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Abstract

This paper is concerned with the synthesis of delay-scheduled state-feedback controllers which stabilize linear systems with time-
varying delays. In this framework, it is assumed that the delay is approximately known in real-time and used in the controller in
a scheduling fashion. First, a new model transformation turning a time-delay system into an uncertain LPV system is introduced.
Using this transformation, a new delay-dependent stability test based on the so-called full block S-procedure is developed and
from this result, a new delay-dependent stabilization result is derived. Since the resulting LMI conditions depend polynomially on
the parameters, a relaxation result is then applied in order to obtain a tractable finite set of finite-dimensional LMIs. The interests
of the approach resides in 1) the synthesis of a new type of controllers scheduled by the delay value which has a lower memory
consumption than controllers with memory (since it is not necessary to store past values of the state), and 2) an easy consideration
of uncertainties on the delay knowledge.
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1. Introduction

Since several years, time-delay systems (TDS) have been
intensively studied (Niculescu, 2001; Fridman and Shaked,
2002; Gu et al., 2003; Jiang and Han, 2005; Fridman, 2006;
Gouaisbaut and Peaucelle, 2006a; Suplin et al., 2006; Xu
et al., 2006; Kao and Rantzer, 2007). It has been shown that
delays are often responsible of instability and poor perfor-
mances and thus, they should not be neglected when ana-
lyzing system stability or synthesizing control laws. Since
the advent of communication networks and embedded elec-
tronics, systems with time-varying delays have attracted
more and more interest. Indeed, a communication network
can be viewed as a communication channel inducing delays
depending on the load of the network which varies in time.

In some applications, it may be possible to measure or
compute the delay from a mathematical model and in this
case, it could be interesting to use this information in the
controller. In (Witrant et al., 2005), a predictive approach
to control Network Controlled Systems is given but a net-
work model is necessary to compute the prediction horizon.
In (Sename et al., 1995) a state feedback with internal delay
is designed but the robustness issue w.r.t delay measure-

ment uncertainties is not considered. The authors proposed
in (Briat et al., 2007) some preliminary results on a new
control design technique for TDS. Using a new model trans-
formation, the time-delay system is transformed into an
uncertain Linear Parameter Varying (LPV) system where
the delay acts as a parameter. However the results stand for
interval delay (with non zero delay) only. Some interesting
results on TDS based on Linear Fractional Transformation
(LFT) may also be found in (Zhang et al., 2001; Roozbe-
hani and Knospe, 2005; Gouaisbaut and Peaucelle, 2006b;
Kao and Rantzer, 2007).

Following the preliminary results in (Briat et al., 2007),
the LPV/uncertain system stability analysis and control
synthesis tools are used to prove stability and stabilize time-
delay systems (See (Apkarian and Adams, 1998; Scherer,
1999)). The main contributions of the paper are:
– Following the idea of (Briat et al., 2007), a new model

transformation which corrects some weaknesses of the
previous one is introduced.

– Using these results, a delay-dependent stability with
guaranteed L2 performances test is provided. It is ob-
tained using the so-called full-block S-procedure and is
expressed through parameter dependent LMI conditions.
Computational approximations are then used in order
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to make the problem tractable by numerical procedures.
– From this stability test a stabilization result is derived.

The obtained controller is smoothly scheduled by an ap-
proximate delay value and the error on the delay knowl-
edge is taken into account as a robustness constraint.

In this paper, the following systems are considered

ẋ(t) = Ax(t) +Ahx(t− h(t)) +Buu(t) + Ew(t)

z(t) = Cx(t) + Chx(t− h(t)) +Duu(t) + Fw(t)
(1)

where x ∈ Rn, u ∈ Rm, w ∈ Rp and z ∈ Rq are respectively
the system state, the control input, the exogenous input
and the controlled output.

The time-varying delay h(t) is assumed to belong to the
set

H :=
{
h ∈ C1(R+, H), ḣ : R+ → U

}
(2)

where C1(I, J) denotes the set of continuous functions with
continuous derivative mapping I to J , H := [hmin, hmax]
and U := [µmin, µmax]. The delay takes then bounded val-
ues and has a bounded derivative.

