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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. Ion-selective electrodes (ISE) offer a practical approach for
estimating ionic activities. Nonetheless, such devices are not selective,
i.e., the ISE response can be affected by interfering ions other than
the target one. With the aim of overcoming this problem, we propose
a Bayesian nonlinear source separation method for processing the data
acquired by an ISE array. The Bayesian framework permits us to easily
incorporate prior information such as the non-negativity of the sources
into the separation method. The effectiveness of our proposal is attested
by experiments using artificial and real data.

1 Introduction

Ion-selective electrodes (ISEs) are devices used for measuring the ionic activity,
a measure of effective concentration of an ion in aqueous solution [1]. In contrast
to more sophisticated analytical techniques, an ISE distinguishes itself because
of its low cost and its ease of manipulation. Nonetheless, a well-known problem
associated with an ISE regards its lack of selectivity [1, 2], i.e., the ISE response
can be affected by interfering ions other than the target one.

One possible way to deal with the interference problem relies on the use of an
electrode array followed by a signal processing block designed for extracting the
relevant information from the acquired data. If, for instance, signal processing
blocks based on blind source separation (BSS) techniques are considered [3],
then one may skip almost totally3 the usual calibration stage, which, for an ISE
array, is extremely time-demanding and must be performed from time to time
due to the electrodes’ drift. However, there are several challenging points that
make difficult the design of a BSS method for this case. Firstly, the mixing model
associated with an ISE array is nonlinear. Secondly, in a real application, the
number of samples is usually reduced and the typical assumption of statistical
independence between the sources may be not realistic in some scenarios.

⋆ L. T. Duarte is grateful to the CNPq (Brazil) for funding his PhD research. The
authors are grateful to Pierre Temple-Boyer, Jérôme Launay and Ahmed Benyahia
(LAAS-CNRS) for the support in the acquisition of the dataset used in this work.

3 Due to the usual scale indeterminacy of BSS methods, at least one calibration point
is necessary.
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In this work, we propose a Bayesian nonlinear BSS algorithm in order to
overcome the above-mentioned difficulties. Our motivation is twofold. Firstly,
by relying on a Bayesian BSS framework, we can easily exploit prior information
other than the statistical independence [4, 5]. For instance, the sources in our
problem are always non-negative. Secondly, elaborated sampling methods [6, 7],
like the Gibbs’ sampler, allow an efficient implementation of a Bayesian inference
scheme even in high-dimensional and complex models as the one treated in this
work. Concerning the organization of the paper, we start, in Section 2, with
a description of the mixing model associated with an ISE array. In Section 3,
we describe the proposed Bayesian BSS method. In Section 4, experiments are
carried out. Finally, in Section 5, we state our conclusions.

2 Mixing model

Let us consider the analysis of a solution containing ns different kinds of ions
via an array of nc ISEs. Due to the interference problem, the response yit of the
i-th ISE in the array at the instant t is dependent not only on the activity of its
target ion sit but also on the activities of the other ions in the solution, which
are represented by sjt. The Nicolsky-Eisenman (NE) equation [1] states that

yit = ei + di log
(
sit +

ns∑

j=1,j 6=i

aijs
zi/zj

jt

)
, (1)

where ei is a constant, zj is the valence of the j -th ion and aij denotes the
selectivity coefficients. Finally, di = RT/ziF , where R is the gas constant, T the
temperature in Kelvin, and F the Faraday constant. In a matrix representation,
the data provided by the ISE array can be described as follows

Y = e · 11×nd
+ diag(d) log (A ⊗z S) , (2)

where nd denotes the number of samples, Y ∈ R
nc×nd , e = [e1, . . . , enc

]T , d =
[d1, . . . , dnc

]T . Matrix A ∈ R
nc×ns

+ contains the selectivity coefficients aij . The

j -th row of the matrix S ∈ R
ns×nd

+ corresponds to the temporal evolution of the
activity of the j -th ion. Finally, z = [z1, . . . , zns

]T , and the operator ⊗z describes
the nonlinear transformation inside the log term in the NE model (see (1)). If the
valences zi are equal, then ⊗z results in a simple matrix multiplication and, thus,
(2) becomes a particular case of the class of post-nonlinear (PNL) models [8].

