:

V
h = {v ∈ PNx+1(Ω); v(−1) = 0, v(1) = 0} ⊂ V . (52)

Let xi={0,...,Nx+1} be the Nx +2 Gauss-Lobatto points [1] of the interval [−1, 1],
such that

x0 = −1 < x1 < . . . < xNx
< xNx+1 = 1. (53)

We denote Li∈{1,...,Nx}(x) ∈ PNx+1, the Lagrange polynomials constructed on
the Gauss-Lobatto grid:

Li(x) =
Nx+1∏

j=0
j 6=i

x− xj
xi − xj

. (54)

These polynomials satisfy

Li(xj) =





0 if i 6= j
1 if i = j

∀j = 0, . . . ,Nx + 1, (55)
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and form a basis of V h:

V
h = span{Li, i = 1, . . . ,Nx}. (56)

For any v ∈ V h, we have

v(x) =
Nx∑

i=1

viLi(x), v
i = v(xi). (57)

The derivative of v ∈ V h has for expression:

∂v

∂x
=

Nx∑

i=1

viL′i(x), L
′
i ≡
∂Li
∂x
. (58)

The bilinear and trilinear forms a and n are evaluated using the quadrature
formula over the Gauss-Lobatto points [6]. Specifically, for u, v ∈ V h, we have

a(u, v) =
∫

Ω

∂u

∂x

∂v

∂x
dx =

∫

Ω

(
Nx∑

i=1

uiL′i

)(
Nx∑

i=1

viL′i

)
dx

=
Nx∑

i,j=1

uivj
∫

Ω
L′i(x)L

′
j(x)dx =

Nx∑

i,j=1

uivjai,j, (59)

where

ai,j ≡
(

Nx+1∑

k=0

L′i(xk)L
′
j(xk)ωk

)
, (60)

with ωk∈{0,...,Nx+1} the Gauss-Lobatto quadrature weights [1]. Similarly, for
u, v, w ∈ V h, we have

n(u, v, w) =
∫

Ω
u
∂v

∂x
w dx ≈

Nx+1∑

k=0

(
u(xk)

Nx+1∑

i=0

viL′i(xk)w(xk)

)
ωk

≈
Nx∑

k=1

Nx+1∑

i=0

ni,ku
kviwk, (61)

where ni,k ≡ L′i(xk)ωk. The same expression holds for u0 /∈ V h.

4.5 Stochastic discretization

In the results presented hereafter, the random viscosity µ is parametrized
using a set of N independent real continuous second order random variables,
ξ = {ξ1, . . . , ξN},

µ(θ) = µ(ξ(θ)). (62)
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We denote Ξ the range of ξ and Pξ the known probability law of ξ. Since
random variables ξi are independent, we have for y = (y1, . . . , yN) ∈ R

N

dPξ(y) =
N∏

i=1

pξi(yi)dyi, (63)

Let (Ξ,BΞ, Pξ) be the associated probability space. The stochastic solution is
then sought in the image probability space (Ξ,BΞ, Pξ) instead of (Θ,B, P ),
i.e. we compute u(ξ). Furthermore, the expectation operator has the following
expression in the image probability space:

E(f(·)) =
∫

Θ
f(ξ(θ)) dP (θ) =

∫

Ξ
f(y)dPξ(y). (64)

It is clear from this relation that if f ∈ L2(Θ, dP ) then f ∈ L2(Ξ, dPξ),
the space of second order random variables spanned by ξ. To proceed with
the determination of the numerical solution, one has to construct a finite di-
mensional approximation space S ⊂ L2(Ξ, dPΞ). Different discretizations are
available at the stochastic level (continuous polynomial expansion, piecewise
polynomial expansions, multiwavelets, . . . ). At this point, it is stressed that
the proposed GSD algorithms are independent of the type of stochastic dis-
cretization used. In the following, we rely on classical Generalized Polynomial
Chaos expansions, which consist in defining the stochastic space as

S = span{Ψ0, . . . ,ΨP}, (65)

where the Ψi are mutually orthogonal random polynomials in ξ, with total
degree less or equal to No. The orthogonality of the random polynomials writes

E(ΨiΨj) = E(Ψ2
i )δij. (66)

The dimension of the stochastic subspace is therefore given by

dim(S ) = P + 1 =
(N + No)!

N!No!
, (67)

and a random variable β ∈ S has for expansion

β(ξ) =
P∑

i=0

βiΨi(ξ). (68)

Specifically, the λi ∈ S of the GSD of the solution will have expansions of
the form:

λi =
P∑

k=0

λkiΨk(ξ).
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4.6 Solvers

4.6.1 U = FM(λ)

With the spatial discretization introduced previously, one has to solve for
U ∈ V h the following set of Nx non linear equations (corresponding to (43)):

Gk(U
1, . . . , UNx ;λ) = 0, k = 1, . . . ,Nx, (69)

where

Gk(U
1, . . . , UNx ;λ) = µ̃

Nx∑

i=1

ai,kU
i +

Nx∑

i=1

ni,k
(
UkU i + ŨkU i + UkŨ i

)

+
Nx∑

i=1

ai,kŬ
i +

Nx∑

i=1

ni,kẐ
i, (70)

with

µ̃ =
E(λλµ)

E(λλλ)
, Ũk =

M∑

i=0

E(λiλλ)

E(λλλ)
Uki , (71)

Ŭk =
M∑

i=0

E(µλiλ)

E(λλλ)
Uki , Ẑ

k =
1

2

M∑

i,j=0

E(λiλjλ)

E(λλλ)
Uki U

k
j , (72)

and the coefficients ai,k and ni,k defined in paragraph 4.4. Also, since the
stochastic expansion coefficients of λ and the λi are given, the expectations
are classically evaluated analytically. For instance,

E (λiλjλ) =
P∑

l=0

P∑

m=0

P∑

n=0

Tlmnλ
l
iλ
m
j λ
n, Tlmn = E (ΨlΨmΨn) .

In this work, we have used a classical Newton method to solve (69).

4.6.2 λ = fM(U)

Introducing the stochastic expansions of µ and of the λi, the expansion coef-
ficients of λ satisfy the following set of P + 1 non linear equations:

gk(λ
0, . . . , λP;U) =

P∑

i,j=0

cijkλ
iλj +

P∑

i=0

dikλ
i + ek = 0, k = 0, . . . ,P, (73)
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where

cijk = E(ΨiΨjΨk)n(U,U, U),

dik =
P∑

j=0

E(ΨiΨjΨk)

[
µja(U,U) +

M∑

l=0

λjl (n(U,Ul, U) + n(Ul, U, U))

]
,

ek =
P∑

i,j=0

E(ΨiΨjΨk)


µi

M∑

l=0

λjl a(Ul, U) +
M∑

l,m=0

λilλ
j
mn(Ul, Um, U)


 .

This set of equations can be solved using efficient standard techniques in-
volving exact Jacobian computation. In this work, we have used the minpack
subroutines [24] to solve (73).

