
Location-Aware Index Caching and Searching for P2P

Systems

Manal El Dick, Esther Pacitti, Patrick Valduriez

To cite this version:

Manal El Dick, Esther Pacitti, Patrick Valduriez. Location-Aware Index Caching and Searching
for P2P Systems. Fifth International Workshop on Databases, Information Systems and Peer-
to-Peer Computing (DBISP2P), Sep 2007, Viennes, Austria. 2007. <inria-00379699>

HAL Id: inria-00379699

https://hal.inria.fr/inria-00379699

Submitted on 20 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53018119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00379699

Location-Aware Index Caching and Searching

for P2P Systems

Manal El Dick, Esther Pacitti, and Patrick Valduriez

ATLAS Group, INRIA and LINA, University of Nantes, France
{manal.el-dick,esther.pacitti}@univ-nantes.fr,patrick.valduriez@inria.fr

Abstract. Unstructured P2P networks remain widely deployed in file-
sharing systems, due to their simple features. However, the P2P traffic,
mainly composed of repetitive query messages, contributes the largest
portion of the Internet traffic. The principal causes of this critical is-
sue are the search inefficiency and the construction of the P2P overlay
without any knowledge of the underlying topology. In order to reduce
the P2P redundant traffic and to address the limitations of existing so-
lutions, we propose a solution that performs index caching and efficient
query routing while supporting keyword search. We aim at improving
the probability of finding available copies of requested files by leveraging
file replication. In addition, our scheme tries to direct queries to close
results, by using topological information in terms of file physical distri-
bution. We believe that the traffic can be significantly reduced and the
user experience ameliorated in terms of faster downloads, with minimum
overhead.

1 Introduction

Despite the emergence of sophisticated overlay structures, unstructured P2P
systems remain highly popular and widely deployed. They exhibit many sim-
ple yet attractive features, such as low-cost maintenance and high flexibility in
data placement and node neighborhood. Unstructured P2P systems are particu-
larly used in file-sharing communities due to their capacity of handling keyword
queries i.e. queries using some keywords instead of the whole filename. However,
some studies [13] observed that the P2P traffic is mainly composed of query
messages and contributes the largest portion of the Internet traffic.

The principal cause of the heavy P2P traffic is the inefficient search mech-
anism, blind flooding, which is commonly employed in unstructured P2P net-
works. Many researchers have focused on this critical issue that may compromise
the benefits of such systems by drastically limiting their scalability. In fact, in-
efficient searches cause unnecessary messages that overload the network, while
missing requested files. Several analyses [5, 7, 14] found the P2P file-sharing traf-
fic highly repetitive because of the temporal locality of queries. They actually
observed that most queries request a few popular files and advocated the po-
tential of caching query responses, to efficiently answer queries without flooding
over the entire network (a query response holds information about the location

of the requested file).
However, searches in general, suffer significantly from the dynamic nature of
P2P systems where nodes are run by users with high autonomy and low avail-
ability. In fact, it is rather impossible to ensure the availability of a single file
copy and thereby to satisfy queries for this file. In P2P file sharing, a node that
requested and downloaded a file, can provide its copy for subsequent queries.
As a consequence, popular files, which are frequently requested, become natu-
rally well-replicated [2]. Hence, search techniques should leverage the natural file
replication to efficiently find results with minimum overhead.

Another important factor that aggravates the traffic issue, consists in con-
structing P2P overlays without any knowledge of the underlying topology. A
typical case that illustrates this problem is the following: a query can be di-
rected to a copy of the desired file which is hosted by a physically distant node,
while other copies may be available at closer nodes. Hence, file download can
consume a significant amount of bandwidth and thereby overload the network.
In addition, the user experience dramatically degrades due to the relatively high
latency perceived at transfer.

