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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Modelling and identification of passenger car
dynamics using robotics formalism

Gentiane Venture (IEEE member), Pierre-Jean Ripert, Wisama Khalil (IEEE Senior Member), Maxime Gautier,
Philippe Bodson

Abstract— This paper deals with the problem of dynamic
modelling and identification of passenger cars. It presents a new
method which is based on robotics techniques for modelling and
description of tree structured multi-body systems. This method
enables us to systematically obtain the dynamic identification
model, which is linear with respect to the dynamic parameters.
The estimation of the parameters is carried out using a weighted
least squares method. The identification is tested using vehicle
dynamics simulation software, used by the car manufacturer
PSA Peugeot-Citroën, in order to define a set of trajectories
with good excitation properties and to determine the number of
degrees of freedom of the model. The method has then been used
to estimate the dynamic parameters of an experimental Peugeot
406, which is equipped with different position, velocity and force
sensors.

Index Terms— Passenger car, modelling, identification, mobile
robot dynamics.

I. INTRODUCTION

CAR manufacturers have to design and build their cars
faster than ever to meet the customers needs. Meanwhile,

safety considerations are becoming more numerous and tests
very strict. To fulfill these constraints, they have to make use
of simulations and calculations as well as experiments. During
the design of a car, simulation is used but not for the tuning
of the prototype. In order to build tools that allow computing
whilst tuning, it is necessary to have good knowledge of the
prototype parameters for the different configurations of the
car. Classical non-linear identification techniques to estimate
the dynamic parameters are very difficult to apply on the
car model due to the complexity of its state space model.
For instance the authors of reference [1] use an output error
method that is very time-consuming because of the integration
of the direct dynamic model (state space model) at each
step of the optimization algorithm. Besides, this technique is
very sensitive to non linear optimization issues such as initial
values and local minima. We suggest identifying the dynamic
parameters using robotics techniques and tools, which are
based on an identification model that is linear with respect to
the dynamic parameters. This dynamic identification model is
obtained using the inverse dynamic model that can be obtained
systematically using a recursive Newton-Euler algorithm [2].
The proposed method is tested by simulation and on an
experimental Peugeot 406. The simulation is carried out using

the dynamic vehicle simulation software ARHMM [3]. The
influence of the car trajectory, the number of degrees of
freedom (dof ) of the model, as well as the cut off frequency
of filters, on the results of the estimation are studied.

II. VEHICLE DYNAMICS

Vehicle dynamics is the study of vehicle behavior whilst
driving. Only some elements of the vehicle are needed to de-
scribe and model this behavior, they constitute the degrees
of freedom (dof ) of the car with respect to the ground and
between the car components that link the chassis to ground
[4]. The car is composed of:

- the chassis,
- the steering system,
- the four suspensions and the two anti-roll bars,
- the four unsprung bodies,
- the four wheels with their tires.

There are 8 dof for each wheel [5]:
- the track-width (Fig.1),
- the wheel-base (Fig.1),
- the suspension clearance,
- the toe angle of the rear wheel, the steering angle of the

front wheel,
- the camber angle (Fig.1),
- the kingpin angle,
- the rotation of the wheel around its axis,
- the tire deflection.

Some of these dof are actuated, such as the steering angle or
the rotation of the front wheels, but some others are elastic and
elasto-kinematics deformations, such as suspension clearance.
Car motion with respect to the ground is described by 6
degrees of freedom (Fig.2); 3 translational and 3 rotational,
which are called:

- longitudinal translation,
- lateral translation,
- vertical translation,
- roll: rotation around the longitudinal axis,
- pitch: rotation around the transversal axis,
- yaw: rotation around the vertical axis.

The external forces applied to the car which have the most
significant impact on vehicle dynamics, are the contact forces
between the ground and the tires. These external forces are
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Fig. 1. Characteristic geometric parameters of the car dynamics
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Fig. 2. Movements of the car body

difficult to model [6], [7], or to estimate [8], [9], but they can
be measured at the center of the wheels using dynamometric
wheels. Aerodynamic forces also have an effect on the vehicle
behavior, particularly at high speed (> 90km/h) [4].