It is convenient to introduce the following set of vertices

Vh := {hmin, hmax}

Vµ := {µmin, µmax} µmax < 1
(3)

The aim of the paper is to find delay-scheduled state-
feedback controllers of the form

u(t) = K(ĥ(t))x(t) (4)

which stabilize system (1) and where K(·) may be a lin-
ear, polynomial or rational function of the known value of
the delay ĥ(t) = h(t) + δh(t), with knowledge error δh(t)
belonging to

∆ :=
{
δh : R+ → ∆, δ̇h : R+ → ∆ν

}
(5)

where ∆ := [−δ, δ] and ∆ν := [νmin, νmax].
Finally we define the set of known delay values:

Ĥ :=
{
ĥ ∈ C1(R+, Ĥ), ˙̂

h : R+ → Û
}

(6)

with Ĥ := H + ∆ and Û := U + ∆ν .
The notations are as follows, for symmetric matrices

A,B, A > B means A−B is positive definite (i.e. A−B >
0). For a square matrix A we have AS = A + AT where
AT is the transpose of A. Ker(A) is a basis of the null-
space of A. A⊥ is any basis of the orthogonal complement
of =(A) (i.e. ATA⊥ = 0) and Im(A) is the image set of

A. ⊕ is the direct sum of matrices: A ⊕ B =

A 0

0 B

. L2

is the space of signals with finite energy (finite L2-norm):
||f ||2L2

:=
∫ +∞

0
|f(t)|2dt < +∞.

The paper is organized as follows, in Section 2 we in-
troduce some preliminary results. In Section 3, the new

model transformation and the associated comparison sys-
tem are presented. The first main result of the paper: a
new delay-dependent stability test based on the use of the
model transformation is developed in Section 4. Finally,
the second main result of the paper: the delay-scheduled
state-feedback design is detailed in Section 5.

2. Converting Polynomial into Linear Dependence

This section is devoted to the presentation of a relaxation
technique for polynomially parameter dependent LMI. The
key idea is to use the Finsler’s lemma (Skelton et al., 1997)
to linearize the dependence on the parameters. The follow-
ing definition will be useful in the sequel
Definition 2.1 A square matrix S is said to be S2-
structured if it writes S = [Sij ]i,j with blocks Sij ∈
Rk×k, k > 1 such that

Sij :=

 0k×k if i = j

Sij = STji ∈ Kk if i 6= j

It is now possible to express the linearization lemma
which has also been provided in (Sato, 2006; Sato and Peau-
celle, 2007).
Lemma 2.1 Suppose that a M(δ) is a polynomially
parametrized symmetric matrix in δ ∈ ∆ admitting a spec-
tral factorization M(δ) = UT (δ)NU(δ) < 0 where U(δ) is
a basis of polynomials. Then M(δ) < 0 for every δ ∈ ∆ if
there exists a matrix P and a S2-structured matrix R such
that

N +R+ PV (δ) + V T (δ)PT < 0 δ ∈ ∆ (7)

where U(δ) = Ker(V (δ)) and R is S2-structured (i.e.
UT (δ)RU(δ) = 0 with R = RT 6= 0).

Proof : The proof is given in Appendix A and relies on
the Finsler’s Lemma (Skelton et al., 1997). �

Remark 2.1 If the matrix V (δ) is affine in δ then lemma
2.1 can be used as a linearization procedure to linearize
polynomially parameter dependent LMIs. It can be shown
that every polynomially parametrized LMI can be expressed
through a basis U(δ) which leads to an affine matrix V (δ).
Indeed, the trivial case U(δ) = col(I, δ1, . . . , δN , δ2

1 , . . .)
leads to an affine V (δ). Hence, assuming that a ’good’ basis
is used, then (7) is affine and thus can be treated as in the
polytopic/affine framework (using multi-convexity).

This approach is well dedicated to small and medium
size problems since the size and the number of LMIs grows
very quickly depending on the degree of polynomials, the
number of parameters and the size of the initial LMI. In
the case of large size problems, it may be interesting to use
the relaxation proposed in (Ben-Tal and Nemirovski, 2002;
Scherer, 2006). It is worth mentioning that this result is
highly related to the so-called Sum-of-Squares (SoS) relax-
ation of parameter dependent LMIs.

An important remark concerns the relaxation of LMIs
with rational parameter dependence. This type of LMIs
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can indeed be turned into LMIs with polynomial depen-
dence using the full-block S-procedure (Scherer and Wei-
land, 2005) which can be, in turn, transformed into LMIs
with linear dependence using lemma 2.1.

3. A new model transformation

A new model transformation allowing to turn a TDS
with time-varying delays into an uncertain LPV system is
provided in this section. The main advantages of this new
operator compared to (Briat et al., 2007) is the considera-
tion of zero delay values and a tighter computation of the
L2 induced norm of the operator.

Define then the operator

Dh : L2 → L2

η(t) → 1√
h(t)hmax

∫ t

t−h(t)

η(s)ds
(9)

Proposition 3.1 This operator enjoys the following prop-
erties:

(i) Dh is L2 input/output stable.
(ii) Dh has a L2 induced norm lower than 1.
Proof : The proof is given in Appendix B and is based

on a similar method as of (Gu et al., 2003). �

The remaining of the section explains the use of the op-
erator Dh in order to turn a time-delay system into an un-
certain LPV system. Let us consider system (1) and note
that xh(t) = x(t) − h(t)Dh(ẋ(t)). Thus, substituting this
equality into system (1) yields