In view of a possible model inaccuracy and/or of the errors introduced by
the measurement system, a more realistic description of the ISE array is given
by X = Y + N, where N ∈ R

nc×nd represents the noise terms. We assume a
zero mean white Gaussian noise with covariance matrix C = diag([σ2

1 , . . . , σ
2
nc

]).
Finally, SNRi denotes the resulting signal-to-noise ratio at the ISE i.

3 Bayesian Source Separation Method

Given the mixing model description, we can now formulate the source separation
problem treated in this work: estimate the elements of S by using the ISE array
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response X and by assuming that the vector of valences z is known. Since we
envisage a blind method, all the parameters related to the mixing model (except
z) and the noise variance at each electrode are unknown and, thus, should be
estimated. Furthermore, as it will become clear later, there are other unknown
parameters, denoted by φ, which are related to the prior distributions assigned
to the sources. Henceforth, all these parameters will be represented by the vector
θ = [S,A,d, e, σ, φ] and we will adopt the following notation: θ−θq

represents
the vector containing all elements of θ except θq.

A first step in the development of a Bayesian method concerns the definition
of prior distributions for each element of θ. Then, by relying on the model
likelihood and on the Bayes’ rule, one can obtain the posterior distribution of θ

given X. Finally, we use Markov Chain Monte Carlo methods to generate samples
from the posterior distribution. This permits us to approximate the Bayesian
minimum mean square error (MMSE) estimator [9] for θ in a straightforward
manner. In the sequel, we shall detail each of these steps.

3.1 Priors definition

Ionic activities: The sources are assumed i.i.d. and mutually independent.
Also, since the sources represent ionic activities, it is natural to consider a
non-negative prior distribution. In this context, [4] has shown that a mod-
eling based on Gamma distributions provides a flexible solution, since it can
model from sparse to almost uniform sources. However, in this work, we adopt
a lognormal distribution4 for each source, i.e., p(sjt) = LogN (µsj

, σ2
sj

) since

one can find a conjugate prior5 for the estimation of the unknown parameters
φj = [µsj

σ2
sj

]. Indeed, this can be done by setting the priors p(µsj
) = N (µ̃sj

, σ̃2
sj

)

and p(1/σ2
sj

) = G(ασsj
, βσsj

), where µ̃sj
, σ̃sj

, ασsj
, βσsj

are hyperparameters.

Also, there is a practical argument behind the choice of a log-normal distribu-
tion. Ionic activities are expected to have a small variation in the logarithmic
scale. This particularity can be taken into account by the log-normal distribu-
tion, since such a distribution is nothing but a Gaussian distribution in the
logarithmic scale.
Selectivity coefficients: The parameters aij are also non-negative [1, 2]. More-
over, it is rare to find a sensor whose response depends more on the interfering ion
than on the target one. Given that, we assume that aij is uniformly distributed
in [0, 1], i.e., p(aij) = U(0, 1).
Non-linear model parameters: Since the parameters di are related to physical
parameters, a priori, they could be known beforehand. For instance, at room
temperature, one has di = 0.059/zi, and the ISEs with such sensibility are said
to have a Nernstian response. However, in a practical scenario, due to the sensor

4 The following notation is used. N (µ, σ2), LogN (µ, σ2), G(α, β) and U(a, b) represent
the Gaussian, Lognormal, Gamma and Uniform distributions, respectively.

5 From the Bayes’ rule p(X/Y ) ∝ p(Y/X)p(X). Then p(X) is a conjugate prior with
respect to the likelihood p(Y/X) when p(X/Y ) and p(X) belong to the same family.
Conjugate priors ease the simulations conducted in a MCMC algorithm.
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fabrication process and to aging, an important deviation from this theoretical
value can be observed. In order to take into account this deviation, we apply a
Gaussian prior p(di) = N (µdi

= 0.059/zi, σ
2
di

), where σdi
is an hyperparameter.