III. COMPUTATION OF THE CAR DYNAMICS

A. Structure description and geometric modelling

To describe a passenger car we will use the modified
Denavit and Hartenberg (MDH) notations [2], [10] that are
commonly used in robotics. This description allows us to
obtain, systematically, the identification dynamic model of the
system, whatever the number of dof. The car is considered as
a tree structured multi-body system, with n bodies, where the
wheels represent the terminal links. Each body Bj is linked
to its antecedent with a joint which represents an elementary

dof either translational or rotational, the joint can be rigid or
elastic. A body (or a link) can be real or virtual, the virtual
bodies are introduced to describe joints with multiple dof or
intermediate fixed frames. We define a reference frame Ri

(Oi, xi, yi, zi) attached to each body Bi. The zi axis is
defined along the axis of joint i. An axis uj is defined along
the common normal between zi and zj , where link i is the
antecedent of link j, denoted by i = a(j). The xi axis is
defined arbitrarily along one of the axes uj , with a(j) = i.
The (4× 4) homogenous transformation matrix iT j between
two consecutive frames Ri and Rj is defined using the six
following parameters [10] (Fig.3):

- γj : angle between xi and uj around the axis zi,
- bj : distance between xi and uj along zi,
- αj : angle between zi and zj around the axis uj ,
- dj : distance from zi to zj along uj ,
- θj : angle between uj and xj around the axis zj ,
- rj : distance from uj to xj along zj .
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Fig. 3. The geometric parameters

In Fig.3, since xi is taken along uk, the parameters γk and bk

are equal to zero. The transformation matrix between frames
i and j is represented by the following (4× 4) matrix:

iT j =
[

iAj
iP j

03×1 0

]
(1)

where:

- iAj is the (3×3) rotation matrix of frame j with respect
to frame i,

- iP j is the (3× 1) vector defining the origin of frame j
with respect to frame i.

The generalized coordinate of joint j is denoted qj , it is
equal to rj if j is translational and θj if j is rotational. We
define the parameter σj = 1 if joint j is translational, and
σj = 0 if joint j is rotational, σj = 1− σj . If there is no dof
between two frames that are fixed with respect to each other,
we take σj = 2. This means that the time derivative of qj is
zero.
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B. Dynamic modelling

1) Dynamic parameters: a set of 10 inertial parameters is
associated with each real body Bj . It consists of:

- the mass Mj ,
- the 6 independent components of the inertia matrix J j

given in frame Rj , denoted by XXj , XYj , XZj , Y Yj ,
Y Zj , ZZj ,

- the components MXj , MYj , MZj of the first moments
vectors MSj with respect to frame Rj .

When joint j is elastic, we define the following parameters:
- the stiffness kj of the joint,
- the damping coefficient hj ,
- the Coulomb coefficient fsj .
The vector of standard dynamic parameters of the system,

which is denoted XS , is composed of the previous parameters
for all the links.

2) The Lagrange dynamic model of the car: the Lagrange
formalism expresses the movement of each body in terms of
the joint coordinates q = [q1, . . . , qn], its first and second
derivatives q̇, q̈, the external moments and forces applied on
the system F e and the vector of dynamic parameters XS . It
is expressed as:

f (q, q̇, q̈,F e, XS) = 0 (2)

To use the Lagrange method, the movement of the car body
with respect to ground is defined with a 6 dof chain, the first
3 are translational and the last 3 are rotational [11], [12].
This chain is represented by 5 virtual bodies (B1 to B5)
with zero inertial parameters, the 6th body B6 is the chassis.
The reference body B0 is the ground. In this case the inverse
dynamic model, giving the joint torques, is obtained with the
following general equation:

Γ + Q = Γe + Γf + H (q, q̇, q̈, XS) (3)

where:
- Γ is the vector of joint forces or torques
- Q is the vector of generalized efforts representing the

projection of the external forces and torques on the joint
axes, it is calculated with:

Q = −
∑

Gj(q)T F ej (4)

- Gj(q) is the Jacobian matrix of frame Rj

- F ej is the vector of external forces fej and moments
mej applied by body Bj on the environment,

- H is the vector of inertial, Coriolis, centrifugal and
gravity forces,

- Γe is the joint elastic force. The jth element of Γe is
written as:

- if j is an elastic joint:

Γe
j = kjqj + offj (5)

with qj the joint co-ordinate j with respect to the
original position and kj the stiffness of joint j, offj

an offset,
- if j is not an elastic joint Γe

j = 0

- Γf is the friction force. Friction is modelled using a
viscous parameter hj and a Coulomb parameter fsj :

Γf
j = hj q̇j + fSjsign(q̇j) (6)

In the following we note: L = Γ + Q.
3) Practical calculation of the Lagrange dynamic model:

the Lagrange model is typically calculated using the La-
grange equation, which calculates the kinetic and potential
energies of all the elements of the mechanical system. The
generalized forces Q are calculated using (4) or by applying
the virtual work principle [4], [7]. The Lagrange model
can be calculated more easily using a recursive algorithm
based on the Newton-Euler equation, after expressing the
link velocities and accelerations in terms of joint positions,
velocities and accelerations [10], [13]. This algorithm consists
of two recursive calculations. The forward one calculates the
total forces and moments on each body, while the backward
one leads to calculation of the joint torques.
The forward recursive calculation can be summarized as
follows: for j = 1 to n, we calculate successively:

jωi = jAi
iωi (7)

jωj = jωi + σ̄j q̇j
jaj (8)

jω̇j = jAi
iω̇i + σ̄j

(
q̈j

jaj + jωi × q̇j
jaj

)
(9)

jV̇ j = jAi

[
iV̇ i +

(
i ˜̇ωi + iω̃i

iω̃i

)
iP j

]