ẋ(t) = Āx(t)− α(t)Ahw0(t) +Buu(t) + Ew(t)

z0(t) = ẋ(t)

z(t) = C̄x(t)− α(t)Chw0(t) +Duu(t) + Fw(t)

w0(t) = Dh(z0(t))

α(t) =
√
h(t)hmax

Ā = A+Ah C̄ = C + Ch

(10)

which is an uncertain LPV system with state x(t) expressed
in ’LFT’ form. Indeed, the system is
– uncertain due to the presence of the ’unknown’ struc-

tured norm bounded LTV dynamic operator Dh and
– parameter varying due to the presence

√
h(t) whose de-

pendence is even affine.
In order to deal with the uncertain operator Dh, robust

stability and robust control theories based on the full-block
S-procedure approach will be considered (Scherer and Wei-
land, 2005). The parameter dependence will be tackled us-
ing parameter dependent Lyapunov functions.
Remark 3.1 According to (Gu et al., 2003), system (10)
is not equivalent to (1) due to the use of the model trans-
formation induced by the use of the operator Dh. Without
entering too much in details, the use of model transforma-
tion often introduces conservatism in the approach by adding

additional dynamics to the comparison (the transformed)
model which may be unstable even if the original system is
stable. Hence the stability test performed on the comparison
model (10) may fail even if the initial system (1) is stable.
However, in the stabilization problem, this is less critical
since it is aimed to stabilize the system and thus the addi-
tional dynamics will be implicitly stabilized.

4. Delay-dependent stability

In this section, we develop the first main result of the
paper: a new delay dependent stability test based on the
comparison model (10) obtained from system (1) used along
with the model transformation presented in section 3.
Lemma 4.1 System (10) without control input (i.e. u(t) =
0) is asymptotically stable for h ∈ H and satisfies the L2

performance constraint ||z||L2/||w||L2 < γ if there exist a
smooth matrix function P : H → Sn++, matrix functions
D : H × U → Sn++ and a scalar γ > 0 such that the LMI
(8) holds for all α ∈ [

√
hminhmax, hmax] and ḣ ∈ Vµ.

Proof : The proof is given in Appendix C. It is based on
an application of the full-block S-procedure to deal with
the uncertain operatorDh while the parameters are consid-
ered through the use a parameter dependent Lyapunov. �

A direct corollary can be obtained immediately by choos-
ing all the parameter dependent matrices to be constant.
Corollary 4.1 System (10) without control input (i.e.
u(t) = 0) is quadratically asymptotically stable for h ∈ H
and satisfies theL2 performance constraint ||z||L2/||w||L2 <
γ if there exist matrices P,D ∈ Sn++ and a scalar γ > 0
such that the LMI

[ĀTP ]S −αPAh PE C̄T ĀTD

? −D 0 −αCTh −αAThD

? ? −γIp FT ETD

? ? ? −γIq 0

? ? ? ? −D


< 0

holds for all α ∈ {
√
hminhmax, hmax}.

Proof : The proof is straightforward application of lemma
4.1. Since the LMI is linear in

√
h then using a convex

argument it suffices to check the feasibility of the LMI at
the vertices of H (i.e. Vh) to conclude on the stability over
the whole set H. �

The next corollary is obtained by fixing all parameter
dependent matrices such that the resulting parameter de-
pendent LMI is of maximum degree 2. It is then relaxed
using Lemma 2.1.
Corollary 4.2 System (10) without control input (i.e.
u(t) = 0) is asymptotically stable for h ∈ H and satisfies
the L2 performance constraint ||z||L2/||w||L2 < γ if there
exist matrices P0, P1, D0, D1 ∈ Sn, a full matrix Θ, a S2-
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[ĀTP (h)]S +
dP

dh
ḣ −αP (h)Ah P (h)E C̄T ĀTD(h, ḣ)

? −D(h, ḣ) 0 −αCTh −αAThD(h, ḣ)

? ? −γIp FT ETD(h, ḣ)

? ? ? −γIq 0

? ? ? ? −D(h, ḣ)


< 0 (8)

structured matrix Φ and a scalar γ > 0 such that for all
(hd, µd) ∈ Vh × Vµ the LMIs

Ψ + Φ + Vs(hd)TΘT + ΘVs(hd)< 0 (11)

P0 + hdP1 > 0 (12)