4.6.3 ΛM = f0(WM)

The stochastic expansion of ΛM is

ΛM =
P∑

i=0

ΛiMΨi. (74)

Introducing this expansion in (51), one obtains a set ofM× (P+1) non-linear
equations, which are:

gk,q(Λ
0
M , . . . ,Λ

P
M ;WM) =

P∑

l,m=0

E(ΨlΨmΨq)

[
M∑

i=0

µlλmi a(Ui, Uk)

+
M∑

i,j=0

λliλ
m
j n(Ui, Uj, Uk)


 = 0,

k = 1, . . . ,M, q = 0, . . . ,P. (75)

Again, we rely on the minpack library to solve this set of non linear equations.

Remark 11 It is seen that on the contrary of the determination of U and λ,
the size of the non linear system of equations for the updating of ΛM increases
with M .
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5 Results

5.1 Error estimation

For the purpose of convergence analysis, we define the stochastic residual of
the equation as

RM(x, θ) = uM
∂uM
∂x
− µ∂

2uM
∂x2

(76)

and the corresponding L2-norm

‖RM‖2 =
∫

Ω
‖RM(x, ·)‖2

L2(Ξ,dPξ) dx =
∫

Ω
E(RM(x, ·)2) dx. (77)

It is observed that this norm measures the errors due to both stochastic and
spatial discretizations. As a results, when (M, dim(S ))→∞, this error is not
expected to go to zero but to level off to a finite value corresponding to the
spatial discretization error. However, thanks to the spectral finite element ap-
proximation in space, the errors in the following numerical tests are dominated
by the stochastic error due to dim(S ) <∞. In fact, in this work, we are more
interested by the analysis of the convergence with M of uM toward the dis-
crete exact solution on V h⊗S , and the comparison of the convergence rates
of the two algorithms, than in the absolute error. For this purpose, we define
the stochastic residual RM(x, θ) as the orthogonal projection of RM(x, θ) on
S :

RM(x, θ) = RM(x, θ) +R⊥M(x, θ), (78)

such that

RM(x, ·) ∈ S , E
(
R⊥M(x, ·)β

)
= 0, ∀β ∈ S . (79)

In other words, RM(x, ·) is the classical Galerkin residual on S ,

RM(x, θ) =
P∑

k=0

RkM(x)Ψk(θ),

where

E (ΨkΨk)R
k
M(x) = E (RM(x, ·)Ψk(·))

=
M∑

i,j=0

E(λiλjΨk)Ui
∂Uj
∂x
−
M∑

i=0

E (µλiΨk)
∂2Ui
∂x2
.
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Its L2-norm is

‖RM‖2 =
∫

Ω

[
P∑

k=0

(
RkM(x)

)2
E(ΨkΨk)

]
dx. (80)

It is seen that ‖RM‖, though containing a contribution of the spatial dis-
cretization error deemed negligible, essentially measures the reduced basis
approximation error (i.e. by substituting the “exact” discrete solution uh ∈
V h ⊗S by uM = WM ·ΛM in the equations). Consequently, we shall refer to
RM as the equation residual and to RM as the reduction residual.

5.2 Convergence analysis

To analyze the convergence of the GSD algorithms, we consider the following
random viscosity setting:

µ(ξ) = µ0 +
N∑

i=1

µ′ξi, (81)

with all ξi being uniformly distributed on (−1, 1), leading to Ξ = (−1, 1)N.
To ensure the positivity of the viscosity, we must have µ0 > N|µ′|. We set
µ′ = cµ0/N, with |c| < 1. For this parametrization, the variance of the viscosity
is

E((µ− µ0)2) =
N

3
(µ′)2 =

c2

3N
(µ0)2. (82)

It is remarked that for this parametrization, the density of µ depends on N
and experience less and less variability as N increases. For the discretization of
the stochastic space S , we use multidimensional Legendre polynomials. The
mean viscosity is set to µ0 = 0.2 and c = 0.85.

In a first series of tests, we set N = 4 and No = 6, so dim(S ) = 210, while
for the spatial discretization dim(V h) = Nx = 200 is used. This spatial dis-
cretization allows for accurate deterministic solutions for any realization µ(ξ),
ξ ∈ Ξ. If the stochastic solution was to be found in the full approximation
space V h ⊗ S , the size of the non-linear problem to be solved would be
dim(V h)×dim(S ) = 42, 000. In contrast, the reduced basis solutionWM ·ΛM
has for dimension M × (dim(V h) + dim(S )) = 410M .

In Figure 1, we compare the convergence of algorithms 1 and 2, as measured by
the two residual norms ‖RM‖ and ‖RM‖, with the sizeM of the reduced basis
(left plot) and with the total number of iterations performed on U = FM(λ)
and λ = fM(U) (right plot). The stopping criteria is here ǫs = 10−3.
Focusing first on the reduction residual RM in the left plot, we can conclude
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that both algorithms converge to the discrete solution on V h ⊗ S with ex-
ponential rate as the dimension M of the reduced basis increases. However,
the algorithm 2 is more effective in reducing RM , compared to algorithm 1.
Specifically, the exponential convergence rates for ‖RM‖ are ∼ 1.2 and ∼ 0.3
for algorithms 2 and 1 respectively. Also, the norms ‖RM‖ of the equation
residual is seen to decrease with the same rate as ‖RM‖, though thanks to
the higher convergence rate of algorithm 2 it quickly saturate to a finite value
(the discretization error) within just 5 iterations. For algorithm 1, the norm
of RM has not yet reach it asymptotic value forM = 10, reflecting the slowest
convergence of the solution in V h ⊗S .

Moreover, inspection of the right plot of Figure 1 shows that algorithm 2 re-
quires less iterations on problems U = FM(λ) and λ = fM(U) to yield the
next term of the decomposition. Specifically, algorithm 2 needs 3 to 4 itera-
tions to meet the stopping criteria, while algorithm 1 needs a variable number
of iterations between 3 to 8. This difference is essentially explained by the
updating of ΛM . Indeed, when the orthonormalization of WM in algorithm 2
is disregarded, the convergence of the resulting decomposition and number of
iterations to yield the couples (U, λ) is unchanged (not shown). This confirm
the claim made previously that the orthonormalization ofWM is optional. The
lower number of iterations needed to yield the couples and faster convergence
of the residuals for algorithm 2 does not imply a lower computational cost,
since the resolution of U = FM(λ) is inexpensive for the 1-D Burgers equa-
tion. In fact, algorithm 2 requires a significantly larger computational time for
this problem, as most of the CPU-time is spent solving the stochastic update
problem ΛM = fM(WM). This conclusion will not hold in general for larger
problems (e.g. for Navier-Stokes flows) when the resolution of the determinis-
tic problems will dominate the overall CPU-time. Also, computational times
are not the only concern and one may prefer to spent more time computing
the reduced modes, to achieve a better reduced basis approximation in order
to lower memory requirements, especially for problems involving large spatial
approximation spaces.