Our work is inspired by DiCAS [15], an index caching and adaptive search
algorithm. In DiCAS, query responses are cached, in the form of file indexes, in
specific groups of nodes based on a specific hashing of the filenames. Guided by
the predefined hashing, queries are then routed towards nodes which are likely to
have the desired indexes. However, DiCAS is not optimized for keyword searches
which are the most common in the context of P2P file sharing. Moreover, caching
a single index per file does not solve the problem of file availability given the
dynamic nature of P2P systems, while it may overload some nodes located by
previous queries. DiCAS also lacks of topological information to efficiently direct
queries to close nodes.

Aiming at reducing the P2P redundant traffic and addressing the limita-
tions of existing solutions, we propose a solution that leverages the natural file
replication and incorporates topological information in terms of file physical dis-
tribution, when answering queries. To support keyword searches, a Bloom filter
is used to express keywords of filenames cached at each node, and is then prop-
agated to neighbors. A node routes a query by querying its neighbors’ Bloom
filters. To deal with issues concerning availability and workload, a node caches
several indexes per file along with topological information. As a consequence,
a node answers a query by providing several possibilities, which significantly
improves the probability of finding an available file. In addition, based on the
topological information, we expect that queries are satisfied in a way that opti-
mizes the file transfer and thus the bandwidth consumption.

The rest of this paper is organized as follows. Section 2 examines the different
kinds of approaches aiming at reducing the unnecessary P2P traffic. Section 3
introduces the background of our work and defines the main concepts on which
we rely. Section 4 describes in details our contributions. Section 5 discusses
the trade-off between the expected benefits of our approach and the resulted
overhead. Section 6 concludes.

2 Related Work

Many studies have focused on reducing P2P traffic in unstructured systems,
while different types of approaches have been exploited. Our work mainly falls
into three categories: search-based, caching-based and topology-based.

Search-based approaches [3, 9, 16], basically consist of maintaining informa-
tion about neighbors, and using them to route queries. A node can either hold
summarized lists of files stored at its neighbors or statistics based on previous
searches (e.g. number of results returned from each neighbor). Each time the
node needs to forward a query, it selects a subset of its neighbors according to
the maintained information. These techniques do not incorporate location aware-
ness, typically by directing a query to a physically distant file, which consumes
high bandwidth at transfer and contributes to increasing the traffic.

Caching-based approaches aim at caching content (e.g. files) or indexes (e.g.
file locations) to limit the extent of flooding, when searching for some content.
Index caching is performed in [11, 14, 15], where query responses are cached in
the form of indexes, on their way back to the originator. Centralized caching [11]
at the gateway of an organization does not exploit nodes resources and is likely
to produce bottlenecks. The authors in [14] propose that each node caches all
passing query responses, which results in large amount of duplicated and redun-
dant cached among neighboring nodes. In DiCAS [15], file indexes are cached
in specific groups of nodes and queries are selectively routed. Similarly to the
search-based approaches, DiCAS do not handle the location awareness issue.
Moreover, the well-replication of popular files is not taken into advantage, which
results in missing available file copies or concentrating the load on a few nodes
holding copies. Thus, further searches may be needed and more messages injected
into the traffic.

Topology-based approaches focus on optimizing the P2P overlay topology by
exploiting information about the underlying network. The goal is to construct
an overlay that reflects the underlying topology. Some proposals such as [10]
group nodes into clusters based on network distance or IP addresses. Others [8,
12] try to improve nodes neighborhood in terms of proximity. This category of
solutions enable location-aware searches without improving their efficiency in
finding results.

3 Problem Definition

In this section, we introduce the main terms and concepts in order to define
the problem. First, we briefly describe unstructured P2P file-sharing systems
(Gnutella). Second, we present DiCAS, a protocol that performs index caching
over Gnutella and which inspired us to build our protocol. Third, we give the
problem statement.

3.1 P2P File-Sharing Systems - Case of Gnutella

Gnutella is an unstructured P2P network which is a logical overlay built on
top of the Internet. Each node joins the network by establishing logical links to
randomly chosen nodes, referred to as its neighbors. Normally, the neighborhood
of a node is set without knowledge of the underlying topology. Participating
nodes are highly dynamic and autonomous, failing or leaving the network at any
moment.