D0 +
√
hdD1 > 0 (13)

holds where β =
√
hmax, Vs(hd) =

√
hdI −I 0

0 −
√
hdI −I


and

Ψ =


Ψ0 Ψ1/2/2 Ψ1/3

? Ψ1/3 Ψ3/2/2

? ? 0



Ψ0 =



[ĀTP0]S + P1ḣ 0 P0E CT ĀTD0

? −D0 0 0 0

? ? −γIp FT ETD0

? ? ? −γIq 0

? ? ? ? −D0



Ψ1/2 =



0 −βP0Ah 0 0 ĀTD1

? −D1 0 −βCTh −βAThD0

? ? 0 0 ETD1

? ? ? 0 0

? ? ? ? −D1



Ψ1 =



ĀTP1 + P1Ā 0 P1E 0 0

? 0 0 0 −βAThD1

? ? 0 0 0

? ? ? 0 0

? ? ? ? 0



Ψ3/2 =



0 −βP1Ah 0 0 0

? 0 0 0 0

? ? 0 0 0

? ? ? 0 0

? ? ? ? 0



Proof : Since system (10) is linear in
√
h(t) then matrices

of the form P (h) = P0 +P1h > 0 and D = D0 +D1

√
h are

chosen. The reason why P does not involve a term in
√
h

is the non-differentiability of
√
h for h = 0. However such

a term can be used when the delay is not assumed to take
0 values.

Note that P (h) > 0 if and only if (12) is satisfied and
D(h) > 0 if and only if (13) using standard convex argu-
ments. Then substitute the explicit expressions ofD(h) and
P (h) into (8) leads to the expression

Ψ0 + Ψ1/2

√
h+ Ψ1h+ Ψ3/2h

3/2 < 0 (17)

Since the LMI is affine in ḣ (only Ψ0 depends on ḣ) it is not
necessary to include it into the spectral factor U(·). Then
computing the spectral factorization of (17) with Us(h) =

I
√
hI

hI

 we get

UTs (h)


Ψ0 Ψ1/2/2 Ψ1/3

? Ψ1/3 Ψ3/2/2

? ? 0

Us(h) < 0 (18)

Applying lemma 2.1 on (18) linearizes the parameter de-
pendence which becomes affine in

√
h. Indeed, we have

Vs(h) =

√hI −I 0

0
√
hI −I


and Vs(h)Us(h) = 0. Finally, using a convexity argument
it suffices to check the negative definiteness of the LMI at
the vertices of H × U (i.e. for every element of Vh × Vµ)
to check the feasibility of the LMI over the whole space
H × U and delay and we obtain (11). �

5. Delay-Scheduled state-feedback design

This section is devoted to the determination of a delay-
scheduled controller of the form (4) which stabilizes system
(1) and ensures L2 performance of the closed-loop system.
The closed-loop system obtained from the interconnection
of (1) and (4) is governed by the equations
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− ˙̂
h
∂X(ĥ)

∂ĥ
+ [X(ĥ)ĀT + Y T (ĥ)BTu ]S X(ĥ)C̄T + Y T (ĥ)DT

u −
˙̂
h
∂X(ĥ)

∂ĥ
+ ĀX(ĥ) +BY (ĥ) αhAhD̃(ξ) E

? −γIq C̄X(ĥ) +DY (ĥ) hαChD̃(ξ) F

? ? − ˙̂
h
∂X(ĥ)

∂ĥ
− D̃(ξ) 0 0

? ? ? −D̃(ξ) 0

? ? ? ? −γIp


< 0

(14)

Ψ0 =



−(µd + δν)X1 + [X(δd)ĀT + Y T (δd)BTu ]S X(δd)C̄T + Y T (δd)DT
u −δ̇dX1 + ĀX(δd) 0 E

? −γIq C̄X(δd) 0 F

? ? −(µd + δν)X1 − D̃0 0 0

? ? ? −D̃0 0

? ? ? ? −γIp


(15)

Ψ1 =



[ĀX1 +BuY1]S X1C̄
T + Y T1 D

T
u ĀX1 βAhD̃1 0

? 0 C̄X1 βChD̃1 0

? ? 0 0 0

? ? ? 0 0

? ? ? ? 0


(16)

ẋ(t) = Ācl(h, δh)x(t)− α(t)Ahw0(t) + Ew(t)

z(t) = C̄cl(h, δh)x(t)− α(t)Chw0(t) + Fw(t)

z0(t) = ẋ(t)

w0(t) = Dh(z0(t))

(19)

with ĥ = h + δh ∈ Ĥ. Since the state feedback is of the
form K(ĥ) then the closed-loop system matrices are given
by Ācl(ĥ) = A+Ah+BuK(ĥ), C̄cl(ĥ) = C+Ch+DuK(ĥ).

At this point, several techniques can be employed to com-
pute the controller (4):

(i) either use a change of variable and in this case it is
possible to fix a desired form to the controller; or

(ii) elaborate a stabilizability test and deduce a suitable
controller either by explicit formulae or implicitly by
solving a SDP.

In the present paper we propose a solution based on a
change of variable which has several benefits compared to
the second one. The main one is the the possibility of choos-
ing the structure of the controller (constant, affine, polyno-
mial or rational). The resulting controller is then implicitly
implementable. This is not the case of controllers computed
using the second technique (with explicit construction for-
mulae) which may depend on the derivative of the delay,
supposed to be unknown. Moreover, the first approach al-
lows for an easy computation of rational controllers through
an appropriate choice of the decision matrices.