To understand the higher efficiency of algorithm 2, we compare in Figure 2 the
8 first reduced modes Ui(x) computed using the two algorithms. Only half of
the domain is shown as the reduced modes are odd functions of x, because of
the symmetry of the problem. The comparison clearly shows that algorithm 2
yields a deterministic reduced basis WM=8 with a higher frequency content
than for this of algorithm 1. This is explained by the improvement of the
approximation brought by the updating of ΛM . In fact, because the updat-
ing procedure cancels the equation residual in the subspace span{WM} ⊗S ,
the following deterministic mode U constructed will be essentially orthogonal
to WM . On the contrary, algorithm 1 only approximatively solve the equa-
tions in the subspace span{WM} ⊗ S (i.e. ΛM 6= f0(WM)), with a delayed
exploration of the deterministic space V h as a result. This point is further
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Figure 1. Convergence of the reduction residual RM (close symbols) and equation
residuals RM (open symbols) for algorithms 1 (squares) and 2 (circles). The left plot
displays the residual norms as a function of the reduced basis dimension M , while
the right plot displays the residual norms as a function of the total (cumulated)
number of power-type iterations for the computation of successive couples (U, λ).
In the left plot, also reported using solid lines are fits of ‖RM‖ with ∼ exp(−1.2M)
and ∼ exp(−0.3M).

illustrated in Figure 3, where plotted are the second moment of the equation
residual, E(RM(x, ·)2), for different M and the two algorithms. The plot of
E(RM(x, ·)2) for algorithm 2 highlights the efficiency of the GSD in capturing
the full discrete solution on V h⊗S in just few modes and indicates that the
stochastic discretization mostly affect the equation residual in the area where
the solution exhibits the steepest gradients, i.e. where the uncertainty has the
most impact on the solution.
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Figure 2. Comparison of the 8 first reduced modes Ui obtained with algorithms 1
(left plot) and 2 (without orthonormalization of WM ).

It is also remarked that even though the equation residual norm provides a
measure of how well the reduced basis approximation satisfies the Burgers
equation, it is not a direct measure of the error on the solution. Specifically,
the somehow large magnitude of ‖RM‖ does not imply that the error ǫM on
the solution is as high. The L2−error of the stochastic solution can in turn be
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Figure 3. Evolution of the second moment of the equation residual, E(RM (x, ·)2),
for different M and algorithms 1 (left plot) and 2 (right plot).

measured using the following norm:

‖ǫM‖2 =
∫

Ω
‖uM(x, ·)− u(x, ·)‖2

L2(Ξ,dPξ)dx, (83)

where uM is the GSD solution and u the exact stochastic solution. The exact
solution being unknown, one has to rely on approximate expression for ‖ǫM‖.
Here, using the fact that the stochastic error dominates the spatial error, we
use a vanilla Monte-Carlo (MC) method to estimate the solution error. We
denote ud(x; ξ) ∈ V h the deterministic solution of the Burgers equation for
the viscosity realization µ(ξ). We then rely on a uniform random sampling of
Ξ, with m sampling points, to construct the stochastic estimator of the local
mean square error:

‖uM(x, ·)− u(x, ·)‖2
L2(Ξ,dPξ) ≈

1

m

m∑

i=1

(
uM(x, ξ(θi))− ud(x; ξ(θi))

)2
. (84)

Using a sample set with dimension m = 10, 000 we obtained for the solution
computed with algorithm 2 the estimate ‖ǫM=10‖ = (1.55±0.1) 10−4, showing
that the reduced solution uM is indeed much more accurate than suggested
by the norm of the equation residual. As for the equation residual, we provide
in Figure 4 the spatial distribution for the mean square error on the solution,
for the MC estimate given in equation (84) using m = 10, 000 MC samples.

For a better appreciation of the convergence of the solution on the reduced
basis, we have plotted in Figures 5 and 6 the evolutions of the computed solu-
tion mean and standard deviation (E(uM) and Std−dev(uM)) for differentM
and for the two algorithms. Again, only half of the domain is shown, the mean
(resp. standard deviation) being an odd (resp. even) function of x. Figures 5
shows a fast convergence of the mean for the two algorithms: curves are essen-
tially indistinguishable for M ≥ 3. Analysis of the standard deviation plots
in Figure 6 also reveal a fast convergence, although the faster convergence of
algorithm 2 compared to algorithm 1 appears more clearly than for the mean.
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reduced basis, as indicated, and algorithms 1 (left plot) and 2 (right plot).

5.3 Robustness of the algorithms

We now investigate the robustness of the method with regards to stochastic
discretization and numerical parameters.
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5.3.1 Impact of ǫs

The two algorithms require a criteria ǫs to stop the iterations associated with
the construction of a new couple (U, λ) (see Section 3.4.1). Non convergence
has not been encountered in our computation. Still, in order to avoid per-
forming unnecessary iterations, the selection of an appropriate value for ǫs
in an important issue as slow convergence was reported in some computa-
tions. It also raises questions regarding the accuracy on the computed couples
(U, λ) needed to construct an appropriate reduced basis (see discussion in sec-
tion 3.4.1). This aspect is numerically investigated by considering less and
less stringent stopping criteria ǫs and monitoring the convergence of ‖RM‖.
These experiments are reported in Figure 7, for the previous viscosity settings,
discretization parameters and for ǫs = 10−2,−3,−4,−6. It is seen that for both
algorithms, the selection of ǫs on the range tested has virtually no effect on the
convergence of the decomposition, but to be computationally more demand-
ing as ǫs decreases. Similar experiences for other viscosity settings (see below)
have demonstrated that one usually has no interest in performing more than
3 to 4 iterations on the computation of couple (U, λ).
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Figure 7. Convergence with the number of iterations of the reduction residual for
different stopping criteria ǫs as indicated, and algorithms 1 (left plot) and 2 (right
plot).

5.3.2 Impact of stochastic polynomial order

In a next series of computations, we vary the polynomial order No = 3, . . . , 7
of the stochastic approximation space S , while holding N = 4 fixed. Other
parameters are the same as previously. These experiments can be understood
as a refinement of the stochastic discretization, since dim(S ) is directly re-
lated to No (see equation (67)). We then monitor the convergence of the two
GSD algorithms with M for the different orders No. Results are reported in
Figure 8. The plots show that the convergence of the algorithms get slower
as No increases. This is not surprising since increasing No allows to capture
more variability in the solution so that more modes are needed to achieve the
same level of accuracy in reduction. Still, one can observe that the convergence
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rates tend to level off, denoting the convergence of the stochastic approxima-
tion as No increases. In fact, these results essentially highlight the need of a
high polynomial order to obtain an accurate solution for the viscosity settings
used. This is consistent with the decrease in the asymptotic value of the equa-
tion residual norm as No increases, as shown in Figure 9. Conversely, these
computations demonstrate the robustness and stability of the power-type al-
gorithms in constructing approximations on under-resolved stochastic space
S .
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Figure 8. Convergence of the reduction residual RM with M for different dimen-
sions of the stochastic space S (corresponding to No = 3, . . . , 7 and fixed N = 4):
algorithms 1 (left plot) and 2 (right plot).
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Figure 9. Convergence of the equation residual RM with M for different dimen-
sions of the stochastic space S (corresponding to No = 3, . . . , 7 and fixed N = 4):
algorithms 1 (left plot) and 2 (right plot).