+σj

(
q̈j

jaj + 2 jωi × q̇j
jaj

)
(10)

jF j = Mj
jV̇ j +

(
j ˜̇ωj + jω̃j

jω̃j

)
jMSj (11)

jM j = jJ j
jω̇j + jωj×

(
jJ j

jωj

)
+ jMSj×j V̇ j (12)

with the upper left exponent denoting the projection frame,
× denoting the outer vector product and:

- i = a(j)
- ω̇j is the angular acceleration of body j,
- ωj is the angular velocity of body j,
- ω̃ is the skew-symmetric matrix associated to the vector

product, defined from the components of the (3 × 1)
vector by:

ω̃ =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (13)

- V̇ j acceleration of Oj , origin of frame j,
- F j total forces applied on body j



4

- M j total moments applied on body j with respect to
Oj ,

- jAi the (3× 3) orientation matrix of frame Ri in Rj ,
- aj is the unit vector along zj , thus jaj = [0 0 1]T ,
- Mj , MSj and J j defined in section III.B.1.

The forward calculation is initialized with 0ω0 = 0, 0ω̇0 =
0, whereas the translational acceleration of frame 0 will be
set equal to gravity g with opposite sign, thus 0V̇ 0 = −g,
in order to automatically take into account the effect of the
gravity forces.
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Fig. 4. Forces and moments acting on a link of a tree structure

The backward recursive equations, for j = n, . . . , 1 calcu-
late the forces jf j and moments jmj exerted on body Bj by
its antecedent body Bi (Fig.4), they are:

jf j = jF j + jfej +
∑

s(j)

jfs(j) (14)

if j = iAj
jf j (15)

jmj = jM j+ jmej+
∑

s(j)

jAs(j)
s(j)ms(j)+ jP̃ s(j)

jfs(j)

(16)
with:

- s(j) indicating the bodies whose antecedent is body Bj

- jfej , jmej the external forces and moments applied by
body Bj on the environment

The joint forces (or torques) are obtained by projecting if j

(or imj) on the joint axis zj and by taking into account the
effects of friction and elasticity as follows:

Γj =
(
σj

jf j + σ̄j
jmj

)T jaj + Γf
j + Γe

j (17)

This backward calculation is initialized by putting jf j , jmj

equal to zero for the terminal links. We can note that the
contact forces between the tire and the road will be taken
into account through fej and mej of the terminal links (the
wheels). The projection of these forces on the joint axes will
be obtained systematically without application of equation (4)
as would be the case if the Lagrange equation was used. It is to
be noted that this algorithm can be programmed numerically

or symbolically. To optimize the number of its operations, we
use customized symbolic techniques to implement it [10]. It
can be proven that the dynamic model is linear with respect
to the standard dynamic parameters, thus (3) can be rewritten
as:

L = DS (q, q̇, q̈)XS (18)

where matrix DS is a function of (q, q̇, q̈).
The inertial parameters of the chassis appear explicitly in the
first six equations giving L1 to L6.

4) Mixed Newton-Lagrange model: the Newton-Euler for-
malism expresses the movement of a body in terms of its
rotational speed, rotational acceleration, translational acceler-
ation and its current position [ω, ω̇, V̇ ,Φ].
We will suggest another form of the dynamic model that
combines both Newton-Euler and Lagrange approaches, in
order to obtain a more efficient model of the car. In this
case the body of the car is represented by one body denoted
by B1, whose dynamic equations are expressed in terms
of the Euler variables [V̇ 1, ω1, ω̇1], while the rest of the
system dynamics (Bodies B2 to Bn) is expressed in terms
of Lagrange variables (q, q̇, q̈). The main advantages of this
method is that the Euler variables of the chassis correspond
to the measured variables in an experimental system and that
the transformation matrices between the first 6 frames of the
Lagrange model no longer exist. This enables us to obtain a
more compact dynamic model and to reduce the number of
mathematical operations required. The dynamic equations of
this mixed model can be obtained by the recursive algorithm
presented in section III.B.3 with the following modifications:

- The value of n is reduced by 5,
- In the forward recursive calculations, for j = 1, the

total forces and moments on the chassis F 1 and M1

are calculated using (11) and (12) as a function of
[V̇ 1,ω1, ω̇1]. For this first iteration, the other equations
are not required.