Theorem 5.1 The system (10) is stabilizable with a delay-
scheduled state feedback gain K(ĥ) = Y (ĥ)X−1(ĥ) if there
exists a smooth matrix function X : Ĥ → Sn++, matrix
functions D̃ : H×U × Ĥ× Û → Sn++, K : Ĥ → Rm×n and
a scalar γ > 0 such that the LMI (14) holds for all h ∈ H,

ḣ ∈ U , ĥ ∈ Ĥ and ˙̂
h ∈ ∆̂, where ξ = col(h, δh, ḣ, δ̇h) and

α =
√
hhmax.

Moreover the closed-loop system satisfies ||z||L2/||w||L2 <
γ.

Proof : The proof is given in Appendix D and is mainly
based on the dualization lemma (Scherer and Weiland,
2005). �

We develop immediately the following corollary where
all the parameter dependent matrices are chosen to be con-
stant:
Corollary 5.1 The system (10) is stabilizable by a con-
stant state feedback K = Y X−1 if there exists constant ma-
trices X, D̃ ∈ Sn++, Y ∈ Rm×n and a scalar γ > 0 such that
the LMI (20)
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[XĀT + Y TBTu ]S XC̄T + Y TDT
u ĀX αAhD̃ E

? −γIq C̄X αChD̃ F

? ? −D̃ 0 0

? ? ? −D̃ 0

? ? ? ? −γIp


< 0

(20)
holds for all h ∈ Vh and α =

√
hhmax.

Moreover the closed-loop system satisfies ||z||L2/||w||L2 <
γ.

Proof : It is a straightforward application of theorem 5.1
when using constant decision matrices. Then with a con-
vexity argument it is possible to conclude on the feasibility
of the LMI over the whole parameter space while checking
the feasibility at the vertices of the set H only (i.e. Vh). �

Finally the corollary below stands when the parame-
ter dependent matrices are chosen such that rational con-
trollers of degree 1 in ĥ can be designed:
Corollary 5.2 The system (10) is stabilizable with a delay-
scheduled state feedback K(ĥ) = Y (ĥ)X(ĥ)−1 with Y (ĥ) =
Y0 + Y1ĥ and X(ĥ) = X0 + ĥX1 if there exist matrices
X0, X1, D̃0, D̃1 ∈ Sn, Y0, Y1 ∈ Rm×n, a full matrix Π, a
S2-structured matrix Φ and a scalar γ > 0 such that the
following LMIs

Ψ + Φ +KT1 (ξ)ΠT + ΠK1(ξ)< 0 (21)

D̃0 + D̃1

√
hd > 0 (22)

X0 +X1(hd + δd)> 0 (23)

hold for all ξ ∈ Vh×Vµ×Vδ×Vν with Vδ := {−δ, δ}, Vν :=

{νmin, νmax}, ξ = (hd, µd, δd, δν), Ψ =

Ψ0 Ψ1/2/2

? Ψ1


where Ψ0 is given by (15), Ψ1 by (16) and

Ψ1/2 =



0 0 0 βAhD̃0 0

? 0 0 βChD̃0 0

? ? −D̃1 0 0

? ? ? −D̃1 0

? ? ? ? 0


Proof : The proof is similar as for Corollary 4.2. Affine pa-

rameter dependent matrices Y (ĥ) = Y0 + Y1ĥ and X(ĥ) =
X0 +X1ĥ are chosen. The matrix D̃ is fixed to be affine in√
h(t). Then (14) may be rewritten as I

√
hI

T Ψ0 Ψ1/2/2

? Ψ1


︸ ︷︷ ︸

Ψ

 I
√
hI

T < 0 (24)

The linearization procedure is then applied and yields
(21). The negative definiteness of D̃ and positive definite-
ness of X are defined by (22) and (23) respectively. �

6. Example

We aim to stabilize the following time delay system with
time-varying delay

ẋ(t) =

−1 0

1 1

x(t) +

1 −1

0 −1

xh(t) +

1

0

u(t)

+

1

0

w(t)

z(t) =

0 1

0 0

x(t) +

0

1

u(t)

(25)

with h(t) ∈ [0.1, 0.9], |ḣ| ≤ 0.2, δ̇h, δh ∈ [−0.1, 0.1]. Con-
stant scaling (i.e. constant D̃) is chosen and we compute an
affine state-feedback of the form K(ĥ) = K0 +K1ĥ with

K0 =
[
−27.1322 −17.8448

]
K1 =

[
−4.6802 −3.1368

] (26)

Using this controller, the minimal L2 performance gain is
γ = 9.89. It is important to note that, for this example,
computing a rational gain does not improve the result and
should not be used.