5.3.3 Impact of the stochastic dimensionality

As in the previous tests, we want to compare the efficiencies of the algo-
rithms when the dimension of S varies, but now due to different stochastic
dimensionality N of the problem. Since the random viscosity, as previously pa-
rameterized, has decreasing variability when N increases, we need a different
parameterization for a fair comparison. The viscosity distribution is now as-
sumed Log-Normal, with median value µ and coefficient of variation CLN > 1.
It means that the probability of having µ(θ) ∈]µ/CLN , µCLN [ is equal to 0.99.
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Consequently, µ can be parameterized using a normalized normal random
variable ζ as:

µ = exp
[
ζ + σζζ

]
, ζ = lnµ, σζ =

lnCLN
2.95

. (85)

The random variable ζ can in turns be decomposed as the sum of N indepen-
dent normalized random variables ξi as follows:

ζ =
1√
N

N∑

i=1

ξi, ξi ∼ N(0, 1). (86)

Therefore, the parameterization µ(ξ) with ξ = {ξ1, . . . , ξN} ∈ Ξ = (−∞,∞)N

is

µ(ξ) = µ exp

[
lnCLN√

N

N∑

i=1

ξi

]
, ξi ∼ N(0, 1). (87)

It is stressed that for this parameterization the distribution of µ is the same
for any N ≥ 1. Indeed, µ keeps a log-normal distribution with constant me-
dian and coefficient of variation for any N. However, changing N implies that
the stochastic solution is sought in function space L2(Ξ, dPξ) with variable
dimensionality for Ξ, such that even if the initial stochastic problem remains
unchanged, the resulting problem to be solved on S ⊂ L2(Ξ, dPξ) depends
on N. In fact, this parametrization of µ is designed to investigate the effi-
ciency of the GSD for the same problem but considered on probability spaces
with increasing dimensionalities. Specifically, we use the Hermite Polynomial
Chaos system as a basis of S , so for fixed PC order No the dimension of S

increases with N as given by (67). However, the PC solution for N > 1 involves
many hidden symmetries, and we expect the GSD algorithms to “detect” these
structures and to construct effective reduced basis.

We set µ = 0.3, CLN = 3 and No = 6. The projection of µ on S can be deter-
mined analytically or numerically computed by solving a stochastic ODE [8].
We compute the GSD of the solutions for N = 2, . . . , 5 using the two algo-
rithms with ǫs = 10−2. Results are reported in Figure 10 where plotted are
the norms of residuals RM and RM as a function of the reduced basis dimen-
sion M . The plots show that the convergence of the two algorithms is indeed
essentially unaffected by the dimension of Ξ.

5.4 Robustness with regards to input variability

In this paragraph, we investigate the robustness of the power-type algorithms
with regards to the variability in µ. We rely on the previous parameterization
of the Log-Normal viscosity, with N = 3 and No = 6 (dim(S ) = 84). In a first
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Figure 10. Convergence of the equation residual RM and reduction residual RM
norms withM , for different dimensionality N of the stochastic space S , as indicated,
using algorithms 1 (left plot) and 2 (right plot).

series of computations we fix µ = 0.3 and we vary the coefficient of variability
CLN in the range [1.5, 4]. In a second series of computation, we fix CLN = 2.5
and we vary the median value µ in the range [0.1, 0.4]. Results are presented
for algorithm 2 only, similar trends being found for algorithm 1.

In Figure 11 we have plotted the reduced basis approximation uM=10(x) for
all the computations, using the classical mean value ± 3 standard deviation
bars representation (even so this representation is not well suited here as the
solution is clearly non-Gaussian). The plots of the left column correspond to
µ = 0.3 and increasing coefficient of variability CLN (from top to bottom).
They show the increasing variability of the solution with CLN while the mean
of the solution is roughly unaffected. On the contrary, the plots of the right
column corresponding to CLN = 2.5 and increasing µ (from top to bottom),
show a large impact of the median value of the viscosity on the mean of
the solution, together with a non trivial evolution of the solution variability.
Specifically, although the variance of the log-normal viscosity is fixed, the
maximum of variance in the solution increases as µ decreases. This complex
dependence of the solution with regards to the viscosity distribution underlines
the strong non linear character of the Burgers equation.

Having shortly described the evolutions of the solution with the Log-Normal
viscosity distribution, we can now proceed with the analysis of the convergence
of the residuals ‖RM‖ shown in Figure 12. Focusing first on the convergence
curves when µ is fixed (left plot of Figure 12), it is first observed that the
residual magnitude increases with CLN , as one may have expected. Then, for
the two lowest values of CLN the convergence rates are found roughly equal,
while slower convergences are reported for CLN = 3 and 4. This trend can be
explained by the increasing level of variability in the solutions for large COV,
that demands more spectral modes to approximate the solution. Note that we
have checked that dim(S ) (i.e. No) was sufficiently large to account for all
the variability in the solution, when CLN = 4, by performing a computation
with No = 8, without significant change in the solution.
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Figure 11. Mean and ±3 standard deviation bars representation of the reduced
solutions uM=10 for µ = 0.3 and CLN = 1.5 to 4 (left plots from top to bottom)
and CLN = 2.5 and µ = 0.1 to 0.4 (right plots from top to bottom). Computations
with algorithm 2, No = 6 and N = 3 (dim(S ) = 84).

Next, the convergence of the GSD is analyzed for fixed CLN = 2.5 of the
viscosity distribution but increasing median value from 0.1 to 0.4 (right plots
of Figure 12, from top to bottom). A degradation of the convergence rate,
and an increasing residual magnitude, is observed as µ decreases. This can
be jointly explained by the increasing variability in the solution as seen from
Figure 11, and by the more complex dependence with µ of the spatial structure
of the solution as µ decreases.
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Figure 12. Convergence withM of the reduction residual RM for µ = 3 and different
CLN (left plot) and CLN = 2.5 and different µ (right plot). Computations with
algorithm 2, No = 6 and N = 3 (dim(S ) = 84).

5.5 Convergence of probability density functions

To complete this section, we provide in this paragraph an appreciation of the
GSD efficiency in terms of convergence of the resulting probability density
function of the solution uM as M increases. To this end, we set µ = 0.3
and CLN = 3. The parameterization of the random viscosity uses N = 5
with an expansion order No = 5, such that the dimension of the stochastic
approximation space is dim(S ) = 252. The reduced solution uM is computed
using algorithm 2 with stopping criteria ǫs = 0.01. We estimate the probability
density function of uM(x, ξ), from a Monte-Carlo sampling of Ξ. For each
sample ξ(i) we reconstruct the corresponding solution uM(x, ξ(i)) from:

uM(x, ξ(i)) =
M∑

l=0

Ul(x)λl
(
ξ(i)

)
=
M∑

l=0

Ul(x)
P∑

k=0

λklΨk
(
ξ(i)

)
. (88)

These samples are then used to classically estimate the probability density
functions (pdfs) of the solution at some prescribed points. For the analysis,
we choose four mesh points which are the closest to x = −1/8, −1/4, −1/2
and −3/4. Since the reconstruction of the samples has a low computational
cost, we use 106 samples to estimate the pdfs. Note that the samples may also
be used to estimate other statistics of the solution (e.g. its moments).