In such P2P systems, nodes share files of any type specified by the applica-
tion. We note F , a file object and f its filename. Whenever there is no ambiguity,
we may use f or F automatically. Filenames are broken into keywords following
predefined rules and are stored at nodes accordingly. Nodes request files by sub-
mitting queries to the P2P network. A query q is commonly expressed by some
keywords related to the queried filename instead of the whole filename.

Query routing is done by blindly flooding q over the P2P network and is
bounded by a fixed time-to-live, TTL, i.e. the maximum number of hops. Query
responses qr follow the reverse path of their corresponding q, back to the re-
questing node. q can be satisfied by any file F that has a filename f containing
all keywords of q. Thus, a query response qrF contains the filename f and the
location of a copy of the file F , which refers to the IP address of a node i located
by the query and providing F (node i is noted PF,i). The requesting node down-
loads F via direct connection (i.e. out of the P2P network) and then becomes a
provider node PF,i for subsequent requests for F .
If a file F is requested frequently, then as more requesting nodes download F ,
there will be many copies of F and thereby many providers PF,i within the
system. As shown in [2], most queries are for popular files F , and thus for well-
replicated files F .

3.2 Basic DiCAS

DiCAS [15] is a distributed index caching and adaptive search algorithm designed
for P2P systems like Gnutella. File locations are cached, in the form of indexes,
in specific groups of nodes by matching filenames against group Ids. Hence, index
caching consists of caching a query response qr in the form of a file index by
nodes along q reverse path. An index of F contains thus the filename f and the
IP address of some node PF,i. Therefore, each node i maintains an index cache
called response index and noted RIi.

At join, node i randomly chooses a group Id noted Gidi (Gidi ∈ [0 .. M − 1]
with M a system parameter). Gidi matches a filename f if the following condition
is satisfied: Gidi = hash(f) modM .
Rather than flooding, group Ids are used to route a query q, towards nodes that
have a high probability of caching indexes of files satisfying q. A query q is thus
sent to neighbors with a matching Gid wrt. q. If no such neighbors are found, q

is sent to a highly connected neighbor.
Another essential functionality of Gids is defining a selective policy for index
caching, in order to avoid redundant indexes among neighbors. A query response

qrF is only cached in RI of nodes with matching Gid wrt. f .
Figure 1 shows a typical example of DiCAS algorithm. The query q submitted
by node Nq is matched by Gid = 0, according to the predefined hashing. Thus,
q is sent, whenever it is possible, to nodes with Gid = 0, until an index of some
file F that satisfies q is found. On its way back, qrF is cached in matching nodes
wrt. f i.e. with Gid = 0.

(a) Query routing. (b) Query reponse path.

Fig. 1. A typical example of DiCAS: q = “Abc′′ and hash(q) modM = 0 .

3.3 DiCAS Limitations

We have identified two main weaknesses in DiCAS approach when applied in real
P2P-file sharing systems, well-known for the spontaneous and dynamic nature
of their participants. In the following, we describe the two limitations that we
address in our work.

DiCAS with Keyword Search. The authors of DiCAS pointed out a weak-
ness in their initial solution, concerning keyword queries and they proposed an
optimization. In fact, indexes of some file F are cached in nodes i with matching
Gid wrt. the filename f (i.e. Gidi = hash(f) modM) while a query q for F is
forwarded to nodes j with matching Gid wrt. q (i.e Gidj = hash(q) modM).
Given that common queries are expressed using some keywords of the filename,
q is sent to nodes with unmatched Gid, i.e. nodes that most probably do not
have indexes of F in their response indexes (i.e. q 6= f , then Gidi 6= Gidj).