- The equations of the chassis will be represented by the
total forces and moments 1f1 and 1m1 exerted by link
0 on link 1, using equations (14) to (16), we note that
(17) has no use in this case. Thus the first 6 equations
of the Lagrange model (L1,. . . ,L6 ) will be replaced by
the following 6 equations:

[06×1] =
[

1f1
1m1

]
(19)

1f1 and 1m1 are zero because there is no body an-
tecedent to the chassis. The complete model can be
expressed as a linear relation in the dynamic parameters:

L = DS

(
ω1, ω̇1, V̇ 1, q, q̇, q̈

)
XS (20)

5) Base dynamic parameters: the base dynamic param-
eters are the minimum number of parameters that can be
used to compute the dynamic model and they constitute
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the identifiable parameters that can be estimated using an
identification method based on the dynamic model [10]. The
base parameters are obtained from the standard dynamic
parameters by grouping some parameters together and by
eliminating those that have no effect on the dynamic model.
Two methods are available for the computation of the base
parameters: a symbolical method [14] or a numerical method
based on the QR decomposition [15]. The numerical method
allows considering the grouping relations due to the poor
excitation properties of the chosen identification trajectory.
After determining the identifiable parameters, the Lagrange
dynamic identification model (18) becomes:

L = D (q, q̇, q̈)X (21)

where:
- X is the vector of nB base parameters
- D is the (n × nB) matrix deduced from DS by only

taking into account the columns corresponding to the
base parameters

A similar relation for the mixed Newton-Lagrange model can
be deduced from (20).

IV. IDENTIFICATION METHOD

We suggest making use of the fact that the dynamic model
is linear in the dynamic parameters to identify the base
parameters using linear least square optimization techniques
[10], [16].

A. Identification model sampling

The dynamic model (21) is sampled along a trajectory. All
the ne samples for the n equations are collected in a linear
system of equations as follows:

Y = W (q, q̇, q̈) X + ρ (22)

where:
- Y is the ((n× ne)× 1) vector of joint torques, obtained

by sampling L, sorted by joint:

Y =




Y 1

...
Y n




- Y j the (ne × 1) vector of joint forces, or torques
associated to joint j

- W is the ((n× ne)× nB) observation matrix, obtained
by sampling D and sorted by joint:

W =




W 1

...
W n




- W j the (ne × nB) observation matrix associated with
joint j,

- ρ the ((n× ne)× 1) vector of modelling errors.

B. Resolution and interpretation of results

Equation (22) can be solved using the weighted least
squares (WLS) which is implemented in many software pack-
ages with efficient algorithms (Matlab, Scilab). Because the
equations are sorted by joint, the linear system is composed
of n subsystems each with ne equations. The weighting
procedure is defined in order to ensure the most significant
equations [16], [17]. The weighted matrix P is computed
using an estimation of the standard deviation for each joint
subsystem j, σρj , as follows:

P =




S1

. . .
Sn


 (23)

with:
- Sj = Ine/σρj ,
- Ine

the (ne × ne) identity matrix,
- σρj is calculated by:

σ2
ρj =

‖ Y j −W j X̂
j ‖2

ne − nBj
(24)

- nBj the number of base parameters appearing in the
equations of joint j,

- X̂
j

the (nBj × 1) vector of estimated parameters using
joint j equations,

The weighted system to be solved is then given by:

Y P = W P X + ρP (25)

where Y P = PY , W P = PW and ρP = Pρ.
Standard deviations on the estimated values σX̂j are com-

puted using classical and simple results from statistics, con-
sidering the matrix W to be a deterministic one, and ρ to be a
zero mean additive independent noise, with standard deviation
such that:

Cρρ = E(ρT ρ) = σ2
ρIne×n

where E is the expectation operator.
An unbiased estimation of σρ is used:

σ2
ρ =

‖ Y P −W P X̂ ‖2
n× ne − nB

(26)

The covariance matrix of the estimation error and standard
deviations can be calculated by:

CX̂X̂ = E
(
(X − X̂)(X − X̂)T

)
= σ2

p(W T
P W P )−1

(27)
σX̂j =

√
CX̂X̂(j, j) is the ith diagonal coefficient of

CX̂X̂ . The relative standard deviation σX̂j% is given by:

σX̂j% = 100
σX̂j

| X̂j |
(28)

Assuming that σX̂j is the realization of a Gaussian random
variable, the 95% confidence interval is 2σX̂j and the relative
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confidence interval is 2σX̂j%. Then we consider that a pa-
rameter with a relative confidence interval lower than 10% is
well identified, keeping in mind that this is only an indicator
based on statistical assumptions. The parameters which are
not well identified may be not excited by the identification
trajectory, or may have only a small effect on the dynamic
model, so they can be removed from the model [18]. But it
is to be noted that this criterion is not a deterministic one in
particular for parameters with small values, where they may
be well identified although σX̂j% is more than 10.