7. Conclusion

We have presented in this paper a new model transfor-
mation which refines the transformation proposed in (Briat
et al., 2007) by allowing the consideration of a larger class
of delay values (especially including 0). The methodology
is similar and is based on the transformation of a time-
delay system into an uncertain LPV system where the delay
acts as a time-varying parameter. Based on that descrip-
tion, it is possible to propose a new delay-dependent sta-
bility lemma based on the full-block S-procedure and de-
rive a constructive approach for the computation of stabi-
lizing state-feedback controllers. Both constant and delay-
scheduled controllers are considered and uncertainties on
the knowledge of the delay are taken into account in the
synthesis problem. All the results are given in terms of pa-
rameter dependent LMIs depending polynomially on the
parameters. These parametrized LMIs are then relaxed into
a set of constant LMIs using a linearization result.

Appendix A. Proof of Lemma 2.1

The proof is a simple application of the Finsler’s lemma
(Skelton et al., 1997) recalleds hereunder:
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Lemma A.1 LetM by a symmetric matrix andB a matrix
of appropriate dimensions, then the following statements
are equivalent:

(i) Inequality Ker[B]TMKer[B] < 0 holds.
(ii) There exists a matrix N of appropriate dimensions

such that M +BTN +NTB < 0
First note that if the quadratic form UT (δ)RU(δ) is added
to UT (δ)NU(δ), the expression of the quadratic form
remains unchanged (since R is S2-structured and hence
UT (δ)RU(δ) = 0). However this additional term modi-
fies the eigenvalues the resulting LMI and thus provides
extra degrees of freedom. Apply the Finsler’s lemma on
UT (δ)NU(δ) < 0 leads to the existence of Q(δ) such that

N +R+Q(δ)V (δ) + V T (δ)Q(δ)T < 0

These parameter dependent LMIs are fully equivalent.
Then fixing Q to be parameter independent (loosing then
equivalence) yields the proposed result (7).

Appendix B. Proof of Proposition 3.1

Let us prove first that for a L2 input signal we get a L2

output signal. Assume that η(t) is continuous and denote
by ηp(t) all the signals satisfying dηp(t)/dt = η(t) then we
have

Dh(η(t)) =
ηp(t)− ηp(t− h(t))√

h(t)hmax
(B.1)

If h(t) is positive then (B.1) is bounded since η(t) is con-
tinuous and belongs to L2. Now, let us show that when the
delay reaches 0, the output signal remains bounded. Let us
suppose that there exist a (possibly infinite) family of time
instants 0 ≤ t0 < . . . < ti < ti+1 < . . . such that h(ti) = 0.
Since ηp(t) is continuously differentiable and hence we have

lim
t→ti

ηp(t)− ηp(t− h(t))√
h(t)hmax

=

√
h(ti)
hmax

η(ti)

Since η(t) is continuous and belongs toL2, we can state that
η(ti) is always finite and then the output signal satisfies

lim
t→ti

ηp(t)− ηp(t− h(t))√
h(t)hmax

= 0

This shows that the output signal is bounded if the delay
reaches zero. We have shown that the output signal remains
bounded for any value of h(t), let us prove now that it has
a finite induced L2-norm using a similar method as in (Gu
et al., 2003). We have the following definition

||Dh(η)||2L2
:=

∫ +∞

0

dt

h(t)hmax

∫ t

t−h(t)

ηT (θ)dθ·
∫ t

t−h(t)

η(θ)dθ

Then using the Jensen’s inequality (see (Gu et al., 2003))
we obtain

||Dh(η)||2L2
≤

∫ +∞

0

dt

hmax

∫ t

t−h(t)

ηT (θ)η(θ)dθ (B.2)

In order to exhibit the norm of the input signal into the
expression, the idea is to exchange the order of integration.

Fig. B.1. Evolution of the domain of integration of (B.2)

Fig. B.2. Evolution of the domain of integration of (B.3)

The exchange is possible if the dependence between t and
θ is reversed. In the integral equation (B.2), θ depends on
t, in the ’exchanged’ one t should depend on θ. Note that
the integration domain for (B.2) is defined by

{(t, θ) : t ∈ R+, θ ∈ [t− h(t), t]}

and is represented by the blue/dark surface on Figure B.1.
The exchange is based on the inverse function of p(t) =

t − h(t) which is denoted by q := p−1. This inverse func-
tion exists since p(t) is strictly increasing according to the
assumption ḣ < 1. The inverse function can be seen as the
symmetric of p(t) with respect to the axis θ = t on Fig-
ure B.1 and after rotation/flipping of the plane we get the
integral domain depicted on Figure B.2 which is formally
defined by

{(t, θ) : θ ∈ R+, t ∈ [θ, q(θ)]}

It is easily seen that t depends on θ and hence the order of
integration can be exchanged.