The proposed optimization consists in caching indexes based on query key-
words instead of the whole filename. To illustrate the new strategy, let us consider
two consecutive queries q1 and q2 that both request the file F named “le fab-
uleux destin d’Amelie Poulain”: q1 =Amelie Poulain and q2 = Destin Amelie.
The example is shown in Fig. 2. Query q1 submitted by N1 is forwarded to nodes

with Gid = 2 (hash(q1)modM = 2). Then, after searching the P2P network and
finding satisfying responses, responses qr1, on their way back to N1, are cached in
nodes with Gid = 2. After a while, N2 submits a different query q2 for the same
file F (q1 6= q2). q2 is forwarded to nodes with Gid = 0 (hash(q2) modM = 0)
and thus misses indexes of F cached in neighbors with Gid = 2. Similar to qr1,
responses qr2 are cached in nodes with Gid = 0.
Obviously, this optimization causes a larger amount of duplicated and redundant
cached indexes. Furthermore, DiCAS looses some of its efficiency in reducing the
P2P traffic because many results available on the query routing path are missed
and thus more messages are flooded to locate the queried file.

(a) First query q1. (b) Second query q2.

Fig. 2. An example of DiCAS limitation in supporting keyword queries: q1 and q2

requesting file F named “le fabuleux destin d’amelie poulain’

Weak Exploitability of Natural File Replication. In DiCAS, a node n

caches in its RI only one index of a given file F matching its Gid and referring
to some provider node PF,1. All other indexes of F which refer to other providers
PF,i and that node n may overhear afterwards, are not taken into account.
Subsequently, node n redirects to PF,1 all passing queries that could be satisfied
by F .

Three consequences that may result from the above approach, illustrate the
inefficiency of DiCAS caching policy:

– The cached index of F may expire after a small time period because PF,1 may
disconnect or discard its copy of F at any moment. Thus, queries directed to
PF,1, remain unsatisfied, which leads to further and repetitive searches i.e.
extra messages disseminated over the network.

– Given the temporal locality of P2P queries, PF,1 may become quickly over-
loaded since n may receive several queries for F .

– PF,1 may be physically distant from requesting nodes. As a result, more
bandwidth is consumed and a relatively high latency is perceived by the
corresponding users at the file download.

3.4 Problem Statement

We formally define our problem as follows. Given an unstructured P2P file-
sharing system with the characteristics and terms described in Sec. 3.1, let:

– N be the set of all participant nodes n, such that each node n has a Gid.
Then based on DiCAS, ∀n ∈ N ; RIn caches query responses qrF such
that hash(f) modM = Gidn.

– PF be the set of popularly shared files F , such that each F may be provided
by multiple nodes PF,i ∈ N (as discussed in 3.1).

– PQ be the set of common queries q which normally request files of PF while
using some keywords of the filenames.

Our objectives are the following:

– Routing q efficiently towards nodes n with indexes of F in RIn

– Exploiting replication of F i.e. several PF,i as well as their physical locations
and incorporating this information in RIn

4 Efficient Caching and Searching in P2P File-Sharing

We now propose two main improvements that address the problems identified
above. As a first improvement, we propose an efficient support for keyword
queries. A second improvement consists of exploiting location awareness and
file replication.

4.1 Efficient Support for Keyword Search

We assume that index caching is based on the whole filename as in basic DiCAS.
To remediate the problem of keyword searches, we use a Bloom filter to express
filenames’ keywords in a response index and to send the filter to neighbors.
A Bloom filter [1, 6] is a simple space-efficient data structure for representing a
set of elements, in order to support membership queries. When querying a Bloom
filter, it never returns false negatives but it may lead a false positive when it
suggests that an element belongs to the set even though it does not.

Each node n maintains a Bloom filter, noted BFn, that represents the set
of keywords of all cached filenames in RIn. Whenever node n overhears a re-
sponse qrF such that f matches Gidn, it caches it in RIn similarly to basic
DiCAS (Sec. 3.2), and then inserts each keyword kwi of f as an element of BFn.
Moreover, we define that a query q matches BFn if ∀kwi ∈ q is member of BFn.