C. Filtering

Some joint variables must be estimated by the differen-
tiation or the integration of the measurements. Derivatives
are estimated with digital zero-phase pass band filters cal-
culated as the product of a low pass Butterworth filter and
a central derivative algorithm (29). The Butterworth filter is
implemented as a Matlab function filtfilt which is a zero-phase
forward and reverse digital filtering. Integrations are zero-
phase estimated as the product of a high pass Butterworth
filter and a trapezoidal algorithm (30).

fd(tk) =
f(tk+1)− f(tk−1)

2Te
(29)

fi(tk) = fi(tk−1) +
Te

2
(f(tk) + f(tk−1)) (30)

where fd denotes the derivative, fi denotes the integral and
Te denotes the sampling period.

D. Choosing a trajectory with sufficient excitation

The result of the estimation highly depends on the trajectory
chosen for the identification [19], [20]. The excitation criteria
are based on the calculation of a function of the condition
number of the observation matrix W of the linear system
[18]. Trajectories with sufficient excitation are defined using
the simulation software ARHMM [3]. It has been shown that
one kind of trajectory is enough to estimate the main dynamic
parameters of a car: the "sinusoidal steering" at different
speeds: 90km/h to 160km/h.

V. EXPERIMENTAL CAR

A. Available sensors

Experiments are carried out on a Peugeot 406 car equipped
with the following sensors:

- 1 SAGEM inertial unit giving the chassis angular veloc-
ities and translational accelerations with respect to the
ground (cof (cut-off frequency): 10 Hz),

- 4 position sensors giving the clearance of the 4 suspen-
sion (cof : 20 Hz),

- 1 Correvit speed sensor giving lateral and longitudinal
velocities of the chassis (cof : 15 Hz),

- 4 Zimmer laser sensors giving the 4 steering angles (cof :
10 Hz),

- 4 Eagle dynamometric wheels giving the 4 effort torques
applied to the 4 wheel centers and the wheel angular
position (cof : 100 Hz),

- 4 Zimmer laser sensors giving the vertical position of
4 points of the chassis with respect to the ground (cof :
20 Hz)

B. Computation of the missing data

Some joint variables required in the computation of the
dynamic model cannot be measured by given sensors (partic-
ularly half track width, wheelbase and kingpin variations). To
access these variables, car manufacturers work with tabulation
models. These are characterized on test benches and return
geometric and elasto-kinematics deformations of the axle
systems as a function of the suspension clearance and the
position of the steering wheel. Half track width, wheelbase
and kingpin variations can be obtained in this way. The
aerodynamic forces can be also obtained from tables as a
function of the vehicle speed or must be identified (see section
V.D).

C. Geometric modelling

The first modelling approach of the car dynamics is to
consider the 6 dof between the ground and the chassis
and all the dof between the chassis and the wheels. The
corresponding system has 38 dof. The model is calculated
usimg a mixed Newton-Lagrange as presented in section
III.B.4. The chassis dynamics is calculated using the Euler
variables while the branches are modelled using the Lagrange
variables. This approach is more convenient with regard to
the sensors available with our car and particularly with the
use of an inertial unit. This model limits the projections of
the measured variables on the car axes, thus measurement
noises are minimized. Moreover, there are about 30% less
mathematical operations (additions and multiplications) than
with the Lagrange model.
For the left rear branch (Fig.5) the dof are:

- the half track width l3,
- the wheelbase L,
- the suspension clearance z3 (elastic joint),
- the toe angle β3,
- the camber angle γ3,
- the kingpin angle ζ3,
- the angular position of the wheel θ9,
- the vertical tire deflection zt3 (elastic joint).

The geometric parameters of the left rear branch (branch 3)
are presented in Table I. The chassis constitutes the first link,
its fixed frame R1 is denoted Rc. The fixed frame R8 is used
to define the dynamometer measuring frame.
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TABLE I
GEOMETRIC PARAMETERS OF THE LEFT REAR BRANCH (BRANCH 3) OF

THE 38 dof MODEL

j a(j) σj γj bj αj dj θj rj

1 0 2 0 0 0 0 0 0
2 1 1 0 0 −π/2 0 −π/2 l3
3 2 1 0 0 −π/2 0 −π/2 L
4 3 1 0 0 −π/2 0 0 z3

5 4 0 0 0 0 0 β3 0
6 5 0 0 0 π/2 0 π/2 + γ3 0
7 6 0 0 0 π/2 0 π/2 + ζ3 0
8 7 2 0 0 π/2 0 0 0
9 8 0 0 0 −π/2 0 θ9 0
10 8 1 0 0 0 0 0 zt3

Wheel base

Suspension clearance

Toe angle

Camber angle

Wheel rotation
Kingpin angle

Track width

Tire deflection

z1=zc
x2

yc, z2 z3

z4, z5

x3

z6

z9

z8

x7, x8, x9, x10

x1=xc

x4, x5
z7,x6 , z10

Fig. 5. Geometric modelling of the left rear branch (branch 3)

The vertical tire deflection is represented by an elastic
prismatic joint. The right rear branch (branch 4) is similar
to the left rear branch but with j = 11 to 19. For the front,
there is the same number of dof where the toe angle βj is
replaced by the steering angle, thus j = 20 to 28 for the left
front branch (branch 1) and j = 29 to 37 for the right front
branch (branch 2).