We assume that the elements of the vector d are statistically independent.
Offset parameters: In contrast to the parameters di, there is no theoretical
value for ei. However, this parameter usually [10] lies on the interval [.05, 0.35].
Hence, we can set p(ei) = N (µei

= 0.20, σ2
ei

) where the variance σ2
ei

must be
defined so that the resulting prior goes toward a non-informative prior in this
interval (for instance, see [6] for a discussion on non-informative priors.). The
elements of the vector e are assumed mutually independent.
Noise variances: Finally, we assign inverse Gamma distributions for the noise
variances, i.e., p(1/σ2

i ) = G(ασi
, βσi

). By proceeding this way, one obtains a
conjugate pair, which eases the sampling step. Moreover, it is possible to set the
hyperparameters ασi

and βσi
to obtain a non-informative prior [4].

3.2 The posterior distribution

A first step to obtain the posterior of θ is to find the likelihood p(X|θ) associated
with the mixing model. From the assumption of i.i.d. Gaussian noise which is
also spatially uncorrelated, it asserts that

p(X|θ) =

nd∏

t=1

nc∏

i=1

Nxit


ei + di log




ns∑

j=1

aijs
zi/zj

jt


 , σ2

i


 , (3)

where Nxik
(µ, σ2) is a Gaussian distribution in xik with parameters µ and σ2.

Having defined the likelihood p(X|θ) and the prior distribution p(θ), we can
use the Bayes’ rule to write the posterior distribution as p(θ|X) ∝ p(X|θ)p(θ).
Since the unknown variables of our problem are, by assumption, mutually inde-
pendent (except S and φ), we can factorize p(θ|X) in the following manner

p(θ|X) ∝ p(X|θ) · p(S|φ) · p(φ) · p(A) · p(e) · p(d) · p(σ). (4)

With the posterior distribution in hand we can set an inference scheme. In this
work, we consider the Bayesian minimum mean square error (MMSE) estima-
tor [9] which is defined as θMMSE =

∫
θp(θ|X)dθ. The problem here is the

analytical resolution of this integral, which culminates in a complex task when
one deals with a high-dimensional problem with non-standard distributions [6].

A possible approach to overcome the calculation of the integral related to
θMMSE is to generate samples from the posterior distribution p(θ|X) and then
approximate the MMSE estimator using these samples. If, for instance, the gen-
erated samples are represented by θ1, θ2, . . . , θM , then the MMSE estimator
can be approximated by θ̃MMSE = 1

M

∑M
i=1 θi. According to the law of large

numbers, θ̃MMSE = θMMSE as M → +∞. This important result gives the
theoretical foundation for the above described methodology, which is referred as
Monte Carlo integration [6]. In the next section, we apply this methodology to
the estimation problem treated in this work.
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3.3 Bayesian inference through the Gibbs sampler

The generation of samples from p(θ|X) is performed by the Gibbs sampler.
Given each conditional distribution p(θi|θ−θi

,X), the Gibbs sampler uses the
procedure described in Tab. 1 to generate a Markov Chain having p(θ|X) as
stationary distribution. Therefore, after a burn-in period, which is necessary for
the generated Markov Chain to reach its stationary distribution, the algorithm
given Tab. 1 provides samples from p(θ|X). Then, as discussed before, one can
use these samples to obtain the MMSE estimator of θ.

Table 1. Simulation of p(θ|X) through the Gibbs’ sampler

1. Initialize the actual samples θ0 = [θ0
1 , θ0

2 , . . . , θ0
N ];

2. For p = 1 to P do

θp
1 ∼ p(θ1|θ

p
−θ1

,X)

θp
2 ∼ p(θ2|θ

p
−θ2

,X)

...