Neighboring nodes exchange their own group Ids as well as their bloom filters.
Thus, node n stores its own RIn and BFn as well as its direct neighbors’ Gid

and BF . To forward a query q, node n checks first its neighbors’ BF . Node n

sends q to neighbors with matched BF wrt. q. If no such neighbors, query q is
sent to neighbors with matched Gid wrt. q or to a highly connected neighbor as
a last resort.

A Bloom filter BFn is built incrementally as new filenames are inserted in
RIn and existing ones discarded. Updating BFn locally is done automatically
since membership changes are supported by Bloom filters. Copies of BFn held
by neighbors of node n must also reflect the content of RIn, thus n periodically
propagates updates of BFn to neighbors after a threshold i.e. a given percentage
of changes in RIn.

4.2 Exploiting Location Awareness and File Replication

In order to provide more accurate and efficient responses to queries, we introduce
location awareness in response indexes, in terms of information about the phys-
ical location of the file provider. In addition, we exploit file replication, based
on the fact that a node which has recently requested a file F is likely to have it
and can thereby serve subsequent requests for F .
In the following, we first describe our physical locations basis then we present our
location-aware approach. Finally, we propose a technique to control the cache
size at a node.

Physical Locations We assume that participant nodes are physically dispersed
and can be grouped based on their locations. To model these physical locations,
we use a common technique used in other works such as [4, 12] that relies on the
existence of a set of well-known machines spread across the Internet, called land-

marks. A node n can determine its physical network distance to each landmark
by measuring its latency to that landmark. An ordering of the set by increasing
latencies reflects the physical location of node n. Thus, physically close nodes
are likely to produce the same ordering. We thereby associate to each possible
ordering a location Id noted locId. Then, at its arrival, each node computes its
own locId based on its latency measurements.

Location-Aware Caching and Search In the following, we consider the ex-
ample shown in Fig. 3 to illustrate our new approach. The response index of a
node n may hold for some cached filename f , several provider addresses PF,i and
their locIds. Hence, n can selectively answer a query q that can be satisfied by
F , according to the locId of the querying node (noted nq). In our example, N4
has in its RI the IP addresses of 2 nodes that can provide the file “Abc”, one
associated to locId = 1 and another to locId = 3. As also shown in Fig. 3, A
query q and its responses qrF should contain both the IP address and the locId
of the node nq, which will be considered as a new provider by nodes intercepting
the responses.
Algorithm 1 describes how each node n visited by some query q, processes and
routes q. First, n checks its response index for a filename that can satisfy q. In
the case where such a filename is found, n tries to find a provider PF,i with the
same locId as nq (i.e. lines 6 to 10). Node n’s response also includes IP addresses
of some other providers of F with their associated LocIds, to guarantee that nq

will find an available copy of F (i.e. lines 11 to 13). In the other case, node n

queries its neighbors’ Bloom filters and as a last resort their Gids (i.e. lines 15
to 25).
In Fig. 3, the query q is routed to neighbors with matching BF wrt. q when-
ever it is possible, until a satisfying filename f is found in the response index of
some node N4. The query response sent by node N4 is constituted of the entry
(3, yyy) corresponding to the locId of Nq and another random entry (1, xxx) for
availability reasons. Node N4 then adds the entry (3, zzz) of node nq. On its
way back, the response qr is cached, with the information about Nq, in nodes
with matching Gids wrt. filename f .

Algorithm 1 Routing(q, nq) at each visited node n

1: RIn 〈f〉: LocId entries in RIn corresponding to filename f
2: RIn 〈f〉 〈locId〉: IP addresses in RIn corresponding to some specific locId and f
3: qrF : query response that n may generate.