D. Dynamic identification model

The dynamic identification model (20) is obtained using
the symbolic software package SYMORO+ [21], in which the
algorithms given in section III.B are implemented. Knowing
the geometric parameters, this software automatically gives
the identification model which is linear in the dynamic pa-
rameters.
Since the contact forces are measured at the center of the
wheel by the dynamometric wheels, the inertial parameters
of the wheels are not identified. Only chassis and unsprung
body inertial parameters represent the inertial parameters to
be identified. All the other bodies are virtual and their inertial
parameters are equal to 0. The suspension parameters to be
estimated are composed of stiffness and friction parameters
and an offset as defined in (5) and (6). Anti-roll bars are added
at the front and rear to introduce a coupling between right and

left suspension clearances. They are modelled by:

Fari = kar(qi − qopi) (31)

with:
- Fari the force due to the anti-roll bar on suspension i,
- kar the anti-roll bar stiffness, in N/m,
- qi the suspensions’ clearance of the considered branch,

in m,
- qopi the suspensions’ clearance of the opposite branch,

in m.
Thus 2 more parameters are needed: karr for the rear bar and
karf for the front bar.
The aerodynamic forces and moments, which are applied to
the chassis, are denoted by:

cτa =





Fxa Cxa

Fya
Cya

Fza
Cza





=





1
2ρairSzV

2
a

1
2ρairLSnV 2

a

− 1
2ρairSyV 2

a − 1
2ρairLSmV 2

a + zC
1
2ρairSxV 2

a

− 1
2ρairSxV 2

a − 1
2ρairLSlV

2
a + zC

1
2ρairSyV 2

a





with:
- cτa the aerodynamic forces and torques given in the

frame fixed to the chassis Rc, whose xc, yc and zc

axes are along the longitudinal, lateral and vertical axes
(Fig.2) of the chassis respectively,

- ρair the density of the air,
- L the wheel-base,
- zC the vertical position of the origin of the frame Rc

with respect to the front axle,
- Sx, Sy, Sz the drag coefficients of the vehicle in the air

along the longitudinal direction, the transversal direction,
and the vertical direction,

- Sl, Sm, Sn the drag coefficients of the vehicle in the
air around the longitudinal direction, the transversal
direction, and the vertical direction,

- Va the norm of the vector V a of aerodynamic velocity
computed as follows: V a = V air − V 1,

- V air the speed of the air given in Rc. Because it is not
measured it is supposed to be null,

- V 1 the speed of the vehicle given in Rc.
These forces are identified via the model:

cτa =





CxV 2
a ClV

2
a

CyV 2
a CmV 2

a

CzV
2
a CnV 2

a



 (32)

where the Ci parameters are added to the parameters to be
identified.

VI. SIMULATION OF THE CAR IDENTIFICATION

The car model is composed of 38 dof and 5 physical inertial
bodies with 10 inertial parameters for each. Furthermore, each
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of the suspensions needs 4 parameters, each of the anti roll-
bars and aerodynamic forces or torques also need one param-
eter. Thus, this model is quite complex and certainly needs to
be simplified in order to be correlated with the accuracy of
the measurements and the available trajectories. This section
presents a study of the robustness of the dynamic model
generated in the previous step with respect to trajectories and
perturbations. The software package ARHMM [3] is used
to generate trajectories without perturbation using a set of
known parameters. This software uses a dynamic algorithm
representing the maximum phenomena existing in a real car
so that it can describe the whole range of uses of the car and it
is run with a real time core. It takes into account the driver’s
inputs through the transfer line and the steering wheel, as
well as elastokinematic deformations, aerodynamics and non-
linearity of the suspensions and anti-roll bars. Contact forces
with the ground are given by the Pacejka’s Magic Formula
[6] and [7]. It gives a more precise model of a real car
than the 38 dof model. The trajectory available is sinusoidal
steering at different speeds. At first, the model with 38 dof
is used to determine whether all the standard parameters are
excited. Then, the model is modified consequently by deleting
or grouping together some parameters.