In Figure 13, we show the computed pdfs at the four mesh points for different
dimensions M of the reduced basis. It is seen that for M = 1, the reduced
approximation provides poor estimates of the pdfs, especially for the points
x ≈ −3/4 and x ≈ −1/2 where the probabilities of having u > 1 are signifi-
cant. ForM = 2, we already obtain better estimates of the pdfs, except for the
closest point to the boundary, where M = 3 is necessary to achieve a smooth
pdf. Increasing further M leads to no significant changes in the pdfs. These
results are consistent with the previous observations on the convergence of the
mean and standard deviation.

33



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.2  0.4  0.6  0.8  1  1.2

pd
f(

u)

u

x=-1/8

x=-1/4 x=-1/2 x=-3/4

M=1
M=2
M=3
M=4

M=10

Figure 13. Convergence with M of the probability density function of u at some
selected points as indicated. The problem uses µ = 0.3 and CLN = 3, with a
stochastic approximation space N = 5, No = 5 (dim(S ) = 252). Computations
with algorithm 2 with ǫs = 0.01.

To gain further confidence in the accuracy of the reduced basis approxima-
tion, we provide in Figure 14 a comparison of the pdfs for uM=10 with the pdfs
constructed from the classical Galerkin polynomial chaos solution on S and
a Monte-Carlo simulation. The Galerkin solution is computed using an exact
Newton solver, yielding a quadratic convergence rate: it can be considered as
the exact Galerkin solution on S . The Monte-Carlo simulation is based on a
direct sampling of the log-normal viscosity distribution (and not of Ξ). Only
104 Monte-Carlo samples are used to estimate the pdfs, due to its computa-
tional cost, while the pdfs for the Galerkin solution uses the same 106 samples
as the reduced approximation. It is seen in Figure 14 that the reduced ap-
proximation with only M = 10 modes leads to essentially the same pdfs as
the full Galerkin solution which involves 252 modes. Also, they are in close
agreement with the Monte-Carlo solution, with only small differences caused
by the lower sampling used.

6 Application to a nonlinear stationary diffusion equation

In this section, we apply the GSD method to a nonlinear stationary diffusion
equation with a cubic nonlinearity for which the mathematical framework can
be found in [23]. Associated numerical experiments will be presented in the
following section 7.
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points as indicated, for the reduced approximation uM=10, the Galerkin solution
and Monte-Carlo simulation. The problem corresponds to µ = 0.3 and CLN = 3,
with a stochastic approximation space N = 5, No = 5 (dim(S ) = 252) for the
Galerkin and reduced solutions, and direct sampling of the log-normal distribution
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6.1 Stationary diffusion equation

We consider a stationary diffusion problem defined on a L-shape domain Ω ⊂
R

2 represented on figure 15: Ω = ((0, 1)× (0, 2)) ∪ ((1, 2)× (1, 2)).

Γ
1

Γ
2

Ω
f

g

Figure 15. Diffusion problem: geometry, boundary conditions and sources (left) and
finite element mesh (right).

Homogeneous Dirichlet boundary conditions are applied on a part Γ1 of the
boundary. A normal flux g is imposed on another part Γ2 of the boundary. The
complementary part of the boundary, denoted by Γ0, is subjected to a zero
flux condition. A volumic source f is imposed on a part Ω1 = (1, 2)× (1, 2) of
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the domain.

The stochastic solution,

u : (x, θ) ∈ Ω×Θ 7→ u(x, θ) ∈ R, (89)

must satisfy almost surely

−∇ · ((κ0 + κ1u
2)∇u) =





0 on Ω\Ω1

f on Ω1

, (90)

− (κ0 + κ1u
2)
∂u

∂n
=





0 on Γ0

g on Γ2

, (91)

u = 0 on Γ1, (92)

where κ0 and κ1 are conductivity parameters. We consider that conductivity
parameters and source terms are uniform in space. Then, they are modeled
with real-valued random variables. The variational formulation writes (2) with:

b(u, v; θ) =
∫

Ω

(κ0(θ) + κ1(θ)u
2)∇u · ∇v dx, (93)

l(v; θ) =
∫

Ω1

f(θ) v dx+
∫

Γ2

g(θ) v ds. (94)

Remark 12 Generalization of the methodology to situations where conductiv-
ity parameters or source terms are discretized stochastic fields is immediate.

6.2 Application of GSD algorithms

We now detail the main ingredients of the GSD algorithms, namely steps (4)
and (6) of algorithm 1, and the update step of algorithm 2. To detail the
methodology, we write

b(u, v; θ) = κ0(θ)a(u, v) + κ1(θ)n(u
2, u, v), (95)

l(v; θ) = f(θ)l1(v) + g(θ)l2(v), (96)

where a and n are bilinear and trilinear forms respectively, defined as:

a(u, v) =
∫

Ω
∇u · ∇v dx, (97)

n(w, u, v) =
∫

Ω
w∇u · ∇v dx. (98)

36



6.2.1 Resolution of U = FM(λ)

To compute U = FM(λ), one has to solve for U the following deterministic
problem:

BM(λU, λV ) = LM(λV ) ∀V ∈ V . (99)

where ∀u, v ∈ V ⊗S ,

BM(u, v) = B(uM + u, v)−B(uM , v), (100)

LM(v) = L(v)−B(uM , v). (101)

After some manipulations, one obtains for the left-hand side:

BM(λU, λV ) =κ̃0a(U, V ) + κ̃1n(U
2, U, V )

+ n(Ũ , U2, V ) + n(U2, Ũ , V ) + n(Z,U, V ) + n(U,Z, V ),
(102)

where

κ̃0 = E(κ0λλ), κ̃1 = E(κ1λλλλ), (103)

Ũ =
M∑

i=1

E(κ1λλλλi)Ui, (104)

Z =
M∑

i,j=1

E(κ1λλλiλj)UiUj. (105)

We observe that the left hand side contains the classical linear and cubic
terms with deterministic parameters κ̃0 and κ̃1 but also linear and quadratic
additional terms.
For the right-hand side, one obtains the following expression:

LM(λV ) = f̃ l1(V ) + g̃l2(V )− a(Ŭ , V )− n(1, Ẑ, V ), (106)

where

f̃ = E(fλ), g̃ = E(gλ), (107)

Ŭ =
M∑

i=1

E(κ0λλi)Ui, (108)

Ẑ =
1

3

M∑

i,j,k=1

E(κ1λλiλjλk)UiUjUk. (109)

In the numerical application, this deterministic problem is solved with a clas-
sical Newton-Raphson algorithm.