θp
N ∼ p(θN |θp

−θN
,X)

end

The conditional densities p(θq|θ
p
−θq

,X) are summarized in Tab 2. Due to
the reduced space, the derivation of these expressions is omitted here. It can
be noted that, because of the selected priors, we obtained conjugate pairs for
almost all parameters. As a consequence, the sampling in these cases becomes
straightforward. However, for p(sjt|θ−sjt

,X) and p(aij |θ−aij
,X), we obtained

the following non-standard distributions:

p(sjt|θ−sjt
,X) ∝ exp

[
nc∑

i=1

−
1

2σ2
i

(
xit − ei−

di log
(
aijs

zi/zj

jt +

ns∑

ℓ=1,ℓ 6=j

aiℓs
zi/zℓ

ℓt

))2

−
(log(sjt) − µj)

2

2σ2
j

]
1

sjt
1[0,+∞[, (5)

p(aij |θ−aij
,X) ∝ exp

[
−

1

2σ2
i

nt∑

t=1

(
xit − ei−

di log
(
aijs

zi/zj

jt +

ns∑

ℓ=1,ℓ 6=j

aiℓs
zi/zℓ

ℓt

))2]1[0,1], (6)

where 1 denotes the indicator function. The sampling from these distributions
is conducted through the Metropolis-Hasting (MH) algorithm [6]. A truncated
Gaussian distribution was adopted as instrumental distribution.
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Table 2. Prior and conditional distributions of the Bayesian model parameters.

θq p(θq|θ−θq ,X) Auxiliary parameters Prior p(θq)

sjk see Eq. (5) - LogN (µsj
, σ2

sj
)

aij see Eq. (6) - U(0, 1)

N

(
µLj

σ̃2
sj

+µ̃sj
σ2

Lj

σ2
Lj

+σ̃2
sj

, µLj
=

∑nd
t=1

log(sjt)

nd

µsj
σ2

Lj
σ̃2

sj

σ2
Lj

+σ̃2
sj

)
σ2

Lj
=

σ̃2
sj

nd

N (µ̃sj
, σ̃2

sj
)

αPj
= ασsj

+ nd/2

1/σ2
sj

G(αPj
, βPj

)
β−1

Pj
= 0.5

∑nd
t=1

(
log(sjt) − µsj

)2
− β−1

σsj

G(ασsj
, βσsj

)

N

(
µLdi

σ2
di

+µdi
σ2

Ldi

σ2
Ldi

+σ2
di

, µLdi
=

(
∑nd

t=1
(xit−ei)) log


∑ns

ℓ=1
aiℓs

zi
zℓ
ℓt





 log


∑ns

ℓ=1
aiℓs

zi
zℓ
ℓt






2

di
σ2

Ldi
σ2

di

σ2
Ldi

+σ2
di

)
σ2

Ldi
= σ2

di

(
log

(∑ns

ℓ=1 aiℓs
zi
zℓ
ℓt

))
−2

N (µdi
, σ2

di
)

N

(
µLei

σ2
ei

+µei
σ2

Lei

σ2
Lei

+σ2
ei

, µLei
=

∑nd
t=1


xit−di log


∑ns

ℓ=1
aiℓs

zi
zℓ
ℓt






nd

ei σ2
Lei

σ2
ei

σ2
Lei

+σ2
ei

)
σ2

Lei
= σ2

ei
n−1

d

N (µei
, σ2

ei
)

αPi
= ασi

+ nd

2
, β−1

Pi
= Ψ − β−1

σi

1/σ2
i G(αPi

, βPi
)

Ψ = 0.5
∑nd

t=1


xit − ei − di log



∑ns

ℓ=1
aiℓs

zi
zℓ
ℓt







2 G(ασi
, βσi

)

4 Experimental Results

We test our algorithm using artificial data and also in a real situation involving
an array constituted of electrodes of potassium (K+) and of ammonium (NH+

4 ).
The quality related to the estimation ŝi(t) (after scale normalization) of the

source si(t) is assessed using the following index: SIRi = 10 log
(

E{si(t)
2}

E{(si(t)−ŝi(t))
2}

)
.