Hence we get
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||Dh(η)||2L2
≤ 1
hmax

∫ +∞

−h(0)

ηT (θ)η(θ)dθ
∫ q(θ)

θ

dt (B.3)

=
1

hmax

∫ +∞

−h(0)

ηT (θ)η(θ)(q(θ)− θ)dθ

Moreover since the symmetry preserves distances, we have
|q(θ) − θ| ≤ hmax and considering zero initial conditions
(i.e. η(s) = 0 for all s ≤ 0) we get

||Dh(η)||2L2
≤ ||η||2L2

stating that Dhdefines a L2 input/output stable operator
with an L2-induced norm lower than 1.

Appendix C. Proof of Lemma 4.1

It is convenient to introduce first a simplified version of
the full-block S-procedure (Scherer, 2001):
Lemma C.1 Let us consider system

ẋ(t) = A(t)x(t) +B0(t)w0(t)

z0(t) = C0(t)x(t) +D00(t)w0(t)

w0(t) = ∆(t)z0(t)

(C.1)

and such that the uncertainty ∆(t) satisfies the integral
quadratic constraint (IQC)∫ t

0

z0(s)T

∆(s)

I

T M∆(s)

∆(s)

I

 z0(s)ds ≥ 0 (C.2)

where M∆(s) is a structured symmetric matrix (not nec-
essarily positive semidefinite) and z0 ∈ L2. Then if there
exists a matrix P = PT > 0 and M∆(s) such that the fol-
lowing LMI holds (where we omit the dependence on time):Ṗ +ATP + PA PB0

BT0 P 0

+

0 CT0

I DT
00

M∆(s)

 0 I

C0 D00

 < 0

(C.3)
then the system (C.1) is asymptotically stable.�

The main difficulty is the complete characterization of
∆(t) in finding a ’good’ matrix M∆(s) such that (C.2)
holds. Indeed, the integral quadratic constraint must be
satisfied for every z0(t) ∈ L2 and all ’trajectories’ of the
uncertain matrix ∆(t), meaning that the problem is truly
infinite dimensional. Due to this fact, it is not possible (or
extremely difficult) to find a matrix M∆(s) which totally
describes the uncertain operator ∆(s) especially when ∆(s)
contains dynamic LTV operators. In the remaining of the
proof the matrix M∆ will be chosen as constant.

Let us consider system

ẋ(t) = Āx(t)− α(t)AhDh(ẋ(t)) + Ew(t)

z(t) = C̄x(t)− α(t)ChDh(ẋ(t)) + Fw(t)
(C.4)

with Ā = A+Ah, C̄ = C+Ch and α(t) =
√
h(t)hmax. De-

noting w0(t) := Dh(ẋ(t)), z0(t) = ẋ(t) and ∆(·) := Dh(·).
This system exactly falls into the framework of Lemma C.1.

It is possible to extend the approach to deal with robust
H∞ performances by adding the input/output constraint:

∫ t

0

w(s)

z(s)

T −γI 0

0 γ−1I

 w(s)

z(s)

 ds > 0 (C.5)

where γ is a positive scalar and we get the LMI
∂P

∂h
ḣ+ ĀTP (h) + P (h)Ā −αPAh PE

? 0 0

? ? −γ(h, ḣ)I



+


0 ĀT

I −αATh
0 ET

 f(h, ḣ)

0 I 0

Ā −αAh E



+γ−1(h, ḣ)


C̄T

−αATh
FT




C̄T

−αATh
FT


T

< 0

(C.6)

where f(h, ḣ) verifies for all η ∈ L2 the IQC

∫ t

0

Dh(η)

In

T f(h, ḣ)

Dh(η)

In

 ds > 0 (C.7)

The separator f(h, ḣ) = f∗(h, ḣ) is chosen such that it
characterizes the L2 induced norm of Dh that is∫ t

0

Dh(η)

In

T −1 0

0 1


︸ ︷︷ ︸

f1

Dh(η)

In

 ds > 0 (C.8)

for all η ∈ L2. Hence a set of separators can be parametrized
by f = f1 ⊗D(h, ḣ) where D(h, ḣ) = D(h, ḣ)T > 0 for all
(h, ḣ) ∈ H × U . Hence we have

f(h, ḣ) :=

−D(h, ḣ) 0

? D(h, ḣ)

 (C.9)

where D : H × U → Sn++. Then expanding (C.6) and per-
forming a Schur complement on quadratic term

−


C̄T ĀTD(h, ḣ)

−αCh −αAhD(h, ḣ)

F ETD(h, ḣ)


−γ−1(h, ḣ)Iq 0

0 −D−1(h, ḣ)

 (?)T

yields inequality (8).

Appendix D. Proof of Theorem 5.1

First note that the real unknown delay is denoted by
h(t) and the estimated one by ĥ(t) = h(t) + δh(t). Since
the controller depends on X−1 and Y then both matrices
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should depend on ĥ only, which is the only known parame-
ter. On the other hand, since D̃ is not involved in the con-
troller expression, it may depend on any parameter (i.e.
h(t), δh(t), ḣ(t), δ̇h(t)). In what follows, we define the com-
pact notation ξ = col(h, δh, ḣ, δ̇h) for simplicity.