Remark 13 Of course, various equivalent notations could have been intro-
duced for writing left and right-hand sides of the deterministic problem. The
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above choice, introducing functions Z and Ẑ, allows obtaining a compact writ-
ing, without summation on spectral modes. When introducing an approxima-
tion at the spatial level (e.g. finite element approximation), pre-computing an
approximation of functions Z and Ẑ allows reducing the number of operations
to be performed. This leads to an approximation in the evaluation of left and
right-hand sides, and then in the obtained approximate solution, but it can also
lead to significant computational savings.

6.2.2 Resolution of λ = fM(U)

The random variable λ ∈ S is solution of the variational problem:

BM(λU, βU) = LM(βU) ∀β ∈ S . (110)

After some manipulations, this equation is found to be equivalent to:

E(β(α(1)λ+ α(2)λλ+ α(3)λλλ)) = E(βδ), (111)

where

α(1) = κ0a(U,U) +
M∑

i,j=1

κ1λiλj [n(UiUj, U, U) + 2n(UiU,Uj, U)] , (112)

α(2) =
M∑

i=1

κ1λi
[
2n(UiU,U, U) + n(U2, Ui, U)

]
, (113)

α(3) =
M∑

i,j=1

κ1λiλj [n(UiUj, U, U) + 2n(UiU,Uj, U)] , (114)

δ = fl1(U) + gl2(U)−
M∑

i=1

κ0λia(Ui, U)−
M∑

i,j,k=1

1

3
κ1λiλjλkn(1, UiUjUk, U).

(115)

In the numerical application, this non-linear equation is solved with a classical
Newton algorithm.

6.2.3 Resolution of ΛM = f0(WM)

To update the random variables ΛM = (λ1, . . . , λM) ∈ (S )M , one has to solve:

B(WM · ΛM ,WM · Λ∗M) = L(WM · Λ∗M) ∀Λ∗M ∈ (S )M . (116)

This equation can be split into a system of M equations:

∀k ∈ {1, . . . ,M}, B(WM · ΛM , Ukβk) = L(Ukβk) ∀βk ∈ S . (117)
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Introducing the previously defined forms, it comes: ∀k ∈ {1, . . . ,M},

M∑

i=1

κ0a(Ui, Uk)λi +
M∑

i,j,l=1

κ1n(Ui, Uj, Ul, Uk)λiλjλl = fl1(Uk) + gl2(Uk). (118)

This is a set ofM coupled stochastic equations with a polynomial non-linearity.
In the numerical application, this set of equations is solved with a classical
Newton algorithm.

7 Results for the stationary diffusion equation

7.1 Discretization

At the stochastic level, we consider that random variables κ0, κ1, f and g are
parametrized as follows:

κ0 = µκ0
(1 + cκ0

√
3ξ1)

κ1 = µκ1
(1 + cκ1

√
3ξ2)

f = µf (1 + cf
√

3ξ3)

g = µg(1 + cg
√

3ξ4)

where the ξi are 4 independent random variables, uniformly distributed on
(−1, 1). Parameters µ(·) and c(·) respectively correspond to the means and co-
efficients of variations of the random variables. We then work in the associated
4-dimensional image probability space (Ξ,BΞ, Pξ), where Ξ = (−1, 1)4, and
use the same methodology as in section 4.5 for defining an approximation
space S ⊂ L2(Ξ, dPξ) based on a generalized polynomial chaos basis (multi-
dimensional Legendre polynomials). We denote by No the polynomial chaos
order.

At the space level, we introduce a classical finite element approximation space
V h ⊂ V associated with a mesh of Ω composed by 3-nodes triangles (see
Figure 15).

7.2 Reference solution and error indicator

The reference Galerkin approximate solution uh ∈ V h ⊗S solves:

B(uh, vh) = L(vh), ∀vh ∈ V
h ⊗S . (119)
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To obtain this reference solution, the non-linear set of equations associated
with (119) is solved using a classical modified Newton method with a very
high precision (see section 7.5 for details on the reference solver).

In order to analyze the convergence of the GSD method, we introduce an
error indicator based on the residual of the discretized problem (119). This
error indicator evaluates an error between the truncated GSD and the refer-
ence approximate solution uh but not the error due to spatial and stochastic
approximations. A given function v ∈ V h ⊗ S is associated with a vector
v ∈ R

Nx ⊗S . We denote by RM ∈ V h⊗S the reduction residual associated
with uM ∈ V h ⊗S and by RM ∈ R

Nx ⊗S the associated discrete residual,
defined as follows: ∀v ∈ V h ⊗S , associated with v ∈ R

Nx ⊗S ,

E(vTRM) = L(v)−B(uM , v). (120)

An error indicator is then simply defined by the natural L2-norm of the discrete
residual, defined by

‖RM‖2 = E(RTMRM) ≡ ‖RM‖2. (121)

In the following, we will implicitly use a normalized error criteria ‖RM‖ ←
‖RM‖/‖R0‖, where R0 stands for the right-hand side of the initial non-linear
problem.

7.3 Convergence analysis

To analyze the convergence of the GSD algorithms, we choose the following
parameters for defining the basic random variables:

µκ0
= 3, µκ1

= 1.5, µf = 6, µg = 2.25

cκ0
= .2, cκ1

= .2, cf = .2, cg = .2

The basis of function space S is composed by multidimensional Legendre
polynomials up to degree 5 (No = 5), so that dim(S ) = (4+No)!

4!No!
= 126.

For the spatial finite element discretization, we have dim(V h) = 368. If the
stochastic solution was to be found in the full approximation space V h⊗S , the
size of the non-linear problem to be solved would be dim(V h) × dim(S ) =
46, 368. In contrast, the reduced basis solution WM · ΛM has for dimension
M × (dim(V h) + dim(S )) = 494M .

In Figure 16, we compare the convergence of algorithms 1 and 2 with the size
M of the reduced basis (left plot) and with the total number of power-type
iterations performed for the computation of successive couples (U, λ) (right
plot). The stopping criteria for power iterations is here ǫs = 10−2. Both algo-
rithms rapidly converge to the discrete solution on V h ⊗S as the dimension

40



M of the reduced basis increases. Algorithm 2 is more effective in reducing
RM , compared to algorithm 1. Although Figure 16 shows that algorithm 2
requires less power iterations, both algorithms yields relatively similar com-
putational costs on this particular example. Indeed, the faster convergence of
algorithm 2 is balanced with computational efforts needed for the updating
of random variables. This conclusion will not hold in general for large spatial
approximation spaces.