4: Receive(q, 〈nq.IPaddress, nq.locId〉)
5: // Check local response index

6: if ∃f ∈ RIn that satisfies q then
7: if (RIn 〈f〉.contains(nq.locId)) then
8: // Add to qrF the addresses of PF,i with the same locId as nq

9: qrF .add(RIn 〈f〉 〈locId〉)
10: end if
11: // Add to qrF some random addresses of PF,i

12: qrF .randomAdd(RIn 〈f〉 〈 〉)
13: Send back(qrF) and Quit the algorithm
14: end if

15: // Check neighbors’ Bloom filters

16: for each neighbor i do
17: if (BFi.matches(q)) then
18: Send(q) to neighbor i
19: end if
20: end for
21: // Check neighbors’ Gids
22: for each neighbor i do
23: if (Gidi.matches(q)) then
24: Send(q) to neighbor i
25: end if
26: end for

Controlling the Cache Size The cache size refers in our solution to the
temporary storage space allocated for the response index. Given the inherent
heterogeneity of P2P systems, each node contributes with a different amount of
memory. The maximal amount of memory that a node can invest is denoted by
maxMemo. A node detects a storage excess when its cache size surpasses its

(a) Query routing. (b) Query response path.

Fig. 3. An example of our complete approach

maxMemo. In that case, the node needs to discard some of its response index
content.
To perform an efficient cleanup, the node determines the excess entries which
has the lowest expected utility. It proceeds with the following cleanup consisting
of two phases:

1. If for a given locId of a filename, there are more than two IP addresses
cached, only the two most recently cached entries are kept while the rest is
discarded.

2. If after the previous cleanup the cache size remains in excess, the node
searches for the filename with the largest number of locId entries and dis-
cards the ones that are the least recently cached.

The above strategy ensures a level of freshness in the response index while con-
trolling its storage size.

5 Discussion

In this section, we discuss the trade-off between the potential benefits of our
proposed techniques and their costs in terms of traffic and storage requirements.

5.1 Keyword Searches with Bloom Filters

A node stores its Bloom filter as well as its neighbors’ filters. A Bloom filter pro-
vides a trade-off between its memory requirements and its false positive ratio.
Hence, given a response index with 50 filenames of 3 keywords in average, an
optimal representation by a Bloom filter needs a negligeable amount of memory,
varying between 0.15 and 0.6 KB.1 Since the average connectivity degree d is

1 To support changes, 4-bit counts are added to a BF [6](i.e. extra memory = 0.6 KB).
These counts are only stored locally and not propagated to neighbors

equal to 3 in Gnutella, then the average storage space allocated for Bloom filters
at a node is equal to (3 + 1) ∗ 0.15 = 0.6 KB, which is very small.
In addition, in [6], it has been shown that such optimal representation can have
almost the same accuracy as when querying straightforward the represented set,
that is in our case the set of filename keywords of the corresponding response
index. Thus, when a node queries its neighbors’ Bloom filters, we expect a sig-
nificantly more efficient routing than with Gids.

Recall that a node propagates the updates of its Bloom filter to its direct
neighbors. Bloom filter changes reflect filename additions and/or deletions in
the corresponding response index. The update propagation is delayed until the
percentage of new changes reaches a threshold α. Let Fupd be the update fre-
quency which depends on the value α. The size of the Bloom filter2 i.e. 1.2 Kb

is small enough to be transmitted at each update. Given that d is the aver-
age number of neighbors per node, then at each update transmission, the node
sends d messages. Thus, the number of messages transferred per node and per
second is d ∗ Fupd and the number of bits transferred per node and per second
is d ∗ Fupd ∗ 1.2 Kb (3.6 ∗ Fupd Kb for d = 3). Since some staleness in the Bloom
filter can be acceptable, we can tune α and thus Fupd in a way that significantly
minimizes the update cost.

5.2 Location-Awareness in Response Index and Query Responses

Recall that our approach involves caching multiple indexes per file. Hence, a
query response can consist of several indexes pointing to different providers of
the same file. In contrast, DiCAS is limited to one index per query response.
Obviously, our approach improves the availability of finding an available copy of
the desired file, by providing several possibilities instead of one. Moreover, based
on the results of other location-aware works [4, 12], we expect that the location-
awareness of query responses limits the wasted bandwidth at file transfer as well
as the user perceived latency.