A. Aerodynamic effect

With the sinusoidal steering trajectory, it appears that aero-
dynamic contribution is constant. Indeed, it is proportional
to the vehicle speed which is constant in the tests used.
Aerodynamic forces are therefore estimated from tabulations.
Only the coefficient Cx of the aerodynamic force along
the x axis is identified, because it is the most important
component. The value of the other coefficients are too small
to be identified.

B. Robust practical model

The following conclusions and simplifications have been
deduced through different simulations using ARMMH and
analyzing experimental data and results:
• The results are sensitive to measurement cut-off frequen-

cies: to explain this sensitivity, a fast Fourier transform
is applied to the measurements to determine the modes
of each one. It appears that:

- the data from the inertial unit are perturbed by the
driveline (modes at 3.9 - 4.3 - 5.5 Hz),

- camber and steering angle measurements are per-
turbed by the driveline (modes at 3.9 - 4.3 - 5.5 Hz),

- only suspension clearances have "rebound of the
wheel" mode information (mode at 12.7 Hz)

To remove driveline perturbation, all the measurements
are filtered with a low pass filter having a cut-off fre-
quency of 3.125 Hz except suspension clearance which
is not filtered to preserve the "rebound of the wheel"

mode. The 3.125 Hz value is chosen because it preserves
mechanical modes of the chassis which are between 0.4
and 3 Hz.

• Most of the unsprung body inertial parameters are not
excited. Only their masses are to be considered, the other
9 inertial parameters are removed from the identification.

• Moreover track-width, wheel base, steering, camber or
kingpin have negligible influence in dynamic identifica-
tion and can be removed from the model. This will be
shown by applying the experimental tests to the complete
model of 38 dof and a reduced model of 20 dof.

• The dynamic equations to be used for the identification
are restricted to the 6 components of the chassis and the
4 related to suspension clearances.

VII. PRACTICAL IDENTIFICATION RESULTS

The identification method has been applied to an experi-
mental Peugeot 406 car. Only sinusoidal steering trajectories
are available. The 38 dof and the reduced 20 dof model
are tested. The a priori parameters of the car, provided by
Peugeot-Citroën are shown in Table II. They do not take into
account the driver nor the equipment so they give only an idea
about their values. It is to be noted that no a priori values are
provided by the manufacturer for the Coulomb parameters.

A. Identification with a 38 dof model

Results of the identification on the model having 38 dof
are given in Table II. As pointed out in section IV.B, the
identification relative standard deviation σX̂j% is used to give
the following interpretation to the results: If σX̂j% < 10%,
the parameter is considered as well identified. Nevertheless
this interpretation is not an absolute criterion; it could be
even wrong if the parameter value is low. Applied to the
obtained results the following parameters are considered as
being well identified and the identification values are close
to the a priori values: Mc, MXc, XXc, Y Yc, ZZc, XZc,
M1, M2, M3, M4, karr, karf , k1, h1, off1, k2, fs2, h2,
off2, k3, h3, off3, k4, h4, off4, Cx. Whereas the following
parameters appear not to be well identified: MYc, MZc, XYc,
Y Zc, fs1, fs3, fs4. But because these parameters have low
values it is difficult to conclude. For instance, compared to
the a priori values MYc and MZc are good (taking into
account that a variation of 10 Kg.m on the value of a first
moment component of the chassis is equivalent to a variation
of 7 mm on the gravity center position since the chassis
mass is about 1500 Kg). Parameters XYc and Y Zc do not
correspond to the a priori values but because of their low
value w.r.t the diagonal elements XXc, Y Yc and ZZc they are
physically hard to excite. Finally, concerning the parameters
fs1, fs3, fs4, they have no a priori values, but their values are
negligible with respect to the offset forces of the suspension,
thus these parameters can be eliminated.
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TABLE II
RESULTS WITH 38 dof MODEL

parameters units a priori estimated σX̂j σX̂j%

Mc Kg 1508.5 1496.6 2.2 0.1
MXc m.Kg 2421.1 2403.0 4.6 0.1
MYc m.Kg 0 8.7 1.6 19.1
MZc m.Kg −15.01 −12.2 3.7 30.5
XXc Kg.m2 622.15 513.8 10.3 2.0
Y Yc Kg.m2 5898 4856.7 132.3 2.7
ZZc Kg.m2 6199 6581.0 52.5 0.7
XZc Kg.m2 44.12 137.0 11.8 8.6
XYc Kg.m2 76 −11.2 21.7 193.8
Y Zc Kg.m2 −13.00 −95.3 27.7 29.0
M1 Kg 24 41.2 1.4 3.4
M2 Kg 24 17.4 0.9 5.6
M3 Kg 24 25.6 1.0 4.1
M4 Kg 24 25.6 0.8 3.3
karr N/m 19938 23639.0 450.5 1.9
karf N/m 19033 21820.5 344.1 1.5
k1 N/m 20600 26608.9 748.1 2.8
fs1 N 9.1 3.3 36.4
h1 N/m/s 3200 3528.4 96.7 2.7