Remark 14 On this example, we observe a quasi-exponential convergence
rate for small M and a decreasing of this rate for larger M . In fact, this
is not due to a lack of robustness of the GSD method. It is related to the spec-
tral content of the solution of this 2-dimensional problem. A classical spectral
decomposition of the reference solution would reveal the same convergence be-
havior.
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Figure 16. Convergence of the reduction residual RM for algorithms 1 (squares) and
2 (circles). The left plot displays the residual norm as a function of the reduced
basis dimension M , while the right plot displays the residual norm as a function
of the total (cumulated) number of power-type iterations for the computation of
successive couples (U, λ).

We compare in Figure 17 the 12 first deterministic functions Ui computed
using the two algorithms. It is seen that algorithm 2 yields a deterministic
reduced basis with a higher frequency content than for this of algorithm 1.
In particular, we observe that the last modes obtained by algorithm 2 are
essentially orthogonal to the first ones. This is further illustrated in Figure 18,
where plotted are the second moment of the equation residual, E(R2

M), for
differentM and for the two algorithms. This plot also highlights the efficiency
of the GSD in capturing the full discrete solution on V h⊗S in just few modes
and indicates that the stochastic discretization mostly affects the equation
residual in the area where the solution exhibits the steepest gradients, i.e.
where the uncertainty has the most impact on the solution.

Even though the equation residual norm provides a measure of the quality
of the approximate solution, it is not a direct measure of the error on the
solution. On figure 19, we plot the convergence curves of both algorithms with
respect to the residual norm and also with respect to the L2-norm on the
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Figure 17. Comparison of the 12 first reduced modes with algorithms 1 (left plot)
and 2 (right plot).

Figure 18. Evolution of the distribution of the second moment of the residual,
E(R2

M ), for different M and for algorithms 1 (left column) and 2 (right column).

solution. We observe that the error on the solution is significantly lower than
the error based on the residual.

For a better appreciation of the convergence of the GSD, we have plotted in
Figure 20 the distributions of the relative errors in mean εmean and standard
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Figure 19. Convergence of ‖RM‖ and ‖uM − uh‖/‖uh‖ for algorithm 1 (solid line)
and algorithm 2 (dashed line).

deviation εStd for different M and for the two algorithms:

εmean =
|E(uM)− E(uh)|
sup(|E(uh)|)

εStd =
|Std(uM)− Std(uh)|
sup(Std(uh))

We observe a very fast convergence of the GSD decomposition with both
algorithms, with a faster convergence of algorithm 2. With onlyM = 4 modes,
the relative error on these first two moments is inferior to 10−3. On Figure 21,
we have also plotted the convergence of probability density functions (pdfs)
of the solution at two different points. We observe that approximate pdfs and
reference pdf are essentially indistinguishable for M ≥ 5. We also observe the
superiority of algorithm 2, which yields more accurate pdfs with a lower order
M of decomposition.

7.4 Robustness of the algorithms

We now investigate the robustness of the method with regards to stochastic
discretization and numerical parameters.

7.4.1 Impact of ǫs

We first evaluate the impact of the criterium ǫs to stop the power iterations
associated with the construction of a new couple (U, λ) (see Section 3.4.1). For
that, we here consider less and less stringent stopping criteria ǫs and monitor
the convergence of RM . These experiments are reported in Figures 22 and
23, for the previous probabilistic setting and discretization parameters, and
for ǫs = {5.10−1, 10−1, 10−2, 10−3}. It is seen that for both algorithms, the
selection of ǫs on the range tested has virtually no effect on the convergence
of the decomposition, but is computationally more demanding as ǫs decreases.
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εmean εStd

Figure 20. Distribution of the relative error in mean (εmean) and standard deviation
(εStd) for algorithms 1 (first and third columns) and 2 (second and fourth columns)
and different M .

In practise, it is not necessary to perform more than 3 or 4 power iterations
to build a new couple (U, λ) (same observation as for the Burgers problem).

7.4.2 Impact of stochastic polynomial order

In a next series of computations, we vary the polynomial order No = 4, 5, 6 of
the stochastic approximation space S , respectively corresponding to dim(S ) =
70, 126, 210. Figure 24, where plotted are the convergence curves for algorithm
1 (left plot) and algorithm 2 (right plot), shows that the polynomial order have
a very low influence on the convergence. On this example, this can be explained
by the fact that the error induced by the approximation at the stochastic level
is lower that the error induced by the truncation of the GSD.

7.4.3 Impact of the input variability

We now investigate the robustness of GSD algorithms with respect to the in-
put variability. We first vary the coefficients of variations c(·) of all random
variables at the same time. Figure 25 shows the convergence with M for al-
gorithm 1 (left plot) and algorithm 2 (right plot) for different coefficients of
variation: c(·) = 0.1, 0.2, 0.3. It is observed that the convergence rate decreases
with the coefficient of variation, which is a usual property of spectral decom-
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Figure 21. Convergence with M of the probability density function of uM at points
P1 = (1.5, 1.5) (top row) and P2 = (0.5, 0.1) (bottom row) and for algorithms 1 and
2.
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Figure 22. Impact of ǫs. Convergence with M for algorithms 1 (left plot) and 2
(right plot).

positions. However, the monotonic convergence illustrates the robustness of
GSD algorithms in a wide range of input variability.

We now investigate the impact of the non-linearity by varying the mean µκ1
of

parameter κ1, letting all the coefficients of variations equal to c(·) = 0.2. Fig-
ure 25 shows the convergence withM for algorithm 1 (left plot) and algorithm
2 (right plot) for different µκ1

= 1.5, 0.5, 0.1, 0.01, 0. We first observe that the
convergence rate decreases as the non-linear term magnitude increases. This
can be explained by the fact that the nonlinearity induces a more complex
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Figure 23. Impact of ǫs. Convergence with the number of power-type iterations for
algorithms 1 (left plot) and 2 (right plot).
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Figure 24. Impact of the polynomial chaos order. Convergence of algorithms 1 (left
plot) and 2 (right plot).
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Figure 25. Impact of the input variability: convergence of algorithms 1 (left plot)
and 2 (right plot), for different coefficients of variation (cov) of the four random
variables, as indicated.

solution, which requires more spectral modes to be correctly captured.

For the case µκ1
= 0, corresponding to the limit linear case, we observe that

both algorithms capture the exact discrete solution in only 2 modes (at the
computer numerical precision). We could have expected this property since it
is clear on this example that only two modes are required to exactly represent
the solution of the linear problem. Indeed, the two deterministic functions U1
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and U2 which solves

a(U1, V ) = l1(V ) and a(U2, V ) = l2(V ),∀V ∈ V
h,

yield an exact decomposition when associated to the ad-hoc random variables.
In fact, every couple of deterministic functions in the span of these functions
yields an exact decomposition. This example shows that in this particular case,
GSD algorithms allows capturing these ideal decompositions automatically.
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Figure 26. Impact of the non-linearity term (variable E(κ1)). Convergence of algo-
rithms 1 (left plot) and 2 (right plot).