Experiments with artificial data: Aiming to define testing scenarios that are
as close as possible to real situations, we make use of the selectivity coefficients
database presented in [2]. Concerning the sources, we considered a set of nd = 900
samples endowed with a temporal structure, each sample being generated by a
lognormal distribution. In a first situation, we simulate an array of two electrodes
(nc = 2) (each one having a different ion as target) for estimating the activities
of NH+

4 and K+(ns = 2). As discussed in Section 2, one has a PNL model in this
situation given that the valences are equal (z1 = z2 = 1). The parameters of the
mixing system for this case were a12 = 0.3, a21 = 0.4, d1 = 0.056, d2 = 0.056,
e1 = 0.090, e2 = 0.105 and SNR1 = SNR2 = 18 dB. Concerning the Gibbs
sampler, 3000 iterations with a burn-in period of 1400 were conducted. The
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burn-in value was fixed empirically after a visual inspection of the chains and no
convergence monitoring strategy was applied. Our method was able to provide a
good estimate of the sources in this situation. The performance indexes for this
case were SIR1 = 19.84 dB, SIR2 = 18.75 dB and SIR = 19.29 dB.

We also analyze the more complicate case of estimating the activities of
calcium (Ca2+) and sodium (Na+) using an array of two ISEs (nc = 2 and ns =
2), each one having a different ion as target. Since the valences are different now,
the mixing system is composed of a nonlinear mapping followed by component-
wise logarithm functions (see Eq. (1)). We consider the same source waveforms
of the last case and the mixing system parameters were a12 = 0.3, a21 = 0.4,
d1 = 0.026, d2 = 0.046, e1 = 0.090, e2 = 0.105 and SNR1 = SNR2 = 18 dB.
The performance indexes in this case were SIR1 = 14.96 dB, SIR2 = 17.37 dB
and SIR = 16.17 dB. Despite the performance deterioration with respect to the
first case, our method provided fair estimations for the sources. The number of
iterations for the Gibbs sampler was 5000 with a burn-in period of 2000.

Experiments with real data: We consider the analysis of a solution containing
K+ and NH+

4 through an array composed of one K+-ISE and one NH+
4 -ISE.

This situation is typical in water quality monitoring. The actual sources and the
data acquired (nd = 169) by the array are shown in the left and in the right side,
respectively, of Fig. 1. For the Gibbs’ sampler, we considered 3000 iterations and
a burn-in period of 1000. In Fig. 1, we plot the retrieved sources. The performance
indexes in this case were SIR1 = 25.10 dB, SIR2 = 23.69 dB, SIR = 24.39 dB.
Despite a small residual interference, mainly for the K+ activity, our method
was able to provide a good estimation even in this difficult scenario in which
the sources are dependent and only a reduced number of samples is available.
Conversely, this situation poses a problem to ICA-based methods. Indeed, the
performance of the PNL-ICA method proposed in [11] was poor in this case
(SIR1 = 7.67 dB, SIR2 = −0.33 dB, SIR = 3.67 dB).
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Fig. 1. Left: mixtures. Right: actual sources (dashed black) and estimations (after scale
normalization) provided by the Bayesian method (gray).
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5 Conclusion

In this work, we developed a MCMC-based Bayesian nonlinear BSS method
for processing the outputs of an array of ion-selective electrodes. The Bayesian
framework allowed us to consider prior information such as the non-negativity of
the sources and of the selectivity coefficients. Experiments with artificial and real
data attested the viability of our proposal. Moreover, given that in the Bayesian
formulation the independence hypothesis is not as important as in ICA methods,
our method could provide good estimations even in a scenario where the sources
were dependent and where only a reduced number of samples was available.

A first perspective of this work is related to the sources modeling. Indeed, we
assume i.i.d. sources which means that we are not taking advantage of the fact
that chemical sources do have a time-structure (they are usually slowly varying
signals). Also, there are other two points that deserve further investigation: 1)
the case where neither the number of ions in the solution nor their valences are
available. 2) Although widely used, the NE equation may be not precise in some
cases [12]. Therefore, by considering more precise models, one could obtain a
better separation and then work even when a very high precision is needed.
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