Note now that LMI (C.6) can be rewritten in the follow-
ing form

(?)TM(h, ḣ)



I 0 0

Ā −αAh E

0 I 0

Ā −αAh E

0 0 I

C̄ −αCh F


︸ ︷︷ ︸

S−

< 0 (D.1)

where M(h, ḣ) =

ḣdP (h)
dh

P (h)

P (h) 0

 ⊕ f(ξ) ⊕ [−γIp] ⊕

[γ−1Iq].
In order to provide convex synthesis conditions for the

controllers, the multiple products between the closed-
system matrices Ācl(ĥ), C̄cl(ĥ) and decision matrices P,D
must be avoided. It is possible to modify the LMI con-
dition (into an equivalent version) in order to keep one
product between system matrices and decision variables
only. This is performed by the mean of the dualization
lemma (Scherer et al., 1997; Scherer and Weiland, 2004)
which is recalled below for completeness:
Lemma D.1 Let M (nM = dim(M)) be a nonsingular
symmetric matrix with respectively n+(M) and n−(M)
positive and negative eigenvalues respectively. Let S− =
Im(S−) a subspace of dimension n−(M) of RnM and
S+ = Im(S+) such that S+ is the orthogonal complement
of S− (i.e. (S−)TS+ = 0).

The following statements are equivalent:
(i) The matrix inequality (S−)TMS− < 0 holds.

(ii) The matrix inequality (S+)TM−1S+ > 0 holds.
�
First substitute the closed-loop system matrices into (D.1).
Note that dim(M) = 4n + p + q, n−(M) = 2n + p and
rank[S−] = 2n+p (S− is defined in (D.1)), where n−(M) is
the number of strictly negative eigenvalues of the symmet-
ric matrix M , n = dim(x), p = dim(w) and q = dim(z).
Since n−(M) = rank[S−] then it is possible to apply the
dualization lemma and we get

(?)TM−1(ξ)



−ĀTcl(ĥ) −C̄Tcl(ĥ) 0

In 0 In

αATh αCTh 0

0 0 −In
−ET −FT 0

0 Iq 0


︸ ︷︷ ︸

S+

> 0 (D.2)

whereM−1(ξ) =

dP (ĥ)
dt

P (ĥ)

? 0


−1

⊕f−1(ξ)⊕[−γ−1(ξ)Ip]⊕

[γ(ξ)Iq]. Let X = P−1, then
dX(ĥ)
dt

= −XdP (ĥ)
dt

X anddP (ĥ)
dt

P (ĥ)

? 0


−1

=

0 X(ĥ)

?
dX(ĥ)
dt

. Denote also f−1(ξ) =

−D̃(ξ) 0

? D̃(ξ)

 with D̃(ξ) := D(ξ)−1 ∈ Sn++. Then expand

(D.2) and noticing that D̃(ξ) > 0, the Schur complement
can be used on the quadratic term:

−


αAhD̃ E

αChD̃ F

0 0


D̃(ξ)−1 0

0 γ−1(ξ)Ip

 (?)T (D.3)

Finally multiplying the LMI by -1 (to get a negative defi-
nite inequality) we obtain inequality (14) in which Y (ĥ) =
K(ĥ)X(ĥ) is a linearizing change of variable. This con-
cludes the proof.

References

Apkarian, P., Adams, R., 1998. Advanced gain-scheduling
techniques for uncertain systems. IEEE Transactions on
Automatic Control 6, 21–32.

Ben-Tal, A., Nemirovski, A., 2002. On tractable approxim-
mations of uncertain linear matrix inequalities affected
by interval uncertainty. SIAM J. Optim 12(3), 811–833.

Briat, C., Sename, O., Lafay, J.-F., 2007. A LFT/H∞ state-
feedback design for linear parameter varying time delay
systems. In: European Control Conference 2007, Kos,
Greece.

Fridman, E., 2006. Stability of systems with uncertain de-
lays: a new ’complete’ Lyapunov-Krasovskii Functional.
IEEE Transactions on Automatic Control 51, 885–890.

Fridman, E., Shaked, U., 2002. An improved stabilization
method for linear time-delay systems. IEEE Transactions
on Automatic Control 47(11), 1931–1937.

9



Gouaisbaut, F., Peaucelle, D., 2006a. Delay dependent ro-
bust stability of time delay-systems. In: 5th IFAC Sym-
posium on Robust Control Design. Toulouse, France.

Gouaisbaut, F., Peaucelle, D., 2006b. Stability of time-
delay systems with non-small delay. In: Conference on
Decision and Control, San Diego, California.

Gu, K., Kharitonov, V., Chen, J., 2003. Stability of Time-
Delay Systems. Birkhäuser.
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