7.5 Computation times

In this section, we illustrate the efficiency of the GSD method in terms of
computation times. GSD algorithms are compared with a classical modified
Newton algorithm for solving the reference Galerkin system of equations (119).
A classical Newton method consists in the following iterations: starting from
uh,(0) = 0, iterates uh,(i) = 0 are defined by

B′(uh,(i+1), vh;uh,(i)) = L(vh)−B(uh,(i), vh) ∀vh ∈ V
h ⊗S (122)

where B′(·, ·; u) is the Gateaux derivative of semilinear form B evaluated at
u:

B′(w, v;u) = lim
ǫ→0

1

ǫ
(B(u+ ǫw, v)−B(u, v))

= E
(
κ0a(w, v) + κ1(2n(wu, u, v) + n(u2, w, v))

)
(123)

In order to reduce computation times of this reference solver, we use the
following modification of iteration (122):

B̃′(uh,(i+1), vh;E(uh,(i))) = L(vh)−B(uh,(i), vh) ∀vh ∈ V
h ⊗S

B̃′(w, v; u) := E
(
µκ0
a(w, v) + µκ1

(2n(wu, u, v) + n(u2, w, v))
)

(124)
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where B̃′ is a simple approximation of B obtained by replacing random pa-
rameters κ0 and κ1 by their respective mean values. Moreover, B̃′ is evaluated
at E(uh,(i)) instead of uh,(i). With these approximations, iteration (124) corre-
sponds to a stochastic problem with a random right-hand side and a determin-
istic operator. The computation cost of this reference solver is then essentially
due to the computation of the residual (right-hand side).

For the present example and moderate input variability, the proposed modified
Newton algorithm have good convergence properties.

Remark 15 For large variability of the input data, the efficiency of the pro-
posed modified Newton method deteriorates. A better approximation of B′(·, ·; uh,(i))
should be provided in order to keep good convergence properties of the Newton
algorithm. The robustness and efficiency of GSD algorithms are less affected
by this increase in the input variability, as seen in section 7.4.3.

For both GSD algorithms 1 and 2, we take ǫs = 10−1 for the stopping criteria
for power iterations. Figure 27 shows the evolution of the residual norm with
respect to computational time for the reference solver and for GSD algorithms.
We clearly observe a computational gain with GSD algorithms (factor ≈ 6).
We also observe that GSD algorithms 1 and 2 lead to similar computational
times. In fact, the computational time required by the updating step in algo-
rithm 2 is balanced by the fact that algorithm 2 needs for a lower order of
decomposition than algorithm 1 for the same accuracy.
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Figure 27. Residual error versus computation time for reference solver and GSD
algorithms (reference discretization)

To go further in the comparison of computational costs, we analyze the influ-
ence on convergence properties of the dimensions P and Nx of stochastic and
deterministic approximation spaces. We consider four finite element meshes
corresponding respectively to Nx = 178, 368, 726 and 1431. We also consider
different polynomial chaos degrees No = 3, 4, 5 and 6, respectively correspond-
ing to P = 34, 69, 125 and 209.

Figures 28 and 29 show the convergence curves (residual norm versus compu-
tation time) for different Nx and No. We observe that when increasing the di-
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mension of approximation spaces, the efficiency of the reference solver rapidly
deteriorates. GSD algorithms are far less affected by this increase of the di-
mension of approximation spaces.
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Figure 28. Influence of the dimension of approximation spaces. Residual error versus
computation time for the reference solver and GSD algorithms 1 and 2 for different
Nx and for No = 4 (left plot) or No = 5 (right plot)
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Figure 29. Influence of the dimension of approximation spaces. Residual error versus
computation time for the reference solver and GSD algorithms 1 and 2 for different
No and for Nx = 368 (left plot) or Nx = 1431 (right plot)

Figure 30 shows the gains in terms of computational times with respect to
Nx×P (for different discretizations at stochastic level and deterministic level).
The gain is computed by comparing computational times for the different
algorithms to reach a given relative residual error of 5.10−2. This accuracy is
sufficient to obtain very accurate approximations in terms of moments, pdfs...
This accuracy corresponds to the computation of 4 or 5 GSD modes. We clearly
observe that GSD algorithms lead to computational savings which increase
with the dimension of approximation spaces. GSD algorithms 1 and 2 lead to
similar computational savings. For the finest discretizations, computational
times are here divided by a factor up to 100.
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Figure 30. Time gain factor Tg = time(reference solver)
time(GSD algorithm) with respect to Nx × P for a

given accuracy (relative residual error of 5.10−2). GSD algorithm 1 (left) and GSD
algorithm 2 (right plot)

8 Conclusion

In this paper, we have proposed an extension of the Generalized Spectral
Decomposition method and related numerical procedures, initially proposed
in [27, 28] for linear problems, to the resolution of non-linear stochastic prob-
lems in the context of Galerkin methods. The main features of the method
is the approximation of the solution on reduced bases, automatically gener-
ated by the algorithms, with significant reduction of the computational re-
quirements compared to the classical Galerkin projection schemes, and the
independence of the methodology with regard to the type of stochastic dis-
cretization used.

Two non-linear test problems have served as examples to detail the method-
ology and to show the effectiveness of the proposed algorithms. Specifically, it
has been shown that the algorithms lead to solution methods consisting in the
resolution of a series of decoupled deterministic and low dimensional stochastic
problems. An interesting point to be underlined is the structure of the deter-
ministic problems to be solved which inherit the properties and dimension
of the initial deterministic problem, with the introduction of few additional
terms: only slight adaptations of available deterministic codes are required
compared to the classical Galerkin method. Although being closely related
to the polynomial character of the non-linearities in the test problems, this
property already makes the GSD very attractive as a generic solution method
for a large class of models (e.g. the incompressible Navier-Stokes equations).

For the two test problems, the numerical experiments have shown the ef-
fectiveness of the proposed algorithms to yield reduced decompositions that
approximate the stochastic solution with a small number of modes compared
to the dimension of the complete approximation space. For the second algo-
rithm, the convergence of the reduced approximation is essentially governed
by the actual spectrum of the stochastic solution, and not by the dimension of
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the approximation space, as one may have anticipated from theoretical con-
siderations. Also, algorithm 1 is less efficient than algorithm 2 in terms of
accuracy for an equal number of modes in decomposition, but is computation-
ally less expensive and simpler. This is however not enough to establish the
general superiority of an algorithm over the other, as different aspects such
as relative computational times for the deterministic and stochastic (update)
problems, memory requirement and computational complexity intervene de-
pending on the considered model and available resources. However, a common
character of the two algorithms is their ability to yield the successive modes
of the decomposition in only a few resolutions of the deterministic problem,
thus implying large computational savings compared to the classical stochastic
Galerkin method.

A potential improvement of the method, currently under investigation, con-
cerns the implementation of alternative algorithms for the construction of
the decomposition modes using advanced sub-space techniques (e.g. Arnoldi,
see [28]) in order to drastically decrease the number of deterministic and re-
duced stochastic problems to be solved. Ongoing works are also focusing on
applications of GSD to large scale problems (e.g. the Navier-Stokes equations)
and extension to non-linear unsteady problems.
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