off1 N 12383.2 226.5 1.8
k2 N/m 20600 26254.9 644.7 2.4
fs2 N 35.8 2.2 6.3
h2 N/m/s 3200 2981.1 70.2 2.3

off2 N 12266.8 194.9 1.5
k3 N/m 22000 26856.4 876.9 3.2
fs3 N 2.1 3.0 144.2
h3 N/m/s 3800 3832.5 106.2 2.7

off3 N 10603.7 252.2 2.3
k4 N/m 22000 31663.3 911.0 2.8
fs4 N 5.0 3.2 64.1
h4 N/m/s 3800 2599.8 107.0 4.1

off4 N 12303.8 262.4 2.1
Cx 1.17158 0.00311 0.2

To validate the obtained values, the computed joint torques
of the main joints, denoted by Y j , are compared with the
reconstructed joint torques W j X , where X is the vector
of estimated parameters. Fig. 6 to 12 show cross validation
results (the validation trajectory is a different sinusoidal
steering trajectory than the one used for identification). Each
figure shows the computed joint torque Y j , given by solid
lines and the corresponding error W j X- Y j , given with
broken lines. For suspension, only one branch is given, the
other branch results are similar. These curves show that the
error signals are small w.r.t the total force or moment signals.

B. Identification with a 20 dof model

The 38 dof model used for the previous identification is
quite complex. Indeed it takes into account half track width,
wheelbase, toe, camber and kingpin angle variations. The
same identification procedure is applied using the reduced 20
dof model shown in Fig.13, whose geometric parameters are
given in Table III.
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Fig. 6. Cross validation for the roll torque (Nm)

0 5 10 15 20 25
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5x 10 4

J
o

in
t 

T
o

rq
u

e
 

(N
.m

)

time (s)

Fig. 7. Cross validation for the pitch torque (Nm)
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Fig. 8. Cross validation for the yaw torque (Nm)
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Fig. 9. Cross validation for the longitudinal force (N)
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Fig. 10. Cross validation for the lateral force (N)
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Fig. 11. Cross validation for the vertical force (N)
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Fig. 12. Cross validation for the front left suspension force (N)
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Fig. 13. The 20 dof model

TABLE III
THE GEOMETRIC PARAMETERS OF THE REDUCED 20 dof MODEL

j a(j) σj γj bj αj dj θj rj

1 0 2 0 0 0 0 0 0
2 1 1 π/2 0 0 l3 −π/2 z3

3 2 2 0 0 0 0 0 0
4 3 0 0 0 −π/2 0 θ4 0
5 3 1 π/2 0 0 0 0 zt3

6 1 1 π/2 0 0 −l4 −π/2 z4

7 6 2 0 0 0 0 0 0
8 7 0 0 0 −π/2 0 θ8 0
9 7 1 0 0 0 0 0 zt4

10 1 2 0 0 0 L π/2 0
11 10 1 0 0 0 l1 −π/2 z1

12 11 0 0 0 0 0 β1 0
13 12 2 0 0 0 0 0 0
14 13 0 0 0 −π/2 0 θ14 0
15 13 1 0 0 0 0 0 zt1

16 10 1 0 0 0 −l2 −π/2 z2

17 16 0 0 0 0 0 β2 0
18 17 2 0 0 0 0 0 0
19 18 0 0 0 −π/2 0 θ19 0
20 18 1 0 0 0 0 0 zt2

Results of the identification on the 20 dof model are
given in Table IV. They are very similar to those given in
Table II obtained using the 38 dof model. Thus we conclude
that the 20 dof model is sufficient for dynamic parameters
identification.

VIII. CONCLUSION

This paper presents a new method to estimate the dynamic
parameters of a car. The identification method is based on the
use of robotics formalism in modelling tree structure multi-
body systems. The model presented takes into account the
most important dof of the chassis with respect to the ground
and the wheels (38 dof ). The use of the Euler variables for
the chassis and the Lagrange variables for the other elements
of the car is more convenient with respect to the car sensors
and reduces model complexity.

With the use of the vehicle dynamic software ARHMM
and real tests, a reduced model with 20 dof has been deduced
for the identification of the chassis, the unsprung bodies and
the suspension dynamic parameters. The sensors required are
composed of an inertial unit, dynamometric wheels and sus-
pension clearance measurements. The aerodynamic coefficient
force along the longitudinal axis has also been identified.

Future work will be focused on the model extension to the
interaction between the wheels and the ground. This model
extension would enable us to extend the identification to the
contact forces model with the goal of avoiding the use of
dynamometric wheels.
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