Concerning the storage requirements due to the extension of the response in-
dex, we have proposed a strategy to bound the cache size at each node (Sec. 4.2).

The transmission of I indexes associated to L locIds generates a larger query
response. Let us show that it is still largely acceptable. Given the following
parameters (4 bytes for an IP address, 1 byte for a filename and 7 bits = 0.875
bytes for a locId3), a query response is equal to 1 + 4 ∗ I + 0.875 ∗ L bytes. For
I = 5 IP addresses divided between L = 2 locIds, the resulting traffic is limited
to 22.75 bytes i.e. 0.182 kb, which is insignificant compared to the huge size of
the P2P shared files.

2 0.15 KB is equivalent to 1.2 Kb in data communication
3 We focus on scalability with approximate topology information. Thus, a small num-

ber of landmarks should suffice us. For 5 landmarks, we get 120 possible locIds

6 Conclusion

traffic and improve the user experience. In this paper, we identified limitations
of existing solutions. Then, we proposed a solution that leverages typical prop-
erties of P2P-file sharing environments such as file replication, as well as useful
information about the underlying topology. To efficiently route queries towards
desired results, our approach caches file indexes in groups of nodes based on the
filenames, while efficiently supporting keyword searches.

In addition, it aims at improving the probability of finding available copies
of requested files, and at directing queries to close results. Through discussion
and comparison with similar works, we strongly believe that the traffic can be
significantly reduced and the user experience ameliorated in terms of faster down-
loads, with minimum overhead. In the immediate future, we intend to explore
the trade-offs of our solution, in more detail, through simulation.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 1970.

2. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
Gnutella like P2P systems scalable. Proc. of ACM SIGCOMM, 2003.

3. Crespo, A., Garcia-Molina, H.: Routing indices for P2P systems. Proc. of ICDCS,
2002.

4. El Dick, M., Martins, V., Pacitti, E.: A topology-aware approach for distributed
data reconciliation in P2P networks Proc. of Euro-Par, 2007

5. Evangelos P. Markatos: Tracing a large-scale P2P System: an hour in the life of
Gnutella. Proc. of CCGRID, 2002.

6. Fan, L., Cao, P., Almeida, J.: Summary Cache: a scalable wide-area web cache
sharing protocol. Proc. of SIGCOMM, 1998

7. Leibowitz, N., Bergman, A., Ben-Shaul, R., Shavit, A.: Are file swapping networks
cacheable? Characterizing P2P traffic. 7th International Workshop on Web Content
Caching and Distribution (WCW’03), 2002.

8. Liu, Y., Xiao, L., Liu, X., Ni, L.M. Zhang, X.: Location awareness in unstructured
P2P pystems. IEEE Trans. Parallel Distrib. Syst., 16(2), 2005.

9. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured P2P networks. Proc. of ICS, 2002.

10. Krishnamurthy, B., Wang, J., Xie, Y.: Early measurements of a cluster-based ar-
chitecture for P2P systems. Proc. of ACM SIGCOMM, 2001.

11. Patro, S., Charlie Hu, Y.: Transparent query caching in P2P overlay networks.
Proc. of IPDPS, 2003.

12. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Topologically-aware overlay
construction and server selection. Proc. of IEEE INFOCOM, 2002

13. Saroiu S., Gummadi, K., Dunn, R., Gribble, S., Levy, H.: An analysis of Internet
content delivery systems. Proc. of OSDI, 2002.

14. Sripanidkulchai K.: The popularity of Gnutella queries and its implication on scal-
ing. http://www.cs.cmu.edu/ kunwadee/research/p2p/gnutella.html.

15. Wang, C., Xiao, L., Liu, Y., Zheng, P.: DiCAS: an efficient distributed caching
mechanism for P2P systems. IEEE Trans. Parallel Distrib. Syst., 2006.

16. Yang, B., Garcia-Molina, H.: Improving search in P2P networks. Proc. of ICDCS,
